|
|
|
/**
|
|
|
|
* Marlin 3D Printer Firmware
|
|
|
|
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
|
|
|
*
|
|
|
|
* Based on Sprinter and grbl.
|
|
|
|
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
|
|
|
|
*
|
|
|
|
* This program is free software: you can redistribute it and/or modify
|
|
|
|
* it under the terms of the GNU General Public License as published by
|
|
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
|
|
* (at your option) any later version.
|
|
|
|
*
|
|
|
|
* This program is distributed in the hope that it will be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
* GNU General Public License for more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU General Public License
|
|
|
|
* along with this program. If not, see <https://www.gnu.org/licenses/>.
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
|
|
|
|
/**
|
|
|
|
* settings.cpp
|
|
|
|
*
|
|
|
|
* Settings and EEPROM storage
|
|
|
|
*
|
|
|
|
* IMPORTANT: Whenever there are changes made to the variables stored in EEPROM
|
|
|
|
* in the functions below, also increment the version number. This makes sure that
|
|
|
|
* the default values are used whenever there is a change to the data, to prevent
|
|
|
|
* wrong data being written to the variables.
|
|
|
|
*
|
|
|
|
* ALSO: Variables in the Store and Retrieve sections must be in the same order.
|
|
|
|
* If a feature is disabled, some data must still be written that, when read,
|
|
|
|
* either sets a Sane Default, or results in No Change to the existing value.
|
|
|
|
*/
|
|
|
|
|
|
|
|
// Change EEPROM version if the structure changes
|
|
|
|
#define EEPROM_VERSION "V82"
|
|
|
|
#define EEPROM_OFFSET 100
|
|
|
|
|
|
|
|
// Check the integrity of data offsets.
|
|
|
|
// Can be disabled for production build.
|
|
|
|
//#define DEBUG_EEPROM_READWRITE
|
|
|
|
|
|
|
|
#include "settings.h"
|
|
|
|
|
|
|
|
#include "endstops.h"
|
|
|
|
#include "planner.h"
|
|
|
|
#include "stepper.h"
|
|
|
|
#include "temperature.h"
|
|
|
|
|
|
|
|
#if ENABLED(DWIN_CREALITY_LCD)
|
|
|
|
#include "../lcd/dwin/e3v2/dwin.h"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#include "../lcd/marlinui.h"
|
|
|
|
#include "../libs/vector_3.h" // for matrix_3x3
|
|
|
|
#include "../gcode/gcode.h"
|
|
|
|
#include "../MarlinCore.h"
|
Allow Edit menu to call fn after edit; Fix PID Ki and Kd display in menus; Actually use changed PID and Max Accel values
Add new 'callback' edit-menu types that call a function after the edit is done. Use this to display and edit Ki and Kd correctly (removing the scaling first and reapplying it after). Also use it to reset maximum stepwise acceleration rates, after updating mm/s^2 rates via menus. (Previously, changes did nothing to affect planner unless saved back to EEPROM, and the machine reset).
Add calls to updatePID() so that PID loop uses updated values whether set by gcode (it already did this), or by restoring defaults, or loading from EEPROM (it didn't do those last two). Similarly, update the maximum step/s^2 accel rates when the mm/s^2 values are changed - whether by menu edits, restore defaults, or EEPROM read.
Refactor the acceleration rate update logic, and the PID scaling logic, into new functions that can be called from wherever, including the callbacks.
Add menu items to allow the z jerk and e jerk to be viewed/edited in the Control->Motion menu, as per xy jerk.
Conflicts:
Marlin/language.h
12 years ago
|
|
|
|
|
|
|
#if EITHER(EEPROM_SETTINGS, SD_FIRMWARE_UPDATE)
|
|
|
|
#include "../HAL/shared/eeprom_api.h"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#include "probe.h"
|
|
|
|
|
|
|
|
#if HAS_LEVELING
|
|
|
|
#include "../feature/bedlevel/bedlevel.h"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(Z_STEPPER_AUTO_ALIGN)
|
|
|
|
#include "../feature/z_stepper_align.h"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(EXTENSIBLE_UI)
|
|
|
|
#include "../lcd/extui/ui_api.h"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if HAS_SERVOS
|
|
|
|
#include "servo.h"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if HAS_SERVOS && HAS_SERVO_ANGLES
|
|
|
|
#define EEPROM_NUM_SERVOS NUM_SERVOS
|
|
|
|
#else
|
|
|
|
#define EEPROM_NUM_SERVOS NUM_SERVO_PLUGS
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#include "../feature/fwretract.h"
|
|
|
|
|
|
|
|
#if ENABLED(POWER_LOSS_RECOVERY)
|
|
|
|
#include "../feature/powerloss.h"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if HAS_POWER_MONITOR
|
|
|
|
#include "../feature/power_monitor.h"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#include "../feature/pause.h"
|
|
|
|
|
|
|
|
#if ENABLED(BACKLASH_COMPENSATION)
|
|
|
|
#include "../feature/backlash.h"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if HAS_FILAMENT_SENSOR
|
|
|
|
#include "../feature/runout.h"
|
|
|
|
#ifndef FIL_RUNOUT_ENABLED_DEFAULT
|
|
|
|
#define FIL_RUNOUT_ENABLED_DEFAULT true
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(EXTRA_LIN_ADVANCE_K)
|
|
|
|
extern float other_extruder_advance_K[EXTRUDERS];
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if HAS_MULTI_EXTRUDER
|
|
|
|
#include "tool_change.h"
|
|
|
|
void M217_report(const bool eeprom);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(BLTOUCH)
|
|
|
|
#include "../feature/bltouch.h"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if HAS_TRINAMIC_CONFIG
|
|
|
|
#include "stepper/indirection.h"
|
|
|
|
#include "../feature/tmc_util.h"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(PROBE_TEMP_COMPENSATION)
|
|
|
|
#include "../feature/probe_temp_comp.h"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#include "../feature/controllerfan.h"
|
|
|
|
#if ENABLED(CONTROLLER_FAN_EDITABLE)
|
|
|
|
void M710_report(const bool forReplay);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(CASE_LIGHT_ENABLE) && DISABLED(CASE_LIGHT_NO_BRIGHTNESS)
|
|
|
|
#include "../feature/caselight.h"
|
|
|
|
#define HAS_CASE_LIGHT_BRIGHTNESS 1
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(PASSWORD_FEATURE)
|
|
|
|
#include "../feature/password/password.h"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(TOUCH_SCREEN_CALIBRATION)
|
|
|
|
#include "../lcd/tft/touch.h"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if HAS_ETHERNET
|
|
|
|
#include "../feature/ethernet.h"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#pragma pack(push, 1) // No padding between variables
|
|
|
|
|
|
|
|
#if HAS_ETHERNET
|
|
|
|
void ETH0_report();
|
|
|
|
void MAC_report();
|
|
|
|
void M552_report();
|
|
|
|
void M553_report();
|
|
|
|
void M554_report();
|
|
|
|
#endif
|
|
|
|
|
|
|
|
typedef struct { uint16_t X, Y, Z, X2, Y2, Z2, Z3, Z4, E0, E1, E2, E3, E4, E5, E6, E7; } tmc_stepper_current_t;
|
|
|
|
typedef struct { uint32_t X, Y, Z, X2, Y2, Z2, Z3, Z4, E0, E1, E2, E3, E4, E5, E6, E7; } tmc_hybrid_threshold_t;
|
|
|
|
typedef struct { int16_t X, Y, Z, X2, Y2, Z2, Z3, Z4; } tmc_sgt_t;
|
|
|
|
typedef struct { bool X, Y, Z, X2, Y2, Z2, Z3, Z4, E0, E1, E2, E3, E4, E5, E6, E7; } tmc_stealth_enabled_t;
|
|
|
|
|
|
|
|
// Limit an index to an array size
|
|
|
|
#define ALIM(I,ARR) _MIN(I, (signed)COUNT(ARR) - 1)
|
|
|
|
|
|
|
|
// Defaults for reset / fill in on load
|
|
|
|
static const uint32_t _DMA[] PROGMEM = DEFAULT_MAX_ACCELERATION;
|
|
|
|
static const float _DASU[] PROGMEM = DEFAULT_AXIS_STEPS_PER_UNIT;
|
|
|
|
static const feedRate_t _DMF[] PROGMEM = DEFAULT_MAX_FEEDRATE;
|
|
|
|
|
|
|
|
extern const char SP_X_STR[], SP_Y_STR[], SP_Z_STR[], SP_E_STR[];
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Current EEPROM Layout
|
|
|
|
*
|
|
|
|
* Keep this data structure up to date so
|
|
|
|
* EEPROM size is known at compile time!
|
|
|
|
*/
|
|
|
|
typedef struct SettingsDataStruct {
|
|
|
|
char version[4]; // Vnn\0
|
|
|
|
uint16_t crc; // Data Checksum
|
|
|
|
|
|
|
|
//
|
|
|
|
// DISTINCT_E_FACTORS
|
|
|
|
//
|
|
|
|
uint8_t esteppers; // XYZE_N - XYZ
|
|
|
|
|
|
|
|
planner_settings_t planner_settings;
|
|
|
|
|
|
|
|
xyze_float_t planner_max_jerk; // M205 XYZE planner.max_jerk
|
|
|
|
float planner_junction_deviation_mm; // M205 J planner.junction_deviation_mm
|
|
|
|
|
|
|
|
xyz_pos_t home_offset; // M206 XYZ / M665 TPZ
|
|
|
|
|
|
|
|
#if HAS_HOTEND_OFFSET
|
|
|
|
xyz_pos_t hotend_offset[HOTENDS - 1]; // M218 XYZ
|
|
|
|
#endif
|
|
|
|
|
|
|
|
//
|
|
|
|
// FILAMENT_RUNOUT_SENSOR
|
|
|
|
//
|
|
|
|
bool runout_sensor_enabled; // M412 S
|
|
|
|
float runout_distance_mm; // M412 D
|
|
|
|
|
|
|
|
//
|
|
|
|
// ENABLE_LEVELING_FADE_HEIGHT
|
|
|
|
//
|
|
|
|
float planner_z_fade_height; // M420 Zn planner.z_fade_height
|
|
|
|
|
|
|
|
//
|
|
|
|
// MESH_BED_LEVELING
|
|
|
|
//
|
|
|
|
float mbl_z_offset; // mbl.z_offset
|
|
|
|
uint8_t mesh_num_x, mesh_num_y; // GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y
|
|
|
|
float mbl_z_values[TERN(MESH_BED_LEVELING, GRID_MAX_POINTS_X, 3)] // mbl.z_values
|
|
|
|
[TERN(MESH_BED_LEVELING, GRID_MAX_POINTS_Y, 3)];
|
|
|
|
|
|
|
|
//
|
|
|
|
// HAS_BED_PROBE
|
|
|
|
//
|
|
|
|
|
|
|
|
xyz_pos_t probe_offset;
|
|
|
|
|
|
|
|
//
|
|
|
|
// ABL_PLANAR
|
|
|
|
//
|
|
|
|
matrix_3x3 planner_bed_level_matrix; // planner.bed_level_matrix
|
|
|
|
|
|
|
|
//
|
|
|
|
// AUTO_BED_LEVELING_BILINEAR
|
|
|
|
//
|
|
|
|
uint8_t grid_max_x, grid_max_y; // GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y
|
|
|
|
xy_pos_t bilinear_grid_spacing, bilinear_start; // G29 L F
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
|
|
|
bed_mesh_t z_values; // G29
|
|
|
|
#else
|
|
|
|
float z_values[3][3];
|
|
|
|
#endif
|
|
|
|
|
|
|
|
//
|
|
|
|
// AUTO_BED_LEVELING_UBL
|
|
|
|
//
|
|
|
|
bool planner_leveling_active; // M420 S planner.leveling_active
|
|
|
|
int8_t ubl_storage_slot; // ubl.storage_slot
|
|
|
|
|
|
|
|
//
|
|
|
|
// SERVO_ANGLES
|
|
|
|
//
|
|
|
|
uint16_t servo_angles[EEPROM_NUM_SERVOS][2]; // M281 P L U
|
|
|
|
|
|
|
|
//
|
|
|
|
// Temperature first layer compensation values
|
|
|
|
//
|
|
|
|
#if ENABLED(PROBE_TEMP_COMPENSATION)
|
|
|
|
int16_t z_offsets_probe[COUNT(temp_comp.z_offsets_probe)], // M871 P I V
|
|
|
|
z_offsets_bed[COUNT(temp_comp.z_offsets_bed)] // M871 B I V
|
|
|
|
#if ENABLED(USE_TEMP_EXT_COMPENSATION)
|
|
|
|
, z_offsets_ext[COUNT(temp_comp.z_offsets_ext)] // M871 E I V
|
|
|
|
#endif
|
|
|
|
;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
//
|
|
|
|
// BLTOUCH
|
|
|
|
//
|
|
|
|
bool bltouch_last_written_mode;
|
|
|
|
|
|
|
|
//
|
|
|
|
// DELTA / [XYZ]_DUAL_ENDSTOPS
|
|
|
|
//
|
|
|
|
#if ENABLED(DELTA)
|
|
|
|
float delta_height; // M666 H
|
|
|
|
abc_float_t delta_endstop_adj; // M666 X Y Z
|
|
|
|
float delta_radius, // M665 R
|
|
|
|
delta_diagonal_rod, // M665 L
|
|
|
|
delta_segments_per_second; // M665 S
|
|
|
|
abc_float_t delta_tower_angle_trim, // M665 X Y Z
|
|
|
|
delta_diagonal_rod_trim; // M665 A B C
|
|
|
|
#elif HAS_EXTRA_ENDSTOPS
|
|
|
|
float x2_endstop_adj, // M666 X
|
|
|
|
y2_endstop_adj, // M666 Y
|
|
|
|
z2_endstop_adj, // M666 (S2) Z
|
|
|
|
z3_endstop_adj, // M666 (S3) Z
|
|
|
|
z4_endstop_adj; // M666 (S4) Z
|
|
|
|
#endif
|
|
|
|
|
|
|
|
//
|
|
|
|
// Z_STEPPER_AUTO_ALIGN, Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS
|
|
|
|
//
|
|
|
|
#if ENABLED(Z_STEPPER_AUTO_ALIGN)
|
|
|
|
xy_pos_t z_stepper_align_xy[NUM_Z_STEPPER_DRIVERS]; // M422 S X Y
|
|
|
|
#if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
|
|
|
|
xy_pos_t z_stepper_align_stepper_xy[NUM_Z_STEPPER_DRIVERS]; // M422 W X Y
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
|
|
|
|
//
|
|
|
|
// Material Presets
|
|
|
|
//
|
|
|
|
#if PREHEAT_COUNT
|
|
|
|
preheat_t ui_material_preset[PREHEAT_COUNT]; // M145 S0 H B F
|
|
|
|
#endif
|
|
|
|
|
|
|
|
//
|
|
|
|
// PIDTEMP
|
|
|
|
//
|
|
|
|
PIDCF_t hotendPID[HOTENDS]; // M301 En PIDCF / M303 En U
|
|
|
|
int16_t lpq_len; // M301 L
|
|
|
|
|
|
|
|
//
|
|
|
|
// PIDTEMPBED
|
|
|
|
//
|
|
|
|
PID_t bedPID; // M304 PID / M303 E-1 U
|
|
|
|
|
|
|
|
//
|
|
|
|
// User-defined Thermistors
|
|
|
|
//
|
|
|
|
#if HAS_USER_THERMISTORS
|
|
|
|
user_thermistor_t user_thermistor[USER_THERMISTORS]; // M305 P0 R4700 T100000 B3950
|
|
|
|
#endif
|
|
|
|
|
|
|
|
//
|
|
|
|
// Power monitor
|
|
|
|
//
|
|
|
|
uint8_t power_monitor_flags; // M430 I V W
|
|
|
|
|
|
|
|
//
|
|
|
|
// HAS_LCD_CONTRAST
|
|
|
|
//
|
|
|
|
int16_t lcd_contrast; // M250 C
|
|
|
|
|
|
|
|
//
|
|
|
|
// Controller fan settings
|
|
|
|
//
|
|
|
|
controllerFan_settings_t controllerFan_settings; // M710
|
|
|
|
|
|
|
|
//
|
|
|
|
// POWER_LOSS_RECOVERY
|
|
|
|
//
|
|
|
|
bool recovery_enabled; // M413 S
|
|
|
|
|
|
|
|
//
|
|
|
|
// FWRETRACT
|
|
|
|
//
|
|
|
|
fwretract_settings_t fwretract_settings; // M207 S F Z W, M208 S F W R
|
|
|
|
bool autoretract_enabled; // M209 S
|
|
|
|
|
|
|
|
//
|
|
|
|
// !NO_VOLUMETRIC
|
|
|
|
//
|
|
|
|
bool parser_volumetric_enabled; // M200 S parser.volumetric_enabled
|
|
|
|
float planner_filament_size[EXTRUDERS]; // M200 T D planner.filament_size[]
|
|
|
|
float planner_volumetric_extruder_limit[EXTRUDERS]; // M200 T L planner.volumetric_extruder_limit[]
|
|
|
|
|
|
|
|
//
|
|
|
|
// HAS_TRINAMIC_CONFIG
|
|
|
|
//
|
|
|
|
tmc_stepper_current_t tmc_stepper_current; // M906 X Y Z X2 Y2 Z2 Z3 Z4 E0 E1 E2 E3 E4 E5
|
|
|
|
tmc_hybrid_threshold_t tmc_hybrid_threshold; // M913 X Y Z X2 Y2 Z2 Z3 Z4 E0 E1 E2 E3 E4 E5
|
|
|
|
tmc_sgt_t tmc_sgt; // M914 X Y Z X2 Y2 Z2 Z3 Z4
|
|
|
|
tmc_stealth_enabled_t tmc_stealth_enabled; // M569 X Y Z X2 Y2 Z2 Z3 Z4 E0 E1 E2 E3 E4 E5
|
|
|
|
|
|
|
|
//
|
|
|
|
// LIN_ADVANCE
|
|
|
|
//
|
|
|
|
float planner_extruder_advance_K[_MAX(EXTRUDERS, 1)]; // M900 K planner.extruder_advance_K
|
|
|
|
|
|
|
|
//
|
|
|
|
// HAS_MOTOR_CURRENT_PWM
|
|
|
|
//
|
|
|
|
#ifndef MOTOR_CURRENT_COUNT
|
|
|
|
#define MOTOR_CURRENT_COUNT 3
|
|
|
|
#endif
|
|
|
|
uint32_t motor_current_setting[MOTOR_CURRENT_COUNT]; // M907 X Z E
|
|
|
|
|
|
|
|
//
|
|
|
|
// CNC_COORDINATE_SYSTEMS
|
|
|
|
//
|
|
|
|
xyz_pos_t coordinate_system[MAX_COORDINATE_SYSTEMS]; // G54-G59.3
|
|
|
|
|
|
|
|
//
|
|
|
|
// SKEW_CORRECTION
|
|
|
|
//
|
|
|
|
skew_factor_t planner_skew_factor; // M852 I J K planner.skew_factor
|
|
|
|
|
|
|
|
//
|
|
|
|
// ADVANCED_PAUSE_FEATURE
|
|
|
|
//
|
|
|
|
#if EXTRUDERS
|
|
|
|
fil_change_settings_t fc_settings[EXTRUDERS]; // M603 T U L
|
|
|
|
#endif
|
|
|
|
|
|
|
|
//
|
|
|
|
// Tool-change settings
|
|
|
|
//
|
|
|
|
#if HAS_MULTI_EXTRUDER
|
|
|
|
toolchange_settings_t toolchange_settings; // M217 S P R
|
|
|
|
#endif
|
|
|
|
|
|
|
|
//
|
|
|
|
// BACKLASH_COMPENSATION
|
|
|
|
//
|
|
|
|
xyz_float_t backlash_distance_mm; // M425 X Y Z
|
|
|
|
uint8_t backlash_correction; // M425 F
|
|
|
|
float backlash_smoothing_mm; // M425 S
|
|
|
|
|
|
|
|
//
|
|
|
|
// EXTENSIBLE_UI
|
|
|
|
//
|
|
|
|
#if ENABLED(EXTENSIBLE_UI)
|
|
|
|
// This is a significant hardware change; don't reserve space when not present
|
|
|
|
uint8_t extui_data[ExtUI::eeprom_data_size];
|
|
|
|
#endif
|
|
|
|
|
|
|
|
//
|
|
|
|
// HAS_CASE_LIGHT_BRIGHTNESS
|
|
|
|
//
|
|
|
|
#if HAS_CASE_LIGHT_BRIGHTNESS
|
|
|
|
uint8_t caselight_brightness; // M355 P
|
|
|
|
#endif
|
|
|
|
|
|
|
|
//
|
|
|
|
// PASSWORD_FEATURE
|
|
|
|
//
|
|
|
|
#if ENABLED(PASSWORD_FEATURE)
|
|
|
|
bool password_is_set;
|
|
|
|
uint32_t password_value;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
//
|
|
|
|
// TOUCH_SCREEN_CALIBRATION
|
|
|
|
//
|
|
|
|
#if ENABLED(TOUCH_SCREEN_CALIBRATION)
|
|
|
|
touch_calibration_t touch_calibration;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// Ethernet settings
|
|
|
|
#if HAS_ETHERNET
|
|
|
|
bool ethernet_hardware_enabled; // M552 S
|
|
|
|
uint32_t ethernet_ip, // M552 P
|
|
|
|
ethernet_dns,
|
|
|
|
ethernet_gateway, // M553 P
|
|
|
|
ethernet_subnet; // M554 P
|
|
|
|
#endif
|
|
|
|
|
|
|
|
} SettingsData;
|
|
|
|
|
|
|
|
//static_assert(sizeof(SettingsData) <= MARLIN_EEPROM_SIZE, "EEPROM too small to contain SettingsData!");
|
|
|
|
|
|
|
|
MarlinSettings settings;
|
|
|
|
|
|
|
|
uint16_t MarlinSettings::datasize() { return sizeof(SettingsData); }
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Post-process after Retrieve or Reset
|
|
|
|
*/
|
|
|
|
|
|
|
|
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
|
|
|
float new_z_fade_height;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
void MarlinSettings::postprocess() {
|
|
|
|
xyze_pos_t oldpos = current_position;
|
|
|
|
|
|
|
|
// steps per s2 needs to be updated to agree with units per s2
|
|
|
|
planner.reset_acceleration_rates();
|
|
|
|
|
|
|
|
// Make sure delta kinematics are updated before refreshing the
|
|
|
|
// planner position so the stepper counts will be set correctly.
|
|
|
|
TERN_(DELTA, recalc_delta_settings());
|
|
|
|
|
|
|
|
TERN_(PIDTEMP, thermalManager.updatePID());
|
|
|
|
|
|
|
|
#if DISABLED(NO_VOLUMETRICS)
|
|
|
|
planner.calculate_volumetric_multipliers();
|
|
|
|
#elif EXTRUDERS
|
|
|
|
for (uint8_t i = COUNT(planner.e_factor); i--;)
|
|
|
|
planner.refresh_e_factor(i);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// Software endstops depend on home_offset
|
|
|
|
LOOP_XYZ(i) {
|
|
|
|
update_workspace_offset((AxisEnum)i);
|
|
|
|
update_software_endstops((AxisEnum)i);
|
|
|
|
}
|
|
|
|
|
|
|
|
TERN_(ENABLE_LEVELING_FADE_HEIGHT, set_z_fade_height(new_z_fade_height, false)); // false = no report
|
|
|
|
|
|
|
|
TERN_(AUTO_BED_LEVELING_BILINEAR, refresh_bed_level());
|
|
|
|
|
|
|
|
TERN_(HAS_MOTOR_CURRENT_PWM, stepper.refresh_motor_power());
|
|
|
|
|
|
|
|
TERN_(FWRETRACT, fwretract.refresh_autoretract());
|
|
|
|
|
|
|
|
TERN_(HAS_LINEAR_E_JERK, planner.recalculate_max_e_jerk());
|
|
|
|
|
|
|
|
TERN_(HAS_CASE_LIGHT_BRIGHTNESS, caselight.update_brightness());
|
|
|
|
|
|
|
|
// Refresh steps_to_mm with the reciprocal of axis_steps_per_mm
|
|
|
|
// and init stepper.count[], planner.position[] with current_position
|
|
|
|
planner.refresh_positioning();
|
|
|
|
|
|
|
|
// Various factors can change the current position
|
|
|
|
if (oldpos != current_position)
|
|
|
|
report_current_position();
|
|
|
|
}
|
|
|
|
|
|
|
|
#if BOTH(PRINTCOUNTER, EEPROM_SETTINGS)
|
|
|
|
#include "printcounter.h"
|
|
|
|
static_assert(
|
|
|
|
!WITHIN(STATS_EEPROM_ADDRESS, EEPROM_OFFSET, EEPROM_OFFSET + sizeof(SettingsData)) &&
|
|
|
|
!WITHIN(STATS_EEPROM_ADDRESS + sizeof(printStatistics), EEPROM_OFFSET, EEPROM_OFFSET + sizeof(SettingsData)),
|
|
|
|
"STATS_EEPROM_ADDRESS collides with EEPROM settings storage."
|
|
|
|
);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(SD_FIRMWARE_UPDATE)
|
|
|
|
|
|
|
|
#if ENABLED(EEPROM_SETTINGS)
|
|
|
|
static_assert(
|
|
|
|
!WITHIN(SD_FIRMWARE_UPDATE_EEPROM_ADDR, EEPROM_OFFSET, EEPROM_OFFSET + sizeof(SettingsData)),
|
|
|
|
"SD_FIRMWARE_UPDATE_EEPROM_ADDR collides with EEPROM settings storage."
|
|
|
|
);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
bool MarlinSettings::sd_update_status() {
|
|
|
|
uint8_t val;
|
|
|
|
persistentStore.read_data(SD_FIRMWARE_UPDATE_EEPROM_ADDR, &val);
|
|
|
|
return (val == SD_FIRMWARE_UPDATE_ACTIVE_VALUE);
|
|
|
|
}
|
|
|
|
|
|
|
|
bool MarlinSettings::set_sd_update_status(const bool enable) {
|
|
|
|
if (enable != sd_update_status())
|
|
|
|
persistentStore.write_data(
|
|
|
|
SD_FIRMWARE_UPDATE_EEPROM_ADDR,
|
|
|
|
enable ? SD_FIRMWARE_UPDATE_ACTIVE_VALUE : SD_FIRMWARE_UPDATE_INACTIVE_VALUE
|
|
|
|
);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif // SD_FIRMWARE_UPDATE
|
|
|
|
|
|
|
|
#ifdef ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE
|
|
|
|
static_assert(
|
|
|
|
EEPROM_OFFSET + sizeof(SettingsData) < ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE,
|
|
|
|
"ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE is insufficient to capture all EEPROM data."
|
|
|
|
);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#define DEBUG_OUT ENABLED(EEPROM_CHITCHAT)
|
|
|
|
#include "../core/debug_out.h"
|
|
|
|
|
|
|
|
#if ENABLED(EEPROM_SETTINGS)
|
|
|
|
|
|
|
|
#define EEPROM_START() if (!persistentStore.access_start()) { SERIAL_ECHO_MSG("No EEPROM."); return false; } \
|
|
|
|
int eeprom_index = EEPROM_OFFSET
|
|
|
|
#define EEPROM_FINISH() persistentStore.access_finish()
|
|
|
|
#define EEPROM_SKIP(VAR) (eeprom_index += sizeof(VAR))
|
|
|
|
#define EEPROM_WRITE(VAR) do{ persistentStore.write_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc); }while(0)
|
|
|
|
#define EEPROM_READ(VAR) do{ persistentStore.read_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc, !validating); }while(0)
|
|
|
|
#define EEPROM_READ_ALWAYS(VAR) do{ persistentStore.read_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc); }while(0)
|
|
|
|
#define EEPROM_ASSERT(TST,ERR) do{ if (!(TST)) { SERIAL_ERROR_MSG(ERR); eeprom_error = true; } }while(0)
|
|
|
|
|
|
|
|
#if ENABLED(DEBUG_EEPROM_READWRITE)
|
|
|
|
#define _FIELD_TEST(FIELD) \
|
|
|
|
EEPROM_ASSERT( \
|
|
|
|
eeprom_error || eeprom_index == offsetof(SettingsData, FIELD) + EEPROM_OFFSET, \
|
|
|
|
"Field " STRINGIFY(FIELD) " mismatch." \
|
|
|
|
)
|
|
|
|
#else
|
|
|
|
#define _FIELD_TEST(FIELD) NOOP
|
|
|
|
#endif
|
|
|
|
|
|
|
|
const char version[4] = EEPROM_VERSION;
|
|
|
|
|
|
|
|
bool MarlinSettings::eeprom_error, MarlinSettings::validating;
|
|
|
|
|
|
|
|
bool MarlinSettings::size_error(const uint16_t size) {
|
|
|
|
if (size != datasize()) {
|
|
|
|
DEBUG_ERROR_MSG("EEPROM datasize error.");
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* M500 - Store Configuration
|
|
|
|
*/
|
|
|
|
bool MarlinSettings::save() {
|
|
|
|
float dummyf = 0;
|
|
|
|
char ver[4] = "ERR";
|
|
|
|
|
|
|
|
uint16_t working_crc = 0;
|
|
|
|
|
|
|
|
EEPROM_START();
|
|
|
|
|
|
|
|
eeprom_error = false;
|
|
|
|
|
|
|
|
// Write or Skip version. (Flash doesn't allow rewrite without erase.)
|
|
|
|
TERN(FLASH_EEPROM_EMULATION, EEPROM_SKIP, EEPROM_WRITE)(ver);
|
|
|
|
|
|
|
|
EEPROM_SKIP(working_crc); // Skip the checksum slot
|
|
|
|
|
|
|
|
working_crc = 0; // clear before first "real data"
|
|
|
|
|
|
|
|
_FIELD_TEST(esteppers);
|
|
|
|
|
|
|
|
const uint8_t esteppers = COUNT(planner.settings.axis_steps_per_mm) - XYZ;
|
|
|
|
EEPROM_WRITE(esteppers);
|
|
|
|
|
|
|
|
//
|
|
|
|
// Planner Motion
|
|
|
|
//
|
|
|
|
{
|
|
|
|
EEPROM_WRITE(planner.settings);
|
|
|
|
|
|
|
|
#if HAS_CLASSIC_JERK
|
|
|
|
EEPROM_WRITE(planner.max_jerk);
|
|
|
|
#if HAS_LINEAR_E_JERK
|
|
|
|
dummyf = float(DEFAULT_EJERK);
|
|
|
|
EEPROM_WRITE(dummyf);
|
|
|
|
#endif
|
|
|
|
#else
|
|
|
|
const xyze_pos_t planner_max_jerk = { 10, 10, 0.4, float(DEFAULT_EJERK) };
|
|
|
|
EEPROM_WRITE(planner_max_jerk);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
TERN_(CLASSIC_JERK, dummyf = 0.02f);
|
|
|
|
EEPROM_WRITE(TERN(CLASSIC_JERK, dummyf, planner.junction_deviation_mm));
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// Home Offset
|
|
|
|
//
|
|
|
|
{
|
|
|
|
_FIELD_TEST(home_offset);
|
|
|
|
|
|
|
|
#if HAS_SCARA_OFFSET
|
|
|
|
EEPROM_WRITE(scara_home_offset);
|
|
|
|
#else
|
|
|
|
#if !HAS_HOME_OFFSET
|
|
|
|
const xyz_pos_t home_offset{0};
|
|
|
|
#endif
|
|
|
|
EEPROM_WRITE(home_offset);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// Hotend Offsets, if any
|
|
|
|
//
|
|
|
|
{
|
|
|
|
#if HAS_HOTEND_OFFSET
|
|
|
|
// Skip hotend 0 which must be 0
|
|
|
|
LOOP_S_L_N(e, 1, HOTENDS)
|
|
|
|
EEPROM_WRITE(hotend_offset[e]);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// Filament Runout Sensor
|
|
|
|
//
|
|
|
|
{
|
|
|
|
#if HAS_FILAMENT_SENSOR
|
|
|
|
const bool &runout_sensor_enabled = runout.enabled;
|
|
|
|
#else
|
|
|
|
constexpr int8_t runout_sensor_enabled = -1;
|
|
|
|
#endif
|
|
|
|
_FIELD_TEST(runout_sensor_enabled);
|
|
|
|
EEPROM_WRITE(runout_sensor_enabled);
|
|
|
|
|
|
|
|
#if HAS_FILAMENT_RUNOUT_DISTANCE
|
|
|
|
const float &runout_distance_mm = runout.runout_distance();
|
|
|
|
#else
|
|
|
|
constexpr float runout_distance_mm = 0;
|
|
|
|
#endif
|
|
|
|
EEPROM_WRITE(runout_distance_mm);
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// Global Leveling
|
|
|
|
//
|
|
|
|
{
|
|
|
|
const float zfh = TERN(ENABLE_LEVELING_FADE_HEIGHT, planner.z_fade_height, 10.0f);
|
|
|
|
EEPROM_WRITE(zfh);
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// Mesh Bed Leveling
|
|
|
|
//
|
|
|
|
{
|
|
|
|
#if ENABLED(MESH_BED_LEVELING)
|
|
|
|
static_assert(
|
|
|
|
sizeof(mbl.z_values) == (GRID_MAX_POINTS) * sizeof(mbl.z_values[0][0]),
|
|
|
|
"MBL Z array is the wrong size."
|
|
|
|
);
|
|
|
|
#else
|
|
|
|
dummyf = 0;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
const uint8_t mesh_num_x = TERN(MESH_BED_LEVELING, GRID_MAX_POINTS_X, 3),
|
|
|
|
mesh_num_y = TERN(MESH_BED_LEVELING, GRID_MAX_POINTS_Y, 3);
|
|
|
|
|
|
|
|
EEPROM_WRITE(TERN(MESH_BED_LEVELING, mbl.z_offset, dummyf));
|
|
|
|
EEPROM_WRITE(mesh_num_x);
|
|
|
|
EEPROM_WRITE(mesh_num_y);
|
|
|
|
|
|
|
|
#if ENABLED(MESH_BED_LEVELING)
|
|
|
|
EEPROM_WRITE(mbl.z_values);
|
|
|
|
#else
|
|
|
|
for (uint8_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_WRITE(dummyf);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// Probe XYZ Offsets
|
|
|
|
//
|
|
|
|
{
|
|
|
|
_FIELD_TEST(probe_offset);
|
|
|
|
#if HAS_BED_PROBE
|
|
|
|
const xyz_pos_t &zpo = probe.offset;
|
|
|
|
#else
|
|
|
|
constexpr xyz_pos_t zpo{0};
|
|
|
|
#endif
|
|
|
|
EEPROM_WRITE(zpo);
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// Planar Bed Leveling matrix
|
|
|
|
//
|
|
|
|
{
|
|
|
|
#if ABL_PLANAR
|
|
|
|
EEPROM_WRITE(planner.bed_level_matrix);
|
|
|
|
#else
|
|
|
|
dummyf = 0;
|
|
|
|
for (uint8_t q = 9; q--;) EEPROM_WRITE(dummyf);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// Bilinear Auto Bed Leveling
|
|
|
|
//
|
|
|
|
{
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
|
|
|
static_assert(
|
|
|
|
sizeof(z_values) == (GRID_MAX_POINTS) * sizeof(z_values[0][0]),
|
|
|
|
"Bilinear Z array is the wrong size."
|
|
|
|
);
|
|
|
|
#else
|
|
|
|
const xy_pos_t bilinear_start{0}, bilinear_grid_spacing{0};
|
|
|
|
#endif
|
|
|
|
|
|
|
|
const uint8_t grid_max_x = TERN(AUTO_BED_LEVELING_BILINEAR, GRID_MAX_POINTS_X, 3),
|
|
|
|
grid_max_y = TERN(AUTO_BED_LEVELING_BILINEAR, GRID_MAX_POINTS_Y, 3);
|
|
|
|
EEPROM_WRITE(grid_max_x);
|
|
|
|
EEPROM_WRITE(grid_max_y);
|
|
|
|
EEPROM_WRITE(bilinear_grid_spacing);
|
|
|
|
EEPROM_WRITE(bilinear_start);
|
|
|
|
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
|
|
|
EEPROM_WRITE(z_values); // 9-256 floats
|
|
|
|
#else
|
|
|
|
dummyf = 0;
|
|
|
|
for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_WRITE(dummyf);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// Unified Bed Leveling
|
|
|
|
//
|
|
|
|
{
|
|
|
|
_FIELD_TEST(planner_leveling_active);
|
|
|
|
const bool ubl_active = TERN(AUTO_BED_LEVELING_UBL, planner.leveling_active, false);
|
|
|
|
const int8_t storage_slot = TERN(AUTO_BED_LEVELING_UBL, ubl.storage_slot, -1);
|
|
|
|
EEPROM_WRITE(ubl_active);
|
|
|
|
EEPROM_WRITE(storage_slot);
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// Servo Angles
|
|
|
|
//
|
|
|
|
{
|
|
|
|
_FIELD_TEST(servo_angles);
|
|
|
|
#if !HAS_SERVO_ANGLES
|
|
|
|
uint16_t servo_angles[EEPROM_NUM_SERVOS][2] = { { 0, 0 } };
|
|
|
|
#endif
|
|
|
|
EEPROM_WRITE(servo_angles);
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// Thermal first layer compensation values
|
|
|
|
//
|
|
|
|
#if ENABLED(PROBE_TEMP_COMPENSATION)
|
|
|
|
EEPROM_WRITE(temp_comp.z_offsets_probe);
|
|
|
|
EEPROM_WRITE(temp_comp.z_offsets_bed);
|
|
|
|
#if ENABLED(USE_TEMP_EXT_COMPENSATION)
|
|
|
|
EEPROM_WRITE(temp_comp.z_offsets_ext);
|
|
|
|
#endif
|
|
|
|
#else
|
|
|
|
// No placeholder data for this feature
|
|
|
|
#endif
|
|
|
|
|
|
|
|
//
|
|
|
|
// BLTOUCH
|
|
|
|
//
|
|
|
|
{
|
|
|
|
_FIELD_TEST(bltouch_last_written_mode);
|
|
|
|
const bool bltouch_last_written_mode = TERN(BLTOUCH, bltouch.last_written_mode, false);
|
|
|
|
EEPROM_WRITE(bltouch_last_written_mode);
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// DELTA Geometry or Dual Endstops offsets
|
|
|
|
//
|
|
|
|
{
|
|
|
|
#if ENABLED(DELTA)
|
|
|
|
|
|
|
|
_FIELD_TEST(delta_height);
|
|
|
|
|
|
|
|
EEPROM_WRITE(delta_height); // 1 float
|
|
|
|
EEPROM_WRITE(delta_endstop_adj); // 3 floats
|
|
|
|
EEPROM_WRITE(delta_radius); // 1 float
|
|
|
|
EEPROM_WRITE(delta_diagonal_rod); // 1 float
|
|
|
|
EEPROM_WRITE(delta_segments_per_second); // 1 float
|
|
|
|
EEPROM_WRITE(delta_tower_angle_trim); // 3 floats
|
|
|
|
EEPROM_WRITE(delta_diagonal_rod_trim); // 3 floats
|
|
|
|
|
|
|
|
#elif HAS_EXTRA_ENDSTOPS
|
|
|
|
|
|
|
|
_FIELD_TEST(x2_endstop_adj);
|
|
|
|
|
|
|
|
// Write dual endstops in X, Y, Z order. Unused = 0.0
|
|
|
|
dummyf = 0;
|
|
|
|
EEPROM_WRITE(TERN(X_DUAL_ENDSTOPS, endstops.x2_endstop_adj, dummyf)); // 1 float
|
|
|
|
EEPROM_WRITE(TERN(Y_DUAL_ENDSTOPS, endstops.y2_endstop_adj, dummyf)); // 1 float
|
|
|
|
EEPROM_WRITE(TERN(Z_MULTI_ENDSTOPS, endstops.z2_endstop_adj, dummyf)); // 1 float
|
|
|
|
|
|
|
|
#if ENABLED(Z_MULTI_ENDSTOPS) && NUM_Z_STEPPER_DRIVERS >= 3
|
|
|
|
EEPROM_WRITE(endstops.z3_endstop_adj); // 1 float
|
|
|
|
#else
|
|
|
|
EEPROM_WRITE(dummyf);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(Z_MULTI_ENDSTOPS) && NUM_Z_STEPPER_DRIVERS >= 4
|
|
|
|
EEPROM_WRITE(endstops.z4_endstop_adj); // 1 float
|
|
|
|
#else
|
|
|
|
EEPROM_WRITE(dummyf);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
#if ENABLED(Z_STEPPER_AUTO_ALIGN)
|
|
|
|
EEPROM_WRITE(z_stepper_align.xy);
|
|
|
|
#if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
|
|
|
|
EEPROM_WRITE(z_stepper_align.stepper_xy);
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
|
|
|
|
//
|
|
|
|
// LCD Preheat settings
|
|
|
|
//
|
|
|
|
#if PREHEAT_COUNT
|
|
|
|
_FIELD_TEST(ui_material_preset);
|
|
|
|
EEPROM_WRITE(ui.material_preset);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
//
|
|
|
|
// PIDTEMP
|
|
|
|
//
|
|
|
|
{
|
|
|
|
_FIELD_TEST(hotendPID);
|
|
|
|
HOTEND_LOOP() {
|
|
|
|
PIDCF_t pidcf = {
|
|
|
|
#if DISABLED(PIDTEMP)
|
|
|
|
NAN, NAN, NAN,
|
|
|
|
NAN, NAN
|
|
|
|
#else
|
|
|
|
PID_PARAM(Kp, e),
|
|
|
|
unscalePID_i(PID_PARAM(Ki, e)),
|
|
|
|
unscalePID_d(PID_PARAM(Kd, e)),
|
|
|
|
PID_PARAM(Kc, e),
|
|
|
|
PID_PARAM(Kf, e)
|
|
|
|
#endif
|
|
|
|
};
|
|
|
|
EEPROM_WRITE(pidcf);
|
|
|
|
}
|
|
|
|
|
|
|
|
_FIELD_TEST(lpq_len);
|
|
|
|
#if DISABLED(PID_EXTRUSION_SCALING)
|
|
|
|
const int16_t lpq_len = 20;
|
|
|
|
#endif
|
|
|
|
EEPROM_WRITE(TERN(PID_EXTRUSION_SCALING, thermalManager.lpq_len, lpq_len));
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// PIDTEMPBED
|
|
|
|
//
|
|
|
|
{
|
|
|
|
_FIELD_TEST(bedPID);
|
|
|
|
|
|
|
|
const PID_t bed_pid = {
|
|
|
|
#if DISABLED(PIDTEMPBED)
|
|
|
|
NAN, NAN, NAN
|
|
|
|
#else
|
|
|
|
// Store the unscaled PID values
|
|
|
|
thermalManager.temp_bed.pid.Kp,
|
|
|
|
unscalePID_i(thermalManager.temp_bed.pid.Ki),
|
|
|
|
unscalePID_d(thermalManager.temp_bed.pid.Kd)
|
|
|
|
#endif
|
|
|
|
};
|
|
|
|
EEPROM_WRITE(bed_pid);
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// User-defined Thermistors
|
|
|
|
//
|
|
|
|
#if HAS_USER_THERMISTORS
|
|
|
|
{
|
|
|
|
_FIELD_TEST(user_thermistor);
|
|
|
|
EEPROM_WRITE(thermalManager.user_thermistor);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
//
|
|
|
|
// Power monitor
|
|
|
|
//
|
|
|
|
{
|
|
|
|
#if HAS_POWER_MONITOR
|
|
|
|
const uint8_t &power_monitor_flags = power_monitor.flags;
|
|
|
|
#else
|
|
|
|
constexpr uint8_t power_monitor_flags = 0x00;
|
|
|
|
#endif
|
|
|
|
_FIELD_TEST(power_monitor_flags);
|
|
|
|
EEPROM_WRITE(power_monitor_flags);
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// LCD Contrast
|
|
|
|
//
|
|
|
|
{
|
|
|
|
_FIELD_TEST(lcd_contrast);
|
|
|
|
|
|
|
|
const int16_t lcd_contrast =
|
|
|
|
#if HAS_LCD_CONTRAST
|
|
|
|
ui.contrast
|
|
|
|
#else
|
|
|
|
127
|
|
|
|
#endif
|
|
|
|
;
|
|
|
|
EEPROM_WRITE(lcd_contrast);
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// Controller Fan
|
|
|
|
//
|
|
|
|
{
|
|
|
|
_FIELD_TEST(controllerFan_settings);
|
|
|
|
#if ENABLED(USE_CONTROLLER_FAN)
|
|
|
|
const controllerFan_settings_t &cfs = controllerFan.settings;
|
|
|
|
#else
|
|
|
|
controllerFan_settings_t cfs = controllerFan_defaults;
|
|
|
|
#endif
|
|
|
|
EEPROM_WRITE(cfs);
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// Power-Loss Recovery
|
|
|
|
//
|
|
|
|
{
|
|
|
|
_FIELD_TEST(recovery_enabled);
|
|
|
|
const bool recovery_enabled = TERN(POWER_LOSS_RECOVERY, recovery.enabled, ENABLED(PLR_ENABLED_DEFAULT));
|
|
|
|
EEPROM_WRITE(recovery_enabled);
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// Firmware Retraction
|
|
|
|
//
|
|
|
|
{
|
|
|
|
_FIELD_TEST(fwretract_settings);
|
|
|
|
#if DISABLED(FWRETRACT)
|
|
|
|
const fwretract_settings_t autoretract_defaults = { 3, 45, 0, 0, 0, 13, 0, 8 };
|
|
|
|
#endif
|
|
|
|
EEPROM_WRITE(TERN(FWRETRACT, fwretract.settings, autoretract_defaults));
|
|
|
|
|
|
|
|
#if DISABLED(FWRETRACT_AUTORETRACT)
|
|
|
|
const bool autoretract_enabled = false;
|
|
|
|
#endif
|
|
|
|
EEPROM_WRITE(TERN(FWRETRACT_AUTORETRACT, fwretract.autoretract_enabled, autoretract_enabled));
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// Volumetric & Filament Size
|
|
|
|
//
|
|
|
|
{
|
|
|
|
_FIELD_TEST(parser_volumetric_enabled);
|
|
|
|
|
|
|
|
#if DISABLED(NO_VOLUMETRICS)
|
|
|
|
|
|
|
|
EEPROM_WRITE(parser.volumetric_enabled);
|
|
|
|
EEPROM_WRITE(planner.filament_size);
|
|
|
|
#if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
|
|
|
|
EEPROM_WRITE(planner.volumetric_extruder_limit);
|
|
|
|
#else
|
|
|
|
dummyf = DEFAULT_VOLUMETRIC_EXTRUDER_LIMIT;
|
|
|
|
for (uint8_t q = EXTRUDERS; q--;) EEPROM_WRITE(dummyf);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#else
|
|
|
|
|
|
|
|
const bool volumetric_enabled = false;
|
|
|
|
EEPROM_WRITE(volumetric_enabled);
|
|
|
|
dummyf = DEFAULT_NOMINAL_FILAMENT_DIA;
|
|
|
|
for (uint8_t q = EXTRUDERS; q--;) EEPROM_WRITE(dummyf);
|
|
|
|
dummyf = DEFAULT_VOLUMETRIC_EXTRUDER_LIMIT;
|
|
|
|
for (uint8_t q = EXTRUDERS; q--;) EEPROM_WRITE(dummyf);
|
|
|
|
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// TMC Configuration
|
|
|
|
//
|
|
|
|
{
|
|
|
|
_FIELD_TEST(tmc_stepper_current);
|
|
|
|
|
|
|
|
tmc_stepper_current_t tmc_stepper_current = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
|
|
|
|
|
|
|
|
#if HAS_TRINAMIC_CONFIG
|
|
|
|
#if AXIS_IS_TMC(X)
|
|
|
|
tmc_stepper_current.X = stepperX.getMilliamps();
|
|
|
|
#endif
|
|
|
|
#if AXIS_IS_TMC(Y)
|
|
|
|
tmc_stepper_current.Y = stepperY.getMilliamps();
|
|
|
|
#endif
|
|
|
|
#if AXIS_IS_TMC(Z)
|
|
|
|
tmc_stepper_current.Z = stepperZ.getMilliamps();
|
|
|
|
#endif
|
|
|
|
#if AXIS_IS_TMC(X2)
|
|
|
|
tmc_stepper_current.X2 = stepperX2.getMilliamps();
|
|
|
|
#endif
|
|
|
|
#if AXIS_IS_TMC(Y2)
|
|
|
|
tmc_stepper_current.Y2 = stepperY2.getMilliamps();
|
|
|
|
#endif
|
|
|
|
#if AXIS_IS_TMC(Z2)
|
|
|
|
tmc_stepper_current.Z2 = stepperZ2.getMilliamps();
|
|
|
|
#endif
|
|
|
|
#if AXIS_IS_TMC(Z3)
|
|
|
|
tmc_stepper_current.Z3 = stepperZ3.getMilliamps();
|
|
|
|
#endif
|
|
|
|
#if AXIS_IS_TMC(Z4)
|
|
|
|
tmc_stepper_current.Z4 = stepperZ4.getMilliamps();
|
|
|
|
#endif
|
|
|
|
#if MAX_EXTRUDERS
|
|
|
|
#if AXIS_IS_TMC(E0)
|
|
|
|
tmc_stepper_current.E0 = stepperE0.getMilliamps();
|
|
|
|
#endif
|
|
|
|
#if MAX_EXTRUDERS > 1
|
|
|
|
#if AXIS_IS_TMC(E1)
|
|
|
|
tmc_stepper_current.E1 = stepperE1.getMilliamps();
|
|
|
|
#endif
|
|
|
|
#if MAX_EXTRUDERS > 2
|
|
|
|
#if AXIS_IS_TMC(E2)
|
|
|
|
tmc_stepper_current.E2 = stepperE2.getMilliamps();
|
|
|
|
#endif
|
|
|
|
#if MAX_EXTRUDERS > 3
|
|
|
|
#if AXIS_IS_TMC(E3)
|
|
|
|
tmc_stepper_current.E3 = stepperE3.getMilliamps();
|
|
|
|
#endif
|
|
|
|
#if MAX_EXTRUDERS > 4
|
|
|
|
#if AXIS_IS_TMC(E4)
|
|
|
|
tmc_stepper_current.E4 = stepperE4.getMilliamps();
|
|
|
|
#endif
|
|
|
|
#if MAX_EXTRUDERS > 5
|
|
|
|
#if AXIS_IS_TMC(E5)
|
|
|
|
tmc_stepper_current.E5 = stepperE5.getMilliamps();
|
|
|
|
#endif
|
|
|
|
#if MAX_EXTRUDERS > 6
|
|
|
|
#if AXIS_IS_TMC(E6)
|
|
|
|
tmc_stepper_current.E6 = stepperE6.getMilliamps();
|
|
|
|
#endif
|
|
|
|
#if MAX_EXTRUDERS > 7
|
|
|
|
#if AXIS_IS_TMC(E7)
|
|
|
|
tmc_stepper_current.E7 = stepperE7.getMilliamps();
|
|
|
|
#endif
|
|
|
|
#endif // MAX_EXTRUDERS > 7
|
|
|
|
#endif // MAX_EXTRUDERS > 6
|
|
|
|
#endif // MAX_EXTRUDERS > 5
|
|
|
|
#endif // MAX_EXTRUDERS > 4
|
|
|
|
#endif // MAX_EXTRUDERS > 3
|
|
|
|
#endif // MAX_EXTRUDERS > 2
|
|
|
|
#endif // MAX_EXTRUDERS > 1
|
|
|
|
#endif // MAX_EXTRUDERS
|
|
|
|
#endif
|
|
|
|
EEPROM_WRITE(tmc_stepper_current);
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// TMC Hybrid Threshold, and placeholder values
|
|
|
|
//
|
|
|
|
{
|
|
|
|
_FIELD_TEST(tmc_hybrid_threshold);
|
|
|
|
|
|
|
|
#if ENABLED(HYBRID_THRESHOLD)
|
|
|
|
tmc_hybrid_threshold_t tmc_hybrid_threshold = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
|
|
|
|
#if AXIS_HAS_STEALTHCHOP(X)
|
|
|
|
tmc_hybrid_threshold.X = stepperX.get_pwm_thrs();
|
|
|
|
#endif
|
|
|
|
#if AXIS_HAS_STEALTHCHOP(Y)
|
|
|
|
tmc_hybrid_threshold.Y = stepperY.get_pwm_thrs();
|
|
|
|
#endif
|
|
|
|
#if AXIS_HAS_STEALTHCHOP(Z)
|
|
|
|
tmc_hybrid_threshold.Z = stepperZ.get_pwm_thrs();
|
|
|
|
#endif
|
|
|
|
#if AXIS_HAS_STEALTHCHOP(X2)
|
|
|
|
tmc_hybrid_threshold.X2 = stepperX2.get_pwm_thrs();
|
|
|
|
#endif
|
|
|
|
#if AXIS_HAS_STEALTHCHOP(Y2)
|
|
|
|
tmc_hybrid_threshold.Y2 = stepperY2.get_pwm_thrs();
|
|
|
|
#endif
|
|
|
|
#if AXIS_HAS_STEALTHCHOP(Z2)
|
|
|
|
tmc_hybrid_threshold.Z2 = stepperZ2.get_pwm_thrs();
|
|
|
|
#endif
|
|
|
|
#if AXIS_HAS_STEALTHCHOP(Z3)
|
|
|
|
tmc_hybrid_threshold.Z3 = stepperZ3.get_pwm_thrs();
|
|
|
|
#endif
|
|
|
|
#if AXIS_HAS_STEALTHCHOP(Z4)
|
|
|
|
tmc_hybrid_threshold.Z4 = stepperZ4.get_pwm_thrs();
|
|
|
|
#endif
|
|
|
|
#if MAX_EXTRUDERS
|
|
|
|
#if AXIS_HAS_STEALTHCHOP(E0)
|
|
|
|
tmc_hybrid_threshold.E0 = stepperE0.get_pwm_thrs();
|
|
|
|
#endif
|
|
|
|
#if MAX_EXTRUDERS > 1
|
|
|
|
#if AXIS_HAS_STEALTHCHOP(E1)
|
|
|
|
tmc_hybrid_threshold.E1 = stepperE1.get_pwm_thrs();
|
|
|
|
#endif
|
|
|
|
#if MAX_EXTRUDERS > 2
|
|
|
|
#if AXIS_HAS_STEALTHCHOP(E2)
|
|
|
|
tmc_hybrid_threshold.E2 = stepperE2.get_pwm_thrs();
|
|
|
|
#endif
|
|
|
|
#if MAX_EXTRUDERS > 3
|
|
|
|
#if AXIS_HAS_STEALTHCHOP(E3)
|
|
|
|
tmc_hybrid_threshold.E3 = stepperE3.get_pwm_thrs();
|
|
|
|
#endif
|
|
|
|
#if MAX_EXTRUDERS > 4
|
|
|
|
#if AXIS_HAS_STEALTHCHOP(E4)
|
|
|
|
tmc_hybrid_threshold.E4 = stepperE4.get_pwm_thrs();
|
|
|
|
#endif
|
|
|
|
#if MAX_EXTRUDERS > 5
|
|
|
|
#if AXIS_HAS_STEALTHCHOP(E5)
|
|
|
|
tmc_hybrid_threshold.E5 = stepperE5.get_pwm_thrs();
|
|
|
|
#endif
|
|
|
|
#if MAX_EXTRUDERS > 6
|
|
|
|
#if AXIS_HAS_STEALTHCHOP(E6)
|
|
|
|
tmc_hybrid_threshold.E6 = stepperE6.get_pwm_thrs();
|
|
|
|
#endif
|
|
|
|
#if MAX_EXTRUDERS > 7
|
|
|
|
#if AXIS_HAS_STEALTHCHOP(E7)
|
|
|
|
tmc_hybrid_threshold.E7 = stepperE7.get_pwm_thrs();
|
|
|
|
#endif
|
|
|
|
#endif // MAX_EXTRUDERS > 7
|
|
|
|
#endif // MAX_EXTRUDERS > 6
|
|
|
|
#endif // MAX_EXTRUDERS > 5
|
|
|
|
#endif // MAX_EXTRUDERS > 4
|
|
|
|
#endif // MAX_EXTRUDERS > 3
|
|
|
|
#endif // MAX_EXTRUDERS > 2
|
|
|
|
#endif // MAX_EXTRUDERS > 1
|
|
|
|
#endif // MAX_EXTRUDERS
|
|
|
|
#else
|
|
|
|
const tmc_hybrid_threshold_t tmc_hybrid_threshold = {
|
|
|
|
.X = 100, .Y = 100, .Z = 3,
|
|
|
|
.X2 = 100, .Y2 = 100, .Z2 = 3, .Z3 = 3, .Z4 = 3,
|
|
|
|
.E0 = 30, .E1 = 30, .E2 = 30,
|
|
|
|
.E3 = 30, .E4 = 30, .E5 = 30
|
|
|
|
};
|
|
|
|
#endif
|
|
|
|
EEPROM_WRITE(tmc_hybrid_threshold);
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// TMC StallGuard threshold
|
|
|
|
//
|
|
|
|
{
|
|
|
|
tmc_sgt_t tmc_sgt{0};
|
|
|
|
#if USE_SENSORLESS
|
|
|
|
TERN_(X_SENSORLESS, tmc_sgt.X = stepperX.homing_threshold());
|
|
|
|
TERN_(X2_SENSORLESS, tmc_sgt.X2 = stepperX2.homing_threshold());
|
|
|
|
TERN_(Y_SENSORLESS, tmc_sgt.Y = stepperY.homing_threshold());
|
|
|
|
TERN_(Y2_SENSORLESS, tmc_sgt.Y2 = stepperY2.homing_threshold());
|
|
|
|
TERN_(Z_SENSORLESS, tmc_sgt.Z = stepperZ.homing_threshold());
|
|
|
|
TERN_(Z2_SENSORLESS, tmc_sgt.Z2 = stepperZ2.homing_threshold());
|
|
|
|
TERN_(Z3_SENSORLESS, tmc_sgt.Z3 = stepperZ3.homing_threshold());
|
|
|
|
TERN_(Z4_SENSORLESS, tmc_sgt.Z4 = stepperZ4.homing_threshold());
|
|
|
|
#endif
|
|
|
|
EEPROM_WRITE(tmc_sgt);
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// TMC stepping mode
|
|
|
|
//
|
|
|
|
{
|
|
|
|
_FIELD_TEST(tmc_stealth_enabled);
|
|
|
|
|
|
|
|
tmc_stealth_enabled_t tmc_stealth_enabled = { false, false, false, false, false, false, false, false, false, false, false, false, false };
|
|
|
|
|
|
|
|
#if HAS_STEALTHCHOP
|
|
|
|
#if AXIS_HAS_STEALTHCHOP(X)
|
|
|
|
tmc_stealth_enabled.X = stepperX.get_stored_stealthChop_status();
|
|
|
|
#endif
|
|
|
|
#if AXIS_HAS_STEALTHCHOP(Y)
|
|
|
|
tmc_stealth_enabled.Y = stepperY.get_stored_stealthChop_status();
|
|
|
|
#endif
|
|
|
|
#if AXIS_HAS_STEALTHCHOP(Z)
|
|
|
|
tmc_stealth_enabled.Z = stepperZ.get_stored_stealthChop_status();
|
|
|
|
#endif
|
|
|
|
#if AXIS_HAS_STEALTHCHOP(X2)
|
|
|
|
tmc_stealth_enabled.X2 = stepperX2.get_stored_stealthChop_status();
|
|
|
|
#endif
|
|
|
|
#if AXIS_HAS_STEALTHCHOP(Y2)
|
|
|
|
tmc_stealth_enabled.Y2 = stepperY2.get_stored_stealthChop_status();
|
|
|
|
#endif
|
|
|
|
#if AXIS_HAS_STEALTHCHOP(Z2)
|
|
|
|
tmc_stealth_enabled.Z2 = stepperZ2.get_stored_stealthChop_status();
|
|
|
|
#endif
|
|
|
|
#if AXIS_HAS_STEALTHCHOP(Z3)
|
|
|
|
tmc_stealth_enabled.Z3 = stepperZ3.get_stored_stealthChop_status();
|
|
|
|
#endif
|
|
|
|
#if AXIS_HAS_STEALTHCHOP(Z4)
|
|
|
|
tmc_stealth_enabled.Z4 = stepperZ4.get_stored_stealthChop_status();
|
|
|
|
#endif
|
|
|
|
#if MAX_EXTRUDERS
|
|
|
|
#if AXIS_HAS_STEALTHCHOP(E0)
|
|
|
|
tmc_stealth_enabled.E0 = stepperE0.get_stored_stealthChop_status();
|
|
|
|
#endif
|
|
|
|
#if MAX_EXTRUDERS > 1
|
|
|
|
#if AXIS_HAS_STEALTHCHOP(E1)
|
|
|
|
tmc_stealth_enabled.E1 = stepperE1.get_stored_stealthChop_status();
|
|
|
|
#endif
|
|
|
|
#if MAX_EXTRUDERS > 2
|
|
|
|
#if AXIS_HAS_STEALTHCHOP(E2)
|
|
|
|
tmc_stealth_enabled.E2 = stepperE2.get_stored_stealthChop_status();
|
|
|
|
#endif
|
|
|
|
#if MAX_EXTRUDERS > 3
|
|
|
|
#if AXIS_HAS_STEALTHCHOP(E3)
|
|
|
|
tmc_stealth_enabled.E3 = stepperE3.get_stored_stealthChop_status();
|
|
|
|
#endif
|
|
|
|
#if MAX_EXTRUDERS > 4
|
|
|
|
#if AXIS_HAS_STEALTHCHOP(E4)
|
|
|
|
tmc_stealth_enabled.E4 = stepperE4.get_stored_stealthChop_status();
|
|
|
|
#endif
|
|
|
|
#if MAX_EXTRUDERS > 5
|
|
|
|
#if AXIS_HAS_STEALTHCHOP(E5)
|
|
|
|
tmc_stealth_enabled.E5 = stepperE5.get_stored_stealthChop_status();
|
|
|
|
#endif
|
|
|
|
#if MAX_EXTRUDERS > 6
|
|
|
|
#if AXIS_HAS_STEALTHCHOP(E6)
|
|
|
|
tmc_stealth_enabled.E6 = stepperE6.get_stored_stealthChop_status();
|
|
|
|
#endif
|
|
|
|
#if MAX_EXTRUDERS > 7
|
|
|
|
#if AXIS_HAS_STEALTHCHOP(E7)
|
|
|
|
tmc_stealth_enabled.E7 = stepperE7.get_stored_stealthChop_status();
|
|
|
|
#endif
|
|
|
|
#endif // MAX_EXTRUDERS > 7
|
|
|
|
#endif // MAX_EXTRUDERS > 6
|
|
|
|
#endif // MAX_EXTRUDERS > 5
|
|
|
|
#endif // MAX_EXTRUDERS > 4
|
|
|
|
#endif // MAX_EXTRUDERS > 3
|
|
|
|
#endif // MAX_EXTRUDERS > 2
|
|
|
|
#endif // MAX_EXTRUDERS > 1
|
|
|
|
#endif // MAX_EXTRUDERS
|
|
|
|
#endif
|
|
|
|
EEPROM_WRITE(tmc_stealth_enabled);
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// Linear Advance
|
|
|
|
//
|
|
|
|
{
|
|
|
|
_FIELD_TEST(planner_extruder_advance_K);
|
|
|
|
|
|
|
|
#if ENABLED(LIN_ADVANCE)
|
|
|
|
EEPROM_WRITE(planner.extruder_advance_K);
|
|
|
|
#else
|
|
|
|
dummyf = 0;
|
|
|
|
for (uint8_t q = _MAX(EXTRUDERS, 1); q--;) EEPROM_WRITE(dummyf);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// Motor Current PWM
|
|
|
|
//
|
|
|
|
{
|
|
|
|
_FIELD_TEST(motor_current_setting);
|
|
|
|
|
|
|
|
#if HAS_MOTOR_CURRENT_SPI || HAS_MOTOR_CURRENT_PWM
|
|
|
|
EEPROM_WRITE(stepper.motor_current_setting);
|
|
|
|
#else
|
|
|
|
const uint32_t no_current[MOTOR_CURRENT_COUNT] = { 0 };
|
|
|
|
EEPROM_WRITE(no_current);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// CNC Coordinate Systems
|
|
|
|
//
|
|
|
|
|
|
|
|
_FIELD_TEST(coordinate_system);
|
|
|
|
|
|
|
|
#if DISABLED(CNC_COORDINATE_SYSTEMS)
|
|
|
|
const xyz_pos_t coordinate_system[MAX_COORDINATE_SYSTEMS] = { { 0 } };
|
|
|
|
#endif
|
|
|
|
EEPROM_WRITE(TERN(CNC_COORDINATE_SYSTEMS, gcode.coordinate_system, coordinate_system));
|
|
|
|
|
|
|
|
//
|
|
|
|
// Skew correction factors
|
|
|
|
//
|
|
|
|
_FIELD_TEST(planner_skew_factor);
|
|
|
|
EEPROM_WRITE(planner.skew_factor);
|
|
|
|
|
|
|
|
//
|
|
|
|
// Advanced Pause filament load & unload lengths
|
|
|
|
//
|
|
|
|
#if EXTRUDERS
|
|
|
|
{
|
|
|
|
#if DISABLED(ADVANCED_PAUSE_FEATURE)
|
|
|
|
const fil_change_settings_t fc_settings[EXTRUDERS] = { 0, 0 };
|
|
|
|
#endif
|
|
|
|
_FIELD_TEST(fc_settings);
|
|
|
|
EEPROM_WRITE(fc_settings);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
//
|
|
|
|
// Multiple Extruders
|
|
|
|
//
|
|
|
|
|
|
|
|
#if HAS_MULTI_EXTRUDER
|
|
|
|
_FIELD_TEST(toolchange_settings);
|
|
|
|
EEPROM_WRITE(toolchange_settings);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
//
|
|
|
|
// Backlash Compensation
|
|
|
|
//
|
|
|
|
{
|
|
|
|
#if ENABLED(BACKLASH_GCODE)
|
|
|
|
const xyz_float_t &backlash_distance_mm = backlash.distance_mm;
|
|
|
|
const uint8_t &backlash_correction = backlash.correction;
|
|
|
|
#else
|
|
|
|
const xyz_float_t backlash_distance_mm{0};
|
|
|
|
const uint8_t backlash_correction = 0;
|
|
|
|
#endif
|
|
|
|
#if ENABLED(BACKLASH_GCODE) && defined(BACKLASH_SMOOTHING_MM)
|
|
|
|
const float &backlash_smoothing_mm = backlash.smoothing_mm;
|
|
|
|
#else
|
|
|
|
const float backlash_smoothing_mm = 3;
|
|
|
|
#endif
|
|
|
|
_FIELD_TEST(backlash_distance_mm);
|
|
|
|
EEPROM_WRITE(backlash_distance_mm);
|
|
|
|
EEPROM_WRITE(backlash_correction);
|
|
|
|
EEPROM_WRITE(backlash_smoothing_mm);
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// Extensible UI User Data
|
|
|
|
//
|
|
|
|
#if ENABLED(EXTENSIBLE_UI)
|
|
|
|
{
|
|
|
|
char extui_data[ExtUI::eeprom_data_size] = { 0 };
|
|
|
|
ExtUI::onStoreSettings(extui_data);
|
|
|
|
_FIELD_TEST(extui_data);
|
|
|
|
EEPROM_WRITE(extui_data);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
//
|
|
|
|
// Case Light Brightness
|
|
|
|
//
|
|
|
|
#if HAS_CASE_LIGHT_BRIGHTNESS
|
|
|
|
EEPROM_WRITE(caselight.brightness);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
//
|
|
|
|
// Password feature
|
|
|
|
//
|
|
|
|
#if ENABLED(PASSWORD_FEATURE)
|
|
|
|
EEPROM_WRITE(password.is_set);
|
|
|
|
EEPROM_WRITE(password.value);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
//
|
|
|
|
// TOUCH_SCREEN_CALIBRATION
|
|
|
|
//
|
|
|
|
#if ENABLED(TOUCH_SCREEN_CALIBRATION)
|
|
|
|
EEPROM_WRITE(touch.calibration);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
//
|
|
|
|
// Ethernet network info
|
|
|
|
//
|
|
|
|
#if HAS_ETHERNET
|
|
|
|
{
|
|
|
|
_FIELD_TEST(ethernet_hardware_enabled);
|
|
|
|
const bool ethernet_hardware_enabled = ethernet.hardware_enabled;
|
|
|
|
const uint32_t ethernet_ip = ethernet.ip,
|
|
|
|
ethernet_dns = ethernet.myDns,
|
|
|
|
ethernet_gateway = ethernet.gateway,
|
|
|
|
ethernet_subnet = ethernet.subnet;
|
|
|
|
EEPROM_WRITE(ethernet_hardware_enabled);
|
|
|
|
EEPROM_WRITE(ethernet_ip);
|
|
|
|
EEPROM_WRITE(ethernet_dns);
|
|
|
|
EEPROM_WRITE(ethernet_gateway);
|
|
|
|
EEPROM_WRITE(ethernet_subnet);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
//
|
|
|
|
// Report final CRC and Data Size
|
|
|
|
//
|
|
|
|
if (!eeprom_error) {
|
|
|
|
const uint16_t eeprom_size = eeprom_index - (EEPROM_OFFSET),
|
|
|
|
final_crc = working_crc;
|
|
|
|
|
|
|
|
// Write the EEPROM header
|
|
|
|
eeprom_index = EEPROM_OFFSET;
|
|
|
|
|
|
|
|
EEPROM_WRITE(version);
|
|
|
|
EEPROM_WRITE(final_crc);
|
|
|
|
|
|
|
|
// Report storage size
|
|
|
|
DEBUG_ECHO_START();
|
|
|
|
DEBUG_ECHOLNPAIR("Settings Stored (", eeprom_size, " bytes; crc ", (uint32_t)final_crc, ")");
|
|
|
|
|
|
|
|
eeprom_error |= size_error(eeprom_size);
|
|
|
|
}
|
|
|
|
EEPROM_FINISH();
|
|
|
|
|
|
|
|
//
|
|
|
|
// UBL Mesh
|
|
|
|
//
|
|
|
|
#if ENABLED(UBL_SAVE_ACTIVE_ON_M500)
|
|
|
|
if (ubl.storage_slot >= 0)
|
|
|
|
store_mesh(ubl.storage_slot);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
if (!eeprom_error) LCD_MESSAGEPGM(MSG_SETTINGS_STORED);
|
|
|
|
|
|
|
|
TERN_(EXTENSIBLE_UI, ExtUI::onConfigurationStoreWritten(!eeprom_error));
|
|
|
|
|
|
|
|
return !eeprom_error;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* M501 - Retrieve Configuration
|
|
|
|
*/
|
|
|
|
bool MarlinSettings::_load() {
|
|
|
|
uint16_t working_crc = 0;
|
|
|
|
|
|
|
|
EEPROM_START();
|
|
|
|
|
|
|
|
char stored_ver[4];
|
|
|
|
EEPROM_READ_ALWAYS(stored_ver);
|
|
|
|
|
|
|
|
uint16_t stored_crc;
|
|
|
|
EEPROM_READ_ALWAYS(stored_crc);
|
|
|
|
|
|
|
|
// Version has to match or defaults are used
|
|
|
|
if (strncmp(version, stored_ver, 3) != 0) {
|
|
|
|
if (stored_ver[3] != '\0') {
|
|
|
|
stored_ver[0] = '?';
|
|
|
|
stored_ver[1] = '\0';
|
|
|
|
}
|
|
|
|
DEBUG_ECHO_START();
|
|
|
|
DEBUG_ECHOLNPAIR("EEPROM version mismatch (EEPROM=", stored_ver, " Marlin=" EEPROM_VERSION ")");
|
|
|
|
TERN(EEPROM_AUTO_INIT,,ui.eeprom_alert_version());
|
|
|
|
eeprom_error = true;
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
float dummyf = 0;
|
|
|
|
working_crc = 0; // Init to 0. Accumulated by EEPROM_READ
|
|
|
|
|
|
|
|
_FIELD_TEST(esteppers);
|
|
|
|
|
|
|
|
// Number of esteppers may change
|
|
|
|
uint8_t esteppers;
|
|
|
|
EEPROM_READ_ALWAYS(esteppers);
|
|
|
|
|
|
|
|
//
|
|
|
|
// Planner Motion
|
|
|
|
//
|
|
|
|
{
|
|
|
|
// Get only the number of E stepper parameters previously stored
|
|
|
|
// Any steppers added later are set to their defaults
|
|
|
|
uint32_t tmp1[XYZ + esteppers];
|
|
|
|
float tmp2[XYZ + esteppers];
|
|
|
|
feedRate_t tmp3[XYZ + esteppers];
|
|
|
|
EEPROM_READ(tmp1); // max_acceleration_mm_per_s2
|
|
|
|
EEPROM_READ(planner.settings.min_segment_time_us);
|
|
|
|
EEPROM_READ(tmp2); // axis_steps_per_mm
|
|
|
|
EEPROM_READ(tmp3); // max_feedrate_mm_s
|
|
|
|
|
|
|
|
if (!validating) LOOP_XYZE_N(i) {
|
|
|
|
const bool in = (i < esteppers + XYZ);
|
|
|
|
planner.settings.max_acceleration_mm_per_s2[i] = in ? tmp1[i] : pgm_read_dword(&_DMA[ALIM(i, _DMA)]);
|
|
|
|
planner.settings.axis_steps_per_mm[i] = in ? tmp2[i] : pgm_read_float(&_DASU[ALIM(i, _DASU)]);
|
|
|
|
planner.settings.max_feedrate_mm_s[i] = in ? tmp3[i] : pgm_read_float(&_DMF[ALIM(i, _DMF)]);
|
|
|
|
}
|
|
|
|
|
|
|
|
EEPROM_READ(planner.settings.acceleration);
|
|
|
|
EEPROM_READ(planner.settings.retract_acceleration);
|
|
|
|
EEPROM_READ(planner.settings.travel_acceleration);
|
|
|
|
EEPROM_READ(planner.settings.min_feedrate_mm_s);
|
|
|
|
EEPROM_READ(planner.settings.min_travel_feedrate_mm_s);
|
|
|
|
|
|
|
|
#if HAS_CLASSIC_JERK
|
|
|
|
EEPROM_READ(planner.max_jerk);
|
|
|
|
#if HAS_LINEAR_E_JERK
|
|
|
|
EEPROM_READ(dummyf);
|
|
|
|
#endif
|
|
|
|
#else
|
|
|
|
for (uint8_t q = 4; q--;) EEPROM_READ(dummyf);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
EEPROM_READ(TERN(CLASSIC_JERK, dummyf, planner.junction_deviation_mm));
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// Home Offset (M206 / M665)
|
|
|
|
//
|
|
|
|
{
|
|
|
|
_FIELD_TEST(home_offset);
|
|
|
|
|
|
|
|
#if HAS_SCARA_OFFSET
|
|
|
|
EEPROM_READ(scara_home_offset);
|
|
|
|
#else
|
|
|
|
#if !HAS_HOME_OFFSET
|
|
|
|
xyz_pos_t home_offset;
|
|
|
|
#endif
|
|
|
|
EEPROM_READ(home_offset);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// Hotend Offsets, if any
|
|
|
|
//
|
|
|
|
{
|
|
|
|
#if HAS_HOTEND_OFFSET
|
|
|
|
// Skip hotend 0 which must be 0
|
|
|
|
LOOP_S_L_N(e, 1, HOTENDS)
|
|
|
|
EEPROM_READ(hotend_offset[e]);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// Filament Runout Sensor
|
|
|
|
//
|
|
|
|
{
|
|
|
|
int8_t runout_sensor_enabled;
|
|
|
|
_FIELD_TEST(runout_sensor_enabled);
|
|
|
|
EEPROM_READ(runout_sensor_enabled);
|
|
|
|
#if HAS_FILAMENT_SENSOR
|
|
|
|
runout.enabled = runout_sensor_enabled < 0 ? FIL_RUNOUT_ENABLED_DEFAULT : runout_sensor_enabled;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
TERN_(HAS_FILAMENT_SENSOR, if (runout.enabled) runout.reset());
|
|
|
|
|
|
|
|
float runout_distance_mm;
|
|
|
|
EEPROM_READ(runout_distance_mm);
|
|
|
|
#if HAS_FILAMENT_RUNOUT_DISTANCE
|
|
|
|
if (!validating) runout.set_runout_distance(runout_distance_mm);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// Global Leveling
|
|
|
|
//
|
|
|
|
EEPROM_READ(TERN(ENABLE_LEVELING_FADE_HEIGHT, new_z_fade_height, dummyf));
|
|
|
|
|
|
|
|
//
|
|
|
|
// Mesh (Manual) Bed Leveling
|
|
|
|
//
|
|
|
|
{
|
|
|
|
uint8_t mesh_num_x, mesh_num_y;
|
|
|
|
EEPROM_READ(dummyf);
|
|
|
|
EEPROM_READ_ALWAYS(mesh_num_x);
|
|
|
|
EEPROM_READ_ALWAYS(mesh_num_y);
|
|
|
|
|
|
|
|
#if ENABLED(MESH_BED_LEVELING)
|
|
|
|
if (!validating) mbl.z_offset = dummyf;
|
|
|
|
if (mesh_num_x == GRID_MAX_POINTS_X && mesh_num_y == GRID_MAX_POINTS_Y) {
|
|
|
|
// EEPROM data fits the current mesh
|
|
|
|
EEPROM_READ(mbl.z_values);
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
// EEPROM data is stale
|
|
|
|
if (!validating) mbl.reset();
|
|
|
|
for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummyf);
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
// MBL is disabled - skip the stored data
|
|
|
|
for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummyf);
|
|
|
|
#endif // MESH_BED_LEVELING
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// Probe Z Offset
|
|
|
|
//
|
|
|
|
{
|
|
|
|
_FIELD_TEST(probe_offset);
|
|
|
|
#if HAS_BED_PROBE
|
|
|
|
const xyz_pos_t &zpo = probe.offset;
|
|
|
|
#else
|
|
|
|
xyz_pos_t zpo;
|
|
|
|
#endif
|
|
|
|
EEPROM_READ(zpo);
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// Planar Bed Leveling matrix
|
|
|
|
//
|
|
|
|
{
|
|
|
|
#if ABL_PLANAR
|
|
|
|
EEPROM_READ(planner.bed_level_matrix);
|
|
|
|
#else
|
|
|
|
for (uint8_t q = 9; q--;) EEPROM_READ(dummyf);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// Bilinear Auto Bed Leveling
|
|
|
|
//
|
|
|
|
{
|
|
|
|
uint8_t grid_max_x, grid_max_y;
|
|
|
|
EEPROM_READ_ALWAYS(grid_max_x); // 1 byte
|
|
|
|
EEPROM_READ_ALWAYS(grid_max_y); // 1 byte
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
|
|
|
if (grid_max_x == GRID_MAX_POINTS_X && grid_max_y == GRID_MAX_POINTS_Y) {
|
|
|
|
if (!validating) set_bed_leveling_enabled(false);
|
|
|
|
EEPROM_READ(bilinear_grid_spacing); // 2 ints
|
|
|
|
EEPROM_READ(bilinear_start); // 2 ints
|
|
|
|
EEPROM_READ(z_values); // 9 to 256 floats
|
|
|
|
}
|
|
|
|
else // EEPROM data is stale
|
|
|
|
#endif // AUTO_BED_LEVELING_BILINEAR
|
|
|
|
{
|
|
|
|
// Skip past disabled (or stale) Bilinear Grid data
|
|
|
|
xy_pos_t bgs, bs;
|
|
|
|
EEPROM_READ(bgs);
|
|
|
|
EEPROM_READ(bs);
|
|
|
|
for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_READ(dummyf);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// Unified Bed Leveling active state
|
|
|
|
//
|
|
|
|
{
|
|
|
|
_FIELD_TEST(planner_leveling_active);
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_UBL)
|
|
|
|
const bool &planner_leveling_active = planner.leveling_active;
|
|
|
|
const int8_t &ubl_storage_slot = ubl.storage_slot;
|
|
|
|
#else
|
|
|
|
bool planner_leveling_active;
|
|
|
|
int8_t ubl_storage_slot;
|
|
|
|
#endif
|
|
|
|
EEPROM_READ(planner_leveling_active);
|
|
|
|
EEPROM_READ(ubl_storage_slot);
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// SERVO_ANGLES
|
|
|
|
//
|
|
|
|
{
|
|
|
|
_FIELD_TEST(servo_angles);
|
|
|
|
#if ENABLED(EDITABLE_SERVO_ANGLES)
|
|
|
|
uint16_t (&servo_angles_arr)[EEPROM_NUM_SERVOS][2] = servo_angles;
|
|
|
|
#else
|
|
|
|
uint16_t servo_angles_arr[EEPROM_NUM_SERVOS][2];
|
|
|
|
#endif
|
|
|
|
EEPROM_READ(servo_angles_arr);
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// Thermal first layer compensation values
|
|
|
|
//
|
|
|
|
#if ENABLED(PROBE_TEMP_COMPENSATION)
|
|
|
|
EEPROM_READ(temp_comp.z_offsets_probe);
|
|
|
|
EEPROM_READ(temp_comp.z_offsets_bed);
|
|
|
|
#if ENABLED(USE_TEMP_EXT_COMPENSATION)
|
|
|
|
EEPROM_READ(temp_comp.z_offsets_ext);
|
|
|
|
#endif
|
|
|
|
temp_comp.reset_index();
|
|
|
|
#else
|
|
|
|
// No placeholder data for this feature
|
|
|
|
#endif
|
|
|
|
|
|
|
|
//
|
|
|
|
// BLTOUCH
|
|
|
|
//
|
|
|
|
{
|
|
|
|
_FIELD_TEST(bltouch_last_written_mode);
|
|
|
|
#if ENABLED(BLTOUCH)
|
|
|
|
const bool &bltouch_last_written_mode = bltouch.last_written_mode;
|
|
|
|
#else
|
|
|
|
bool bltouch_last_written_mode;
|
|
|
|
#endif
|
|
|
|
EEPROM_READ(bltouch_last_written_mode);
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// DELTA Geometry or Dual Endstops offsets
|
|
|
|
//
|
|
|
|
{
|
|
|
|
#if ENABLED(DELTA)
|
|
|
|
|
|
|
|
_FIELD_TEST(delta_height);
|
|
|
|
|
|
|
|
EEPROM_READ(delta_height); // 1 float
|
|
|
|
EEPROM_READ(delta_endstop_adj); // 3 floats
|
|
|
|
EEPROM_READ(delta_radius); // 1 float
|
|
|
|
EEPROM_READ(delta_diagonal_rod); // 1 float
|
|
|
|
EEPROM_READ(delta_segments_per_second); // 1 float
|
|
|
|
EEPROM_READ(delta_tower_angle_trim); // 3 floats
|
|
|
|
EEPROM_READ(delta_diagonal_rod_trim); // 3 floats
|
|
|
|
|
|
|
|
#elif HAS_EXTRA_ENDSTOPS
|
|
|
|
|
|
|
|
_FIELD_TEST(x2_endstop_adj);
|
|
|
|
|
|
|
|
EEPROM_READ(TERN(X_DUAL_ENDSTOPS, endstops.x2_endstop_adj, dummyf)); // 1 float
|
|
|
|
EEPROM_READ(TERN(Y_DUAL_ENDSTOPS, endstops.y2_endstop_adj, dummyf)); // 1 float
|
|
|
|
EEPROM_READ(TERN(Z_MULTI_ENDSTOPS, endstops.z2_endstop_adj, dummyf)); // 1 float
|
|
|
|
|
|
|
|
#if ENABLED(Z_MULTI_ENDSTOPS) && NUM_Z_STEPPER_DRIVERS >= 3
|
|
|
|
EEPROM_READ(endstops.z3_endstop_adj); // 1 float
|
|
|
|
#else
|
|
|
|
EEPROM_READ(dummyf);
|
|
|
|
#endif
|
|
|
|
#if ENABLED(Z_MULTI_ENDSTOPS) && NUM_Z_STEPPER_DRIVERS >= 4
|
|
|
|
EEPROM_READ(endstops.z4_endstop_adj); // 1 float
|
|
|
|
#else
|
|
|
|
EEPROM_READ(dummyf);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
#if ENABLED(Z_STEPPER_AUTO_ALIGN)
|
|
|
|
EEPROM_READ(z_stepper_align.xy);
|
|
|
|
#if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
|
|
|
|
EEPROM_READ(z_stepper_align.stepper_xy);
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
|
|
|
|
//
|
|
|
|
// LCD Preheat settings
|
|
|
|
//
|
|
|
|
#if PREHEAT_COUNT
|
|
|
|
_FIELD_TEST(ui_material_preset);
|
|
|
|
EEPROM_READ(ui.material_preset);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
//
|
|
|
|
// Hotend PID
|
|
|
|
//
|
|
|
|
{
|
|
|
|
HOTEND_LOOP() {
|
|
|
|
PIDCF_t pidcf;
|
|
|
|
EEPROM_READ(pidcf);
|
|
|
|
#if ENABLED(PIDTEMP)
|
|
|
|
if (!validating && !isnan(pidcf.Kp)) {
|
|
|
|
// Scale PID values since EEPROM values are unscaled
|
|
|
|
PID_PARAM(Kp, e) = pidcf.Kp;
|
|
|
|
PID_PARAM(Ki, e) = scalePID_i(pidcf.Ki);
|
|
|
|
PID_PARAM(Kd, e) = scalePID_d(pidcf.Kd);
|
|
|
|
TERN_(PID_EXTRUSION_SCALING, PID_PARAM(Kc, e) = pidcf.Kc);
|
|
|
|
TERN_(PID_FAN_SCALING, PID_PARAM(Kf, e) = pidcf.Kf);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// PID Extrusion Scaling
|
|
|
|
//
|
|
|
|
{
|
|
|
|
_FIELD_TEST(lpq_len);
|
|
|
|
#if ENABLED(PID_EXTRUSION_SCALING)
|
|
|
|
const int16_t &lpq_len = thermalManager.lpq_len;
|
|
|
|
#else
|
|
|
|
int16_t lpq_len;
|
|
|
|
#endif
|
|
|
|
EEPROM_READ(lpq_len);
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// Heated Bed PID
|
|
|
|
//
|
|
|
|
{
|
|
|
|
PID_t pid;
|
|
|
|
EEPROM_READ(pid);
|
|
|
|
#if ENABLED(PIDTEMPBED)
|
|
|
|
if (!validating && !isnan(pid.Kp)) {
|
|
|
|
// Scale PID values since EEPROM values are unscaled
|
|
|
|
thermalManager.temp_bed.pid.Kp = pid.Kp;
|
|
|
|
thermalManager.temp_bed.pid.Ki = scalePID_i(pid.Ki);
|
|
|
|
thermalManager.temp_bed.pid.Kd = scalePID_d(pid.Kd);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// User-defined Thermistors
|
|
|
|
//
|
|
|
|
#if HAS_USER_THERMISTORS
|
|
|
|
{
|
|
|
|
_FIELD_TEST(user_thermistor);
|
|
|
|
EEPROM_READ(thermalManager.user_thermistor);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
//
|
|
|
|
// Power monitor
|
|
|
|
//
|
|
|
|
{
|
|
|
|
#if HAS_POWER_MONITOR
|
|
|
|
uint8_t &power_monitor_flags = power_monitor.flags;
|
|
|
|
#else
|
|
|
|
uint8_t power_monitor_flags;
|
|
|
|
#endif
|
|
|
|
_FIELD_TEST(power_monitor_flags);
|
|
|
|
EEPROM_READ(power_monitor_flags);
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// LCD Contrast
|
|
|
|
//
|
|
|
|
{
|
|
|
|
_FIELD_TEST(lcd_contrast);
|
|
|
|
int16_t lcd_contrast;
|
|
|
|
EEPROM_READ(lcd_contrast);
|
|
|
|
if (!validating) {
|
|
|
|
TERN_(HAS_LCD_CONTRAST, ui.set_contrast(lcd_contrast));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// Controller Fan
|
|
|
|
//
|
|
|
|
{
|
|
|
|
_FIELD_TEST(controllerFan_settings);
|
|
|
|
#if ENABLED(CONTROLLER_FAN_EDITABLE)
|
|
|
|
const controllerFan_settings_t &cfs = controllerFan.settings;
|
|
|
|
#else
|
|
|
|
controllerFan_settings_t cfs = { 0 };
|
|
|
|
#endif
|
|
|
|
EEPROM_READ(cfs);
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// Power-Loss Recovery
|
|
|
|
//
|
|
|
|
{
|
|
|
|
_FIELD_TEST(recovery_enabled);
|
|
|
|
#if ENABLED(POWER_LOSS_RECOVERY)
|
|
|
|
const bool &recovery_enabled = recovery.enabled;
|
|
|
|
#else
|
|
|
|
bool recovery_enabled;
|
|
|
|
#endif
|
|
|
|
EEPROM_READ(recovery_enabled);
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// Firmware Retraction
|
|
|
|
//
|
|
|
|
{
|
|
|
|
_FIELD_TEST(fwretract_settings);
|
|
|
|
|
|
|
|
#if ENABLED(FWRETRACT)
|
|
|
|
EEPROM_READ(fwretract.settings);
|
|
|
|
#else
|
|
|
|
fwretract_settings_t fwretract_settings;
|
|
|
|
EEPROM_READ(fwretract_settings);
|
|
|
|
#endif
|
|
|
|
#if BOTH(FWRETRACT, FWRETRACT_AUTORETRACT)
|
|
|
|
EEPROM_READ(fwretract.autoretract_enabled);
|
|
|
|
#else
|
|
|
|
bool autoretract_enabled;
|
|
|
|
EEPROM_READ(autoretract_enabled);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// Volumetric & Filament Size
|
|
|
|
//
|
|
|
|
{
|
|
|
|
struct {
|
|
|
|
bool volumetric_enabled;
|
|
|
|
float filament_size[EXTRUDERS];
|
|
|
|
float volumetric_extruder_limit[EXTRUDERS];
|
|
|
|
} storage;
|
|
|
|
|
|
|
|
_FIELD_TEST(parser_volumetric_enabled);
|
|
|
|
EEPROM_READ(storage);
|
|
|
|
|
|
|
|
#if DISABLED(NO_VOLUMETRICS)
|
|
|
|
if (!validating) {
|
|
|
|
parser.volumetric_enabled = storage.volumetric_enabled;
|
|
|
|
COPY(planner.filament_size, storage.filament_size);
|
|
|
|
#if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
|
|
|
|
COPY(planner.volumetric_extruder_limit, storage.volumetric_extruder_limit);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// TMC Stepper Settings
|
|
|
|
//
|
|
|
|
|
|
|
|
if (!validating) reset_stepper_drivers();
|
|
|
|
|
|
|
|
// TMC Stepper Current
|
|
|
|
{
|
|
|
|
_FIELD_TEST(tmc_stepper_current);
|
|
|
|
|
|
|
|
tmc_stepper_current_t currents;
|
|
|
|
EEPROM_READ(currents);
|
|
|
|
|
|
|
|
#if HAS_TRINAMIC_CONFIG
|
|
|
|
|
|
|
|
#define SET_CURR(Q) stepper##Q.rms_current(currents.Q ? currents.Q : Q##_CURRENT)
|
|
|
|
if (!validating) {
|
|
|
|
#if AXIS_IS_TMC(X)
|
|
|
|
SET_CURR(X);
|
|
|
|
#endif
|
|
|
|
#if AXIS_IS_TMC(Y)
|
|
|
|
SET_CURR(Y);
|
|
|
|
#endif
|
|
|
|
#if AXIS_IS_TMC(Z)
|
|
|
|
SET_CURR(Z);
|
|
|
|
#endif
|
|
|
|
#if AXIS_IS_TMC(X2)
|
|
|
|
SET_CURR(X2);
|
|
|
|
#endif
|
|
|
|
#if AXIS_IS_TMC(Y2)
|
|
|
|
SET_CURR(Y2);
|
|
|
|
#endif
|
|
|
|
#if AXIS_IS_TMC(Z2)
|
|
|
|
SET_CURR(Z2);
|
|
|
|
#endif
|
|
|
|
#if AXIS_IS_TMC(Z3)
|
|
|
|
SET_CURR(Z3);
|
|
|
|
#endif
|
|
|
|
#if AXIS_IS_TMC(Z4)
|
|
|
|
SET_CURR(Z4);
|
|
|
|
#endif
|
|
|
|
#if AXIS_IS_TMC(E0)
|
|
|
|
SET_CURR(E0);
|
|
|
|
#endif
|
|
|
|
#if AXIS_IS_TMC(E1)
|
|
|
|
SET_CURR(E1);
|
|
|
|
#endif
|
|
|
|
#if AXIS_IS_TMC(E2)
|
|
|
|
SET_CURR(E2);
|
|
|
|
#endif
|
|
|
|
#if AXIS_IS_TMC(E3)
|
|
|
|
SET_CURR(E3);
|
|
|
|
#endif
|
|
|
|
#if AXIS_IS_TMC(E4)
|
|
|
|
SET_CURR(E4);
|
|
|
|
#endif
|
|
|
|
#if AXIS_IS_TMC(E5)
|
|
|
|
SET_CURR(E5);
|
|
|
|
#endif
|
|
|
|
#if AXIS_IS_TMC(E6)
|
|
|
|
SET_CURR(E6);
|
|
|
|
#endif
|
|
|
|
#if AXIS_IS_TMC(E7)
|
|
|
|
SET_CURR(E7);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
// TMC Hybrid Threshold
|
|
|
|
{
|
|
|
|
tmc_hybrid_threshold_t tmc_hybrid_threshold;
|
|
|
|
_FIELD_TEST(tmc_hybrid_threshold);
|
|
|
|
EEPROM_READ(tmc_hybrid_threshold);
|
|
|
|
|
|
|
|
#if ENABLED(HYBRID_THRESHOLD)
|
|
|
|
if (!validating) {
|
|
|
|
#if AXIS_HAS_STEALTHCHOP(X)
|
|
|
|
stepperX.set_pwm_thrs(tmc_hybrid_threshold.X);
|
|
|
|
#endif
|
|
|
|
#if AXIS_HAS_STEALTHCHOP(Y)
|
|
|
|
stepperY.set_pwm_thrs(tmc_hybrid_threshold.Y);
|
|
|
|
#endif
|
|
|
|
#if AXIS_HAS_STEALTHCHOP(Z)
|
|
|
|
stepperZ.set_pwm_thrs(tmc_hybrid_threshold.Z);
|
|
|
|
#endif
|
|
|
|
#if AXIS_HAS_STEALTHCHOP(X2)
|
|
|
|
stepperX2.set_pwm_thrs(tmc_hybrid_threshold.X2);
|
|
|
|
#endif
|
|
|
|
#if AXIS_HAS_STEALTHCHOP(Y2)
|
|
|
|
stepperY2.set_pwm_thrs(tmc_hybrid_threshold.Y2);
|
|
|
|
#endif
|
|
|
|
#if AXIS_HAS_STEALTHCHOP(Z2)
|
|
|
|
stepperZ2.set_pwm_thrs(tmc_hybrid_threshold.Z2);
|
|
|
|
#endif
|
|
|
|
#if AXIS_HAS_STEALTHCHOP(Z3)
|
|
|
|
stepperZ3.set_pwm_thrs(tmc_hybrid_threshold.Z3);
|
|
|
|
#endif
|
|
|
|
#if AXIS_HAS_STEALTHCHOP(Z4)
|
|
|
|
stepperZ4.set_pwm_thrs(tmc_hybrid_threshold.Z4);
|
|
|
|
#endif
|
|
|
|
#if AXIS_HAS_STEALTHCHOP(E0)
|
|
|
|
stepperE0.set_pwm_thrs(tmc_hybrid_threshold.E0);
|
|
|
|
#endif
|
|
|
|
#if AXIS_HAS_STEALTHCHOP(E1)
|
|
|
|
stepperE1.set_pwm_thrs(tmc_hybrid_threshold.E1);
|
|
|
|
#endif
|
|
|
|
#if AXIS_HAS_STEALTHCHOP(E2)
|
|
|
|
stepperE2.set_pwm_thrs(tmc_hybrid_threshold.E2);
|
|
|
|
#endif
|
|
|
|
#if AXIS_HAS_STEALTHCHOP(E3)
|
|
|
|
stepperE3.set_pwm_thrs(tmc_hybrid_threshold.E3);
|
|
|
|
#endif
|
|
|
|
#if AXIS_HAS_STEALTHCHOP(E4)
|
|
|
|
stepperE4.set_pwm_thrs(tmc_hybrid_threshold.E4);
|
|
|
|
#endif
|
|
|
|
#if AXIS_HAS_STEALTHCHOP(E5)
|
|
|
|
stepperE5.set_pwm_thrs(tmc_hybrid_threshold.E5);
|
|
|
|
#endif
|
|
|
|
#if AXIS_HAS_STEALTHCHOP(E6)
|
|
|
|
stepperE6.set_pwm_thrs(tmc_hybrid_threshold.E6);
|
|
|
|
#endif
|
|
|
|
#if AXIS_HAS_STEALTHCHOP(E7)
|
|
|
|
stepperE7.set_pwm_thrs(tmc_hybrid_threshold.E7);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// TMC StallGuard threshold.
|
|
|
|
//
|
|
|
|
{
|
|
|
|
tmc_sgt_t tmc_sgt;
|
|
|
|
_FIELD_TEST(tmc_sgt);
|
|
|
|
EEPROM_READ(tmc_sgt);
|
|
|
|
#if USE_SENSORLESS
|
|
|
|
if (!validating) {
|
|
|
|
TERN_(X_SENSORLESS, stepperX.homing_threshold(tmc_sgt.X));
|
|
|
|
TERN_(X2_SENSORLESS, stepperX2.homing_threshold(tmc_sgt.X2));
|
|
|
|
TERN_(Y_SENSORLESS, stepperY.homing_threshold(tmc_sgt.Y));
|
|
|
|
TERN_(Y2_SENSORLESS, stepperY2.homing_threshold(tmc_sgt.Y2));
|
|
|
|
TERN_(Z_SENSORLESS, stepperZ.homing_threshold(tmc_sgt.Z));
|
|
|
|
TERN_(Z2_SENSORLESS, stepperZ2.homing_threshold(tmc_sgt.Z2));
|
|
|
|
TERN_(Z3_SENSORLESS, stepperZ3.homing_threshold(tmc_sgt.Z3));
|
|
|
|
TERN_(Z4_SENSORLESS, stepperZ4.homing_threshold(tmc_sgt.Z4));
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
// TMC stepping mode
|
|
|
|
{
|
|
|
|
_FIELD_TEST(tmc_stealth_enabled);
|
|
|
|
|
|
|
|
tmc_stealth_enabled_t tmc_stealth_enabled;
|
|
|
|
EEPROM_READ(tmc_stealth_enabled);
|
|
|
|
|
|
|
|
#if HAS_TRINAMIC_CONFIG
|
|
|
|
|
|
|
|
#define SET_STEPPING_MODE(ST) stepper##ST.stored.stealthChop_enabled = tmc_stealth_enabled.ST; stepper##ST.refresh_stepping_mode();
|
|
|
|
if (!validating) {
|
|
|
|
#if AXIS_HAS_STEALTHCHOP(X)
|
|
|
|
SET_STEPPING_MODE(X);
|
|
|
|
#endif
|
|
|
|
#if AXIS_HAS_STEALTHCHOP(Y)
|
|
|
|
SET_STEPPING_MODE(Y);
|
|
|
|
#endif
|
|
|
|
#if AXIS_HAS_STEALTHCHOP(Z)
|
|
|
|
SET_STEPPING_MODE(Z);
|
|
|
|
#endif
|
|
|
|
#if AXIS_HAS_STEALTHCHOP(X2)
|
|
|
|
SET_STEPPING_MODE(X2);
|
|
|
|
#endif
|
|
|
|
#if AXIS_HAS_STEALTHCHOP(Y2)
|
|
|
|
SET_STEPPING_MODE(Y2);
|
|
|
|
#endif
|
|
|
|
#if AXIS_HAS_STEALTHCHOP(Z2)
|
|
|
|
SET_STEPPING_MODE(Z2);
|
|
|
|
#endif
|
|
|
|
#if AXIS_HAS_STEALTHCHOP(Z3)
|
|
|
|
SET_STEPPING_MODE(Z3);
|
|
|
|
#endif
|
|
|
|
#if AXIS_HAS_STEALTHCHOP(Z4)
|
|
|
|
SET_STEPPING_MODE(Z4);
|
|
|
|
#endif
|
|
|
|
#if AXIS_HAS_STEALTHCHOP(E0)
|
|
|
|
SET_STEPPING_MODE(E0);
|
|
|
|
#endif
|
|
|
|
#if AXIS_HAS_STEALTHCHOP(E1)
|
|
|
|
SET_STEPPING_MODE(E1);
|
|
|
|
#endif
|
|
|
|
#if AXIS_HAS_STEALTHCHOP(E2)
|
|
|
|
SET_STEPPING_MODE(E2);
|
|
|
|
#endif
|
|
|
|
#if AXIS_HAS_STEALTHCHOP(E3)
|
|
|
|
SET_STEPPING_MODE(E3);
|
|
|
|
#endif
|
|
|
|
#if AXIS_HAS_STEALTHCHOP(E4)
|
|
|
|
SET_STEPPING_MODE(E4);
|
|
|
|
#endif
|
|
|
|
#if AXIS_HAS_STEALTHCHOP(E5)
|
|
|
|
SET_STEPPING_MODE(E5);
|
|
|
|
#endif
|
|
|
|
#if AXIS_HAS_STEALTHCHOP(E6)
|
|
|
|
SET_STEPPING_MODE(E6);
|
|
|
|
#endif
|
|
|
|
#if AXIS_HAS_STEALTHCHOP(E7)
|
|
|
|
SET_STEPPING_MODE(E7);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// Linear Advance
|
|
|
|
//
|
|
|
|
{
|
|
|
|
float extruder_advance_K[_MAX(EXTRUDERS, 1)];
|
|
|
|
_FIELD_TEST(planner_extruder_advance_K);
|
|
|
|
EEPROM_READ(extruder_advance_K);
|
|
|
|
#if ENABLED(LIN_ADVANCE)
|
|
|
|
if (!validating)
|
|
|
|
COPY(planner.extruder_advance_K, extruder_advance_K);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// Motor Current PWM
|
|
|
|
//
|
|
|
|
{
|
|
|
|
_FIELD_TEST(motor_current_setting);
|
|
|
|
uint32_t motor_current_setting[MOTOR_CURRENT_COUNT]
|
|
|
|
#if HAS_MOTOR_CURRENT_SPI
|
|
|
|
= DIGIPOT_MOTOR_CURRENT
|
|
|
|
#endif
|
|
|
|
;
|
|
|
|
DEBUG_ECHOLNPGM("DIGIPOTS Loading");
|
|
|
|
EEPROM_READ(motor_current_setting);
|
|
|
|
DEBUG_ECHOLNPGM("DIGIPOTS Loaded");
|
|
|
|
#if HAS_MOTOR_CURRENT_SPI || HAS_MOTOR_CURRENT_PWM
|
|
|
|
if (!validating)
|
|
|
|
COPY(stepper.motor_current_setting, motor_current_setting);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// CNC Coordinate System
|
|
|
|
//
|
|
|
|
{
|
|
|
|
_FIELD_TEST(coordinate_system);
|
|
|
|
#if ENABLED(CNC_COORDINATE_SYSTEMS)
|
|
|
|
if (!validating) (void)gcode.select_coordinate_system(-1); // Go back to machine space
|
|
|
|
EEPROM_READ(gcode.coordinate_system);
|
|
|
|
#else
|
|
|
|
xyz_pos_t coordinate_system[MAX_COORDINATE_SYSTEMS];
|
|
|
|
EEPROM_READ(coordinate_system);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// Skew correction factors
|
|
|
|
//
|
|
|
|
{
|
|
|
|
skew_factor_t skew_factor;
|
|
|
|
_FIELD_TEST(planner_skew_factor);
|
|
|
|
EEPROM_READ(skew_factor);
|
|
|
|
#if ENABLED(SKEW_CORRECTION_GCODE)
|
|
|
|
if (!validating) {
|
|
|
|
planner.skew_factor.xy = skew_factor.xy;
|
|
|
|
#if ENABLED(SKEW_CORRECTION_FOR_Z)
|
|
|
|
planner.skew_factor.xz = skew_factor.xz;
|
|
|
|
planner.skew_factor.yz = skew_factor.yz;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// Advanced Pause filament load & unload lengths
|
|
|
|
//
|
|
|
|
#if EXTRUDERS
|
|
|
|
{
|
|
|
|
#if DISABLED(ADVANCED_PAUSE_FEATURE)
|
|
|
|
fil_change_settings_t fc_settings[EXTRUDERS];
|
|
|
|
#endif
|
|
|
|
_FIELD_TEST(fc_settings);
|
|
|
|
EEPROM_READ(fc_settings);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
//
|
|
|
|
// Tool-change settings
|
|
|
|
//
|
|
|
|
#if HAS_MULTI_EXTRUDER
|
|
|
|
_FIELD_TEST(toolchange_settings);
|
|
|
|
EEPROM_READ(toolchange_settings);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
//
|
|
|
|
// Backlash Compensation
|
|
|
|
//
|
|
|
|
{
|
|
|
|
#if ENABLED(BACKLASH_GCODE)
|
|
|
|
const xyz_float_t &backlash_distance_mm = backlash.distance_mm;
|
|
|
|
const uint8_t &backlash_correction = backlash.correction;
|
|
|
|
#else
|
|
|
|
float backlash_distance_mm[XYZ];
|
|
|
|
uint8_t backlash_correction;
|
|
|
|
#endif
|
|
|
|
#if ENABLED(BACKLASH_GCODE) && defined(BACKLASH_SMOOTHING_MM)
|
|
|
|
const float &backlash_smoothing_mm = backlash.smoothing_mm;
|
|
|
|
#else
|
|
|
|
float backlash_smoothing_mm;
|
|
|
|
#endif
|
|
|
|
_FIELD_TEST(backlash_distance_mm);
|
|
|
|
EEPROM_READ(backlash_distance_mm);
|
|
|
|
EEPROM_READ(backlash_correction);
|
|
|
|
EEPROM_READ(backlash_smoothing_mm);
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// Extensible UI User Data
|
|
|
|
//
|
|
|
|
#if ENABLED(EXTENSIBLE_UI)
|
|
|
|
// This is a significant hardware change; don't reserve EEPROM space when not present
|
|
|
|
{
|
|
|
|
const char extui_data[ExtUI::eeprom_data_size] = { 0 };
|
|
|
|
_FIELD_TEST(extui_data);
|
|
|
|
EEPROM_READ(extui_data);
|
|
|
|
if (!validating) ExtUI::onLoadSettings(extui_data);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
//
|
|
|
|
// Case Light Brightness
|
|
|
|
//
|
|
|
|
#if HAS_CASE_LIGHT_BRIGHTNESS
|
|
|
|
_FIELD_TEST(caselight_brightness);
|
|
|
|
EEPROM_READ(caselight.brightness);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
//
|
|
|
|
// Password feature
|
|
|
|
//
|
|
|
|
#if ENABLED(PASSWORD_FEATURE)
|
|
|
|
_FIELD_TEST(password_is_set);
|
|
|
|
EEPROM_READ(password.is_set);
|
|
|
|
EEPROM_READ(password.value);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
//
|
|
|
|
// TOUCH_SCREEN_CALIBRATION
|
|
|
|
//
|
|
|
|
#if ENABLED(TOUCH_SCREEN_CALIBRATION)
|
|
|
|
_FIELD_TEST(touch.calibration);
|
|
|
|
EEPROM_READ(touch.calibration);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
//
|
|
|
|
// Ethernet network info
|
|
|
|
//
|
|
|
|
#if HAS_ETHERNET
|
|
|
|
_FIELD_TEST(ethernet_hardware_enabled);
|
|
|
|
uint32_t ethernet_ip, ethernet_dns, ethernet_gateway, ethernet_subnet;
|
|
|
|
EEPROM_READ(ethernet.hardware_enabled);
|
|
|
|
EEPROM_READ(ethernet_ip); ethernet.ip = ethernet_ip;
|
|
|
|
EEPROM_READ(ethernet_dns); ethernet.myDns = ethernet_dns;
|
|
|
|
EEPROM_READ(ethernet_gateway); ethernet.gateway = ethernet_gateway;
|
|
|
|
EEPROM_READ(ethernet_subnet); ethernet.subnet = ethernet_subnet;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
//
|
|
|
|
// Validate Final Size and CRC
|
|
|
|
//
|
|
|
|
eeprom_error = size_error(eeprom_index - (EEPROM_OFFSET));
|
|
|
|
if (eeprom_error) {
|
|
|
|
DEBUG_ECHO_START();
|
|
|
|
DEBUG_ECHOLNPAIR("Index: ", int(eeprom_index - (EEPROM_OFFSET)), " Size: ", datasize());
|
|
|
|
TERN(EEPROM_AUTO_INIT,,ui.eeprom_alert_index());
|
|
|
|
}
|
|
|
|
else if (working_crc != stored_crc) {
|
|
|
|
eeprom_error = true;
|
|
|
|
DEBUG_ERROR_START();
|
|
|
|
DEBUG_ECHOLNPAIR("EEPROM CRC mismatch - (stored) ", stored_crc, " != ", working_crc, " (calculated)!");
|
|
|
|
TERN(EEPROM_AUTO_INIT,,ui.eeprom_alert_crc());
|
|
|
|
}
|
|
|
|
else if (!validating) {
|
|
|
|
DEBUG_ECHO_START();
|
|
|
|
DEBUG_ECHO(version);
|
|
|
|
DEBUG_ECHOLNPAIR(" stored settings retrieved (", eeprom_index - (EEPROM_OFFSET), " bytes; crc ", (uint32_t)working_crc, ")");
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!validating && !eeprom_error) postprocess();
|
|
|
|
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_UBL)
|
|
|
|
if (!validating) {
|
|
|
|
ubl.report_state();
|
|
|
|
|
|
|
|
if (!ubl.sanity_check()) {
|
|
|
|
SERIAL_EOL();
|
|
|
|
#if ENABLED(EEPROM_CHITCHAT)
|
|
|
|
ubl.echo_name();
|
|
|
|
DEBUG_ECHOLNPGM(" initialized.\n");
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
eeprom_error = true;
|
|
|
|
#if ENABLED(EEPROM_CHITCHAT)
|
|
|
|
DEBUG_ECHOPGM("?Can't enable ");
|
|
|
|
ubl.echo_name();
|
|
|
|
DEBUG_ECHOLNPGM(".");
|
|
|
|
#endif
|
|
|
|
ubl.reset();
|
|
|
|
}
|
|
|
|
|
|
|
|
if (ubl.storage_slot >= 0) {
|
|
|
|
load_mesh(ubl.storage_slot);
|
|
|
|
DEBUG_ECHOLNPAIR("Mesh ", ubl.storage_slot, " loaded from storage.");
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
ubl.reset();
|
|
|
|
DEBUG_ECHOLNPGM("UBL reset");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
#if ENABLED(EEPROM_CHITCHAT) && DISABLED(DISABLE_M503)
|
|
|
|
// Report the EEPROM settings
|
|
|
|
if (!validating && TERN1(EEPROM_BOOT_SILENT, IsRunning())) report();
|
|
|
|
#endif
|
|
|
|
|
|
|
|
EEPROM_FINISH();
|
|
|
|
|
|
|
|
return !eeprom_error;
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE
|
|
|
|
extern bool restoreEEPROM();
|
|
|
|
#endif
|
|
|
|
|
|
|
|
bool MarlinSettings::validate() {
|
|
|
|
validating = true;
|
|
|
|
#ifdef ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE
|
|
|
|
bool success = _load();
|
|
|
|
if (!success && restoreEEPROM()) {
|
|
|
|
SERIAL_ECHOLNPGM("Recovered backup EEPROM settings from SPI Flash");
|
|
|
|
success = _load();
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
const bool success = _load();
|
|
|
|
#endif
|
|
|
|
validating = false;
|
|
|
|
return success;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool MarlinSettings::load() {
|
|
|
|
if (validate()) {
|
|
|
|
const bool success = _load();
|
|
|
|
TERN_(EXTENSIBLE_UI, ExtUI::onConfigurationStoreRead(success));
|
|
|
|
return success;
|
|
|
|
}
|
|
|
|
reset();
|
|
|
|
#if ENABLED(EEPROM_AUTO_INIT)
|
|
|
|
(void)save();
|
|
|
|
SERIAL_ECHO_MSG("EEPROM Initialized");
|
|
|
|
#endif
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_UBL)
|
|
|
|
|
|
|
|
inline void ubl_invalid_slot(const int s) {
|
|
|
|
#if ENABLED(EEPROM_CHITCHAT)
|
|
|
|
DEBUG_ECHOLNPGM("?Invalid slot.");
|
|
|
|
DEBUG_ECHO(s);
|
|
|
|
DEBUG_ECHOLNPGM(" mesh slots available.");
|
|
|
|
#else
|
|
|
|
UNUSED(s);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
const uint16_t MarlinSettings::meshes_end = persistentStore.capacity() - 129; // 128 (+1 because of the change to capacity rather than last valid address)
|
|
|
|
// is a placeholder for the size of the MAT; the MAT will always
|
|
|
|
// live at the very end of the eeprom
|
|
|
|
|
|
|
|
uint16_t MarlinSettings::meshes_start_index() {
|
|
|
|
return (datasize() + EEPROM_OFFSET + 32) & 0xFFF8; // Pad the end of configuration data so it can float up
|
|
|
|
// or down a little bit without disrupting the mesh data
|
|
|
|
}
|
|
|
|
|
|
|
|
uint16_t MarlinSettings::calc_num_meshes() {
|
|
|
|
return (meshes_end - meshes_start_index()) / sizeof(ubl.z_values);
|
|
|
|
}
|
|
|
|
|
|
|
|
int MarlinSettings::mesh_slot_offset(const int8_t slot) {
|
|
|
|
return meshes_end - (slot + 1) * sizeof(ubl.z_values);
|
|
|
|
}
|
|
|
|
|
|
|
|
void MarlinSettings::store_mesh(const int8_t slot) {
|
|
|
|
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_UBL)
|
|
|
|
const int16_t a = calc_num_meshes();
|
|
|
|
if (!WITHIN(slot, 0, a - 1)) {
|
|
|
|
ubl_invalid_slot(a);
|
|
|
|
DEBUG_ECHOLNPAIR("E2END=", persistentStore.capacity() - 1, " meshes_end=", meshes_end, " slot=", slot);
|
|
|
|
DEBUG_EOL();
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
int pos = mesh_slot_offset(slot);
|
|
|
|
uint16_t crc = 0;
|
|
|
|
|
|
|
|
// Write crc to MAT along with other data, or just tack on to the beginning or end
|
|
|
|
persistentStore.access_start();
|
|
|
|
const bool status = persistentStore.write_data(pos, (uint8_t *)&ubl.z_values, sizeof(ubl.z_values), &crc);
|
|
|
|
persistentStore.access_finish();
|
|
|
|
|
|
|
|
if (status) SERIAL_ECHOLNPGM("?Unable to save mesh data.");
|
|
|
|
else DEBUG_ECHOLNPAIR("Mesh saved in slot ", slot);
|
|
|
|
|
|
|
|
#else
|
|
|
|
|
|
|
|
// Other mesh types
|
|
|
|
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
void MarlinSettings::load_mesh(const int8_t slot, void * const into/*=nullptr*/) {
|
|
|
|
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_UBL)
|
|
|
|
|
|
|
|
const int16_t a = settings.calc_num_meshes();
|
|
|
|
|
|
|
|
if (!WITHIN(slot, 0, a - 1)) {
|
|
|
|
ubl_invalid_slot(a);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
int pos = mesh_slot_offset(slot);
|
|
|
|
uint16_t crc = 0;
|
|
|
|
uint8_t * const dest = into ? (uint8_t*)into : (uint8_t*)&ubl.z_values;
|
|
|
|
|
|
|
|
persistentStore.access_start();
|
|
|
|
const uint16_t status = persistentStore.read_data(pos, dest, sizeof(ubl.z_values), &crc);
|
|
|
|
persistentStore.access_finish();
|
|
|
|
|
|
|
|
if (status) SERIAL_ECHOLNPGM("?Unable to load mesh data.");
|
|
|
|
else DEBUG_ECHOLNPAIR("Mesh loaded from slot ", slot);
|
|
|
|
|
|
|
|
EEPROM_FINISH();
|
|
|
|
|
|
|
|
#else
|
|
|
|
|
|
|
|
// Other mesh types
|
|
|
|
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
//void MarlinSettings::delete_mesh() { return; }
|
|
|
|
//void MarlinSettings::defrag_meshes() { return; }
|
|
|
|
|
|
|
|
#endif // AUTO_BED_LEVELING_UBL
|
|
|
|
|
|
|
|
#else // !EEPROM_SETTINGS
|
|
|
|
|
|
|
|
bool MarlinSettings::save() {
|
|
|
|
DEBUG_ERROR_MSG("EEPROM disabled");
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif // !EEPROM_SETTINGS
|
|
|
|
|
|
|
|
/**
|
|
|
|
* M502 - Reset Configuration
|
|
|
|
*/
|
|
|
|
void MarlinSettings::reset() {
|
|
|
|
LOOP_XYZE_N(i) {
|
|
|
|
planner.settings.max_acceleration_mm_per_s2[i] = pgm_read_dword(&_DMA[ALIM(i, _DMA)]);
|
|
|
|
planner.settings.axis_steps_per_mm[i] = pgm_read_float(&_DASU[ALIM(i, _DASU)]);
|
|
|
|
planner.settings.max_feedrate_mm_s[i] = pgm_read_float(&_DMF[ALIM(i, _DMF)]);
|
|
|
|
}
|
|
|
|
|
|
|
|
planner.settings.min_segment_time_us = DEFAULT_MINSEGMENTTIME;
|
|
|
|
planner.settings.acceleration = DEFAULT_ACCELERATION;
|
|
|
|
planner.settings.retract_acceleration = DEFAULT_RETRACT_ACCELERATION;
|
|
|
|
planner.settings.travel_acceleration = DEFAULT_TRAVEL_ACCELERATION;
|
|
|
|
planner.settings.min_feedrate_mm_s = feedRate_t(DEFAULT_MINIMUMFEEDRATE);
|
|
|
|
planner.settings.min_travel_feedrate_mm_s = feedRate_t(DEFAULT_MINTRAVELFEEDRATE);
|
|
|
|
|
|
|
|
#if HAS_CLASSIC_JERK
|
|
|
|
#ifndef DEFAULT_XJERK
|
|
|
|
#define DEFAULT_XJERK 0
|
|
|
|
#endif
|
|
|
|
#ifndef DEFAULT_YJERK
|
|
|
|
#define DEFAULT_YJERK 0
|
|
|
|
#endif
|
|
|
|
#ifndef DEFAULT_ZJERK
|
|
|
|
#define DEFAULT_ZJERK 0
|
|
|
|
#endif
|
|
|
|
planner.max_jerk.set(DEFAULT_XJERK, DEFAULT_YJERK, DEFAULT_ZJERK);
|
|
|
|
TERN_(HAS_CLASSIC_E_JERK, planner.max_jerk.e = DEFAULT_EJERK;);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if HAS_JUNCTION_DEVIATION
|
|
|
|
planner.junction_deviation_mm = float(JUNCTION_DEVIATION_MM);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if HAS_SCARA_OFFSET
|
|
|
|
scara_home_offset.reset();
|
|
|
|
#elif HAS_HOME_OFFSET
|
|
|
|
home_offset.reset();
|
|
|
|
#endif
|
|
|
|
|
|
|
|
TERN_(HAS_HOTEND_OFFSET, reset_hotend_offsets());
|
|
|
|
|
|
|
|
//
|
|
|
|
// Filament Runout Sensor
|
|
|
|
//
|
|
|
|
|
|
|
|
#if HAS_FILAMENT_SENSOR
|
|
|
|
runout.enabled = FIL_RUNOUT_ENABLED_DEFAULT;
|
|
|
|
runout.reset();
|
|
|
|
TERN_(HAS_FILAMENT_RUNOUT_DISTANCE, runout.set_runout_distance(FILAMENT_RUNOUT_DISTANCE_MM));
|
|
|
|
#endif
|
|
|
|
|
|
|
|
//
|
|
|
|
// Tool-change Settings
|
|
|
|
//
|
|
|
|
|
|
|
|
#if HAS_MULTI_EXTRUDER
|
|
|
|
#if ENABLED(TOOLCHANGE_FILAMENT_SWAP)
|
|
|
|
toolchange_settings.swap_length = TOOLCHANGE_FS_LENGTH;
|
|
|
|
toolchange_settings.extra_resume = TOOLCHANGE_FS_EXTRA_RESUME_LENGTH;
|
|
|
|
toolchange_settings.retract_speed = TOOLCHANGE_FS_RETRACT_SPEED;
|
|
|
|
toolchange_settings.unretract_speed = TOOLCHANGE_FS_UNRETRACT_SPEED;
|
|
|
|
toolchange_settings.extra_prime = TOOLCHANGE_FS_EXTRA_PRIME;
|
|
|
|
toolchange_settings.prime_speed = TOOLCHANGE_FS_PRIME_SPEED;
|
|
|
|
toolchange_settings.fan_speed = TOOLCHANGE_FS_FAN_SPEED;
|
|
|
|
toolchange_settings.fan_time = TOOLCHANGE_FS_FAN_TIME;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(TOOLCHANGE_FS_PRIME_FIRST_USED)
|
|
|
|
enable_first_prime = false;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(TOOLCHANGE_PARK)
|
|
|
|
constexpr xyz_pos_t tpxy = TOOLCHANGE_PARK_XY;
|
|
|
|
toolchange_settings.enable_park = true;
|
|
|
|
toolchange_settings.change_point = tpxy;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
toolchange_settings.z_raise = TOOLCHANGE_ZRAISE;
|
|
|
|
|
|
|
|
#if ENABLED(TOOLCHANGE_MIGRATION_FEATURE)
|
|
|
|
migration = migration_defaults;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(BACKLASH_GCODE)
|
|
|
|
backlash.correction = (BACKLASH_CORRECTION) * 255;
|
|
|
|
constexpr xyz_float_t tmp = BACKLASH_DISTANCE_MM;
|
|
|
|
backlash.distance_mm = tmp;
|
|
|
|
#ifdef BACKLASH_SMOOTHING_MM
|
|
|
|
backlash.smoothing_mm = BACKLASH_SMOOTHING_MM;
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
|
|
|
|
TERN_(EXTENSIBLE_UI, ExtUI::onFactoryReset());
|
|
|
|
|
|
|
|
//
|
|
|
|
// Case Light Brightness
|
|
|
|
//
|
|
|
|
TERN_(HAS_CASE_LIGHT_BRIGHTNESS, caselight.brightness = CASE_LIGHT_DEFAULT_BRIGHTNESS);
|
|
|
|
|
|
|
|
//
|
|
|
|
// TOUCH_SCREEN_CALIBRATION
|
|
|
|
//
|
|
|
|
TERN_(TOUCH_SCREEN_CALIBRATION, touch.calibration_reset());
|
|
|
|
|
|
|
|
//
|
|
|
|
// Magnetic Parking Extruder
|
|
|
|
//
|
|
|
|
TERN_(MAGNETIC_PARKING_EXTRUDER, mpe_settings_init());
|
|
|
|
|
|
|
|
//
|
|
|
|
// Global Leveling
|
|
|
|
//
|
|
|
|
TERN_(ENABLE_LEVELING_FADE_HEIGHT, new_z_fade_height = 0.0);
|
|
|
|
TERN_(HAS_LEVELING, reset_bed_level());
|
|
|
|
|
|
|
|
#if HAS_BED_PROBE
|
|
|
|
constexpr float dpo[] = NOZZLE_TO_PROBE_OFFSET;
|
|
|
|
static_assert(COUNT(dpo) == 3, "NOZZLE_TO_PROBE_OFFSET must contain offsets for X, Y, and Z.");
|
|
|
|
#if HAS_PROBE_XY_OFFSET
|
|
|
|
LOOP_XYZ(a) probe.offset[a] = dpo[a];
|
|
|
|
#else
|
|
|
|
probe.offset.set(0, 0, dpo[Z_AXIS]);
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
|
|
|
|
//
|
|
|
|
// Z Stepper Auto-alignment points
|
|
|
|
//
|
|
|
|
TERN_(Z_STEPPER_AUTO_ALIGN, z_stepper_align.reset_to_default());
|
|
|
|
|
|
|
|
//
|
|
|
|
// Servo Angles
|
|
|
|
//
|
|
|
|
TERN_(EDITABLE_SERVO_ANGLES, COPY(servo_angles, base_servo_angles)); // When not editable only one copy of servo angles exists
|
|
|
|
|
|
|
|
//
|
|
|
|
// BLTOUCH
|
|
|
|
//
|
|
|
|
//#if ENABLED(BLTOUCH)
|
|
|
|
// bltouch.last_written_mode;
|
|
|
|
//#endif
|
|
|
|
|
|
|
|
//
|
|
|
|
// Endstop Adjustments
|
|
|
|
//
|
|
|
|
|
|
|
|
#if ENABLED(DELTA)
|
|
|
|
const abc_float_t adj = DELTA_ENDSTOP_ADJ, dta = DELTA_TOWER_ANGLE_TRIM, ddr = DELTA_DIAGONAL_ROD_TRIM_TOWER;
|
|
|
|
delta_height = DELTA_HEIGHT;
|
|
|
|
delta_endstop_adj = adj;
|
|
|
|
delta_radius = DELTA_RADIUS;
|
|
|
|
delta_diagonal_rod = DELTA_DIAGONAL_ROD;
|
|
|
|
delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
|
|
|
|
delta_tower_angle_trim = dta;
|
|
|
|
delta_diagonal_rod_trim = ddr;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(X_DUAL_ENDSTOPS)
|
|
|
|
#ifndef X2_ENDSTOP_ADJUSTMENT
|
|
|
|
#define X2_ENDSTOP_ADJUSTMENT 0
|
|
|
|
#endif
|
|
|
|
endstops.x2_endstop_adj = X2_ENDSTOP_ADJUSTMENT;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(Y_DUAL_ENDSTOPS)
|
|
|
|
#ifndef Y2_ENDSTOP_ADJUSTMENT
|
|
|
|
#define Y2_ENDSTOP_ADJUSTMENT 0
|
|
|
|
#endif
|
|
|
|
endstops.y2_endstop_adj = Y2_ENDSTOP_ADJUSTMENT;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(Z_MULTI_ENDSTOPS)
|
|
|
|
#ifndef Z2_ENDSTOP_ADJUSTMENT
|
|
|
|
#define Z2_ENDSTOP_ADJUSTMENT 0
|
|
|
|
#endif
|
|
|
|
endstops.z2_endstop_adj = Z2_ENDSTOP_ADJUSTMENT;
|
|
|
|
#if NUM_Z_STEPPER_DRIVERS >= 3
|
|
|
|
#ifndef Z3_ENDSTOP_ADJUSTMENT
|
|
|
|
#define Z3_ENDSTOP_ADJUSTMENT 0
|
|
|
|
#endif
|
|
|
|
endstops.z3_endstop_adj = Z3_ENDSTOP_ADJUSTMENT;
|
|
|
|
#endif
|
|
|
|
#if NUM_Z_STEPPER_DRIVERS >= 4
|
|
|
|
#ifndef Z4_ENDSTOP_ADJUSTMENT
|
|
|
|
#define Z4_ENDSTOP_ADJUSTMENT 0
|
|
|
|
#endif
|
|
|
|
endstops.z4_endstop_adj = Z4_ENDSTOP_ADJUSTMENT;
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
|
|
|
|
//
|
|
|
|
// Preheat parameters
|
|
|
|
//
|
|
|
|
#if PREHEAT_COUNT
|
|
|
|
#if HAS_HOTEND
|
|
|
|
constexpr uint16_t hpre[] = ARRAY_N(PREHEAT_COUNT, PREHEAT_1_TEMP_HOTEND, PREHEAT_2_TEMP_HOTEND, PREHEAT_3_TEMP_HOTEND, PREHEAT_4_TEMP_HOTEND, PREHEAT_5_TEMP_HOTEND);
|
|
|
|
#endif
|
|
|
|
#if HAS_HEATED_BED
|
|
|
|
constexpr uint16_t bpre[] = ARRAY_N(PREHEAT_COUNT, PREHEAT_1_TEMP_BED, PREHEAT_2_TEMP_BED, PREHEAT_3_TEMP_BED, PREHEAT_4_TEMP_BED, PREHEAT_5_TEMP_BED);
|
|
|
|
#endif
|
|
|
|
#if HAS_FAN
|
|
|
|
constexpr uint8_t fpre[] = ARRAY_N(PREHEAT_COUNT, PREHEAT_1_FAN_SPEED, PREHEAT_2_FAN_SPEED, PREHEAT_3_FAN_SPEED, PREHEAT_4_FAN_SPEED, PREHEAT_5_FAN_SPEED);
|
|
|
|
#endif
|
|
|
|
LOOP_L_N(i, PREHEAT_COUNT) {
|
|
|
|
#if HAS_HOTEND
|
|
|
|
ui.material_preset[i].hotend_temp = hpre[i];
|
|
|
|
#endif
|
|
|
|
#if HAS_HEATED_BED
|
|
|
|
ui.material_preset[i].bed_temp = bpre[i];
|
|
|
|
#endif
|
|
|
|
#if HAS_FAN
|
|
|
|
ui.material_preset[i].fan_speed = fpre[i];
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
//
|
|
|
|
// Hotend PID
|
|
|
|
//
|
|
|
|
|
|
|
|
#if ENABLED(PIDTEMP)
|
|
|
|
#if ENABLED(PID_PARAMS_PER_HOTEND)
|
|
|
|
constexpr float defKp[] =
|
|
|
|
#ifdef DEFAULT_Kp_LIST
|
|
|
|
DEFAULT_Kp_LIST
|
|
|
|
#else
|
|
|
|
ARRAY_BY_HOTENDS1(DEFAULT_Kp)
|
|
|
|
#endif
|
|
|
|
, defKi[] =
|
|
|
|
#ifdef DEFAULT_Ki_LIST
|
|
|
|
DEFAULT_Ki_LIST
|
|
|
|
#else
|
|
|
|
ARRAY_BY_HOTENDS1(DEFAULT_Ki)
|
|
|
|
#endif
|
|
|
|
, defKd[] =
|
|
|
|
#ifdef DEFAULT_Kd_LIST
|
|
|
|
DEFAULT_Kd_LIST
|
|
|
|
#else
|
|
|
|
ARRAY_BY_HOTENDS1(DEFAULT_Kd)
|
|
|
|
#endif
|
|
|
|
;
|
|
|
|
static_assert(WITHIN(COUNT(defKp), 1, HOTENDS), "DEFAULT_Kp_LIST must have between 1 and HOTENDS items.");
|
|
|
|
static_assert(WITHIN(COUNT(defKi), 1, HOTENDS), "DEFAULT_Ki_LIST must have between 1 and HOTENDS items.");
|
|
|
|
static_assert(WITHIN(COUNT(defKd), 1, HOTENDS), "DEFAULT_Kd_LIST must have between 1 and HOTENDS items.");
|
|
|
|
#if ENABLED(PID_EXTRUSION_SCALING)
|
|
|
|
constexpr float defKc[] =
|
|
|
|
#ifdef DEFAULT_Kc_LIST
|
|
|
|
DEFAULT_Kc_LIST
|
|
|
|
#else
|
|
|
|
ARRAY_BY_HOTENDS1(DEFAULT_Kc)
|
|
|
|
#endif
|
|
|
|
;
|
|
|
|
static_assert(WITHIN(COUNT(defKc), 1, HOTENDS), "DEFAULT_Kc_LIST must have between 1 and HOTENDS items.");
|
|
|
|
#endif
|
|
|
|
#if ENABLED(PID_FAN_SCALING)
|
|
|
|
constexpr float defKf[] =
|
|
|
|
#ifdef DEFAULT_Kf_LIST
|
|
|
|
DEFAULT_Kf_LIST
|
|
|
|
#else
|
|
|
|
ARRAY_BY_HOTENDS1(DEFAULT_Kf)
|
|
|
|
#endif
|
|
|
|
;
|
|
|
|
static_assert(WITHIN(COUNT(defKf), 1, HOTENDS), "DEFAULT_Kf_LIST must have between 1 and HOTENDS items.");
|
|
|
|
#endif
|
|
|
|
#define PID_DEFAULT(N,E) def##N[E]
|
|
|
|
#else
|
|
|
|
#define PID_DEFAULT(N,E) DEFAULT_##N
|
|
|
|
#endif
|
|
|
|
HOTEND_LOOP() {
|
|
|
|
PID_PARAM(Kp, e) = float(PID_DEFAULT(Kp, ALIM(e, defKp)));
|
|
|
|
PID_PARAM(Ki, e) = scalePID_i(PID_DEFAULT(Ki, ALIM(e, defKi)));
|
|
|
|
PID_PARAM(Kd, e) = scalePID_d(PID_DEFAULT(Kd, ALIM(e, defKd)));
|
|
|
|
TERN_(PID_EXTRUSION_SCALING, PID_PARAM(Kc, e) = float(PID_DEFAULT(Kc, ALIM(e, defKc))));
|
|
|
|
TERN_(PID_FAN_SCALING, PID_PARAM(Kf, e) = float(PID_DEFAULT(Kf, ALIM(e, defKf))));
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
//
|
|
|
|
// PID Extrusion Scaling
|
|
|
|
//
|
|
|
|
TERN_(PID_EXTRUSION_SCALING, thermalManager.lpq_len = 20); // Default last-position-queue size
|
|
|
|
|
|
|
|
//
|
|
|
|
// Heated Bed PID
|
|
|
|
//
|
|
|
|
|
|
|
|
#if ENABLED(PIDTEMPBED)
|
|
|
|
thermalManager.temp_bed.pid.Kp = DEFAULT_bedKp;
|
|
|
|
thermalManager.temp_bed.pid.Ki = scalePID_i(DEFAULT_bedKi);
|
|
|
|
thermalManager.temp_bed.pid.Kd = scalePID_d(DEFAULT_bedKd);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
//
|
|
|
|
// User-Defined Thermistors
|
|
|
|
//
|
|
|
|
TERN_(HAS_USER_THERMISTORS, thermalManager.reset_user_thermistors());
|
|
|
|
|
|
|
|
//
|
|
|
|
// Power Monitor
|
|
|
|
//
|
|
|
|
TERN_(POWER_MONITOR, power_monitor.reset());
|
|
|
|
|
|
|
|
//
|
|
|
|
// LCD Contrast
|
|
|
|
//
|
|
|
|
TERN_(HAS_LCD_CONTRAST, ui.set_contrast(DEFAULT_LCD_CONTRAST));
|
|
|
|
|
|
|
|
//
|
|
|
|
// Controller Fan
|
|
|
|
//
|
|
|
|
TERN_(USE_CONTROLLER_FAN, controllerFan.reset());
|
|
|
|
|
|
|
|
//
|
|
|
|
// Power-Loss Recovery
|
|
|
|
//
|
|
|
|
TERN_(POWER_LOSS_RECOVERY, recovery.enable(ENABLED(PLR_ENABLED_DEFAULT)));
|
|
|
|
|
|
|
|
//
|
|
|
|
// Firmware Retraction
|
|
|
|
//
|
|
|
|
TERN_(FWRETRACT, fwretract.reset());
|
|
|
|
|
|
|
|
//
|
|
|
|
// Volumetric & Filament Size
|
|
|
|
//
|
|
|
|
|
|
|
|
#if DISABLED(NO_VOLUMETRICS)
|
|
|
|
parser.volumetric_enabled = ENABLED(VOLUMETRIC_DEFAULT_ON);
|
|
|
|
LOOP_L_N(q, COUNT(planner.filament_size))
|
|
|
|
planner.filament_size[q] = DEFAULT_NOMINAL_FILAMENT_DIA;
|
|
|
|
#if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
|
|
|
|
LOOP_L_N(q, COUNT(planner.volumetric_extruder_limit))
|
|
|
|
planner.volumetric_extruder_limit[q] = DEFAULT_VOLUMETRIC_EXTRUDER_LIMIT;
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
|
|
|
|
endstops.enable_globally(ENABLED(ENDSTOPS_ALWAYS_ON_DEFAULT));
|
|
|
|
|
|
|
|
reset_stepper_drivers();
|
|
|
|
|
|
|
|
//
|
|
|
|
// Linear Advance
|
|
|
|
//
|
|
|
|
|
|
|
|
#if ENABLED(LIN_ADVANCE)
|
|
|
|
LOOP_L_N(i, EXTRUDERS) {
|
|
|
|
planner.extruder_advance_K[i] = LIN_ADVANCE_K;
|
|
|
|
TERN_(EXTRA_LIN_ADVANCE_K, other_extruder_advance_K[i] = LIN_ADVANCE_K);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
//
|
|
|
|
// Motor Current PWM
|
|
|
|
//
|
|
|
|
|
|
|
|
#if HAS_MOTOR_CURRENT_PWM
|
|
|
|
constexpr uint32_t tmp_motor_current_setting[MOTOR_CURRENT_COUNT] = PWM_MOTOR_CURRENT;
|
|
|
|
LOOP_L_N(q, MOTOR_CURRENT_COUNT)
|
|
|
|
stepper.set_digipot_current(q, (stepper.motor_current_setting[q] = tmp_motor_current_setting[q]));
|
|
|
|
#endif
|
|
|
|
|
|
|
|
//
|
|
|
|
// DIGIPOTS
|
|
|
|
//
|
|
|
|
#if HAS_MOTOR_CURRENT_SPI
|
|
|
|
static constexpr uint32_t tmp_motor_current_setting[] = DIGIPOT_MOTOR_CURRENT;
|
|
|
|
DEBUG_ECHOLNPGM("Writing Digipot");
|
|
|
|
LOOP_L_N(q, COUNT(tmp_motor_current_setting))
|
|
|
|
stepper.set_digipot_current(q, tmp_motor_current_setting[q]);
|
|
|
|
DEBUG_ECHOLNPGM("Digipot Written");
|
|
|
|
#endif
|
|
|
|
|
|
|
|
//
|
|
|
|
// CNC Coordinate System
|
|
|
|
//
|
|
|
|
TERN_(CNC_COORDINATE_SYSTEMS, (void)gcode.select_coordinate_system(-1)); // Go back to machine space
|
|
|
|
|
|
|
|
//
|
|
|
|
// Skew Correction
|
|
|
|
//
|
|
|
|
#if ENABLED(SKEW_CORRECTION_GCODE)
|
|
|
|
planner.skew_factor.xy = XY_SKEW_FACTOR;
|
|
|
|
#if ENABLED(SKEW_CORRECTION_FOR_Z)
|
|
|
|
planner.skew_factor.xz = XZ_SKEW_FACTOR;
|
|
|
|
planner.skew_factor.yz = YZ_SKEW_FACTOR;
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
|
|
|
|
//
|
|
|
|
// Advanced Pause filament load & unload lengths
|
|
|
|
//
|
|
|
|
#if ENABLED(ADVANCED_PAUSE_FEATURE)
|
|
|
|
LOOP_L_N(e, EXTRUDERS) {
|
|
|
|
fc_settings[e].unload_length = FILAMENT_CHANGE_UNLOAD_LENGTH;
|
|
|
|
fc_settings[e].load_length = FILAMENT_CHANGE_FAST_LOAD_LENGTH;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(PASSWORD_FEATURE)
|
|
|
|
#ifdef PASSWORD_DEFAULT_VALUE
|
|
|
|
password.is_set = true;
|
|
|
|
password.value = PASSWORD_DEFAULT_VALUE;
|
|
|
|
#else
|
|
|
|
password.is_set = false;
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
|
|
|
|
postprocess();
|
|
|
|
|
|
|
|
DEBUG_ECHO_START();
|
|
|
|
DEBUG_ECHOLNPGM("Hardcoded Default Settings Loaded");
|
|
|
|
|
|
|
|
TERN_(EXTENSIBLE_UI, ExtUI::onFactoryReset());
|
|
|
|
}
|
|
|
|
|
|
|
|
#if DISABLED(DISABLE_M503)
|
|
|
|
|
|
|
|
static void config_heading(const bool repl, PGM_P const pstr, const bool eol=true) {
|
|
|
|
if (!repl) {
|
|
|
|
SERIAL_ECHO_START();
|
|
|
|
SERIAL_ECHOPGM("; ");
|
|
|
|
serialprintPGM(pstr);
|
|
|
|
if (eol) SERIAL_EOL();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#define CONFIG_ECHO_START() do{ if (!forReplay) SERIAL_ECHO_START(); }while(0)
|
|
|
|
#define CONFIG_ECHO_MSG(STR) do{ CONFIG_ECHO_START(); SERIAL_ECHOLNPGM(STR); }while(0)
|
|
|
|
#define CONFIG_ECHO_HEADING(STR) config_heading(forReplay, PSTR(STR))
|
|
|
|
|
|
|
|
#if HAS_TRINAMIC_CONFIG
|
|
|
|
inline void say_M906(const bool forReplay) { CONFIG_ECHO_START(); SERIAL_ECHOPGM(" M906"); }
|
|
|
|
#if HAS_STEALTHCHOP
|
|
|
|
void say_M569(const bool forReplay, const char * const etc=nullptr, const bool newLine = false) {
|
|
|
|
CONFIG_ECHO_START();
|
|
|
|
SERIAL_ECHOPGM(" M569 S1");
|
|
|
|
if (etc) {
|
|
|
|
SERIAL_CHAR(' ');
|
|
|
|
serialprintPGM(etc);
|
|
|
|
}
|
|
|
|
if (newLine) SERIAL_EOL();
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
#if ENABLED(HYBRID_THRESHOLD)
|
|
|
|
inline void say_M913(const bool forReplay) { CONFIG_ECHO_START(); SERIAL_ECHOPGM(" M913"); }
|
|
|
|
#endif
|
|
|
|
#if USE_SENSORLESS
|
|
|
|
inline void say_M914() { SERIAL_ECHOPGM(" M914"); }
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(ADVANCED_PAUSE_FEATURE)
|
|
|
|
inline void say_M603(const bool forReplay) { CONFIG_ECHO_START(); SERIAL_ECHOPGM(" M603 "); }
|
|
|
|
#endif
|
|
|
|
|
|
|
|
inline void say_units(const bool colon) {
|
|
|
|
serialprintPGM(
|
|
|
|
#if ENABLED(INCH_MODE_SUPPORT)
|
|
|
|
parser.linear_unit_factor != 1.0 ? PSTR(" (in)") :
|
|
|
|
#endif
|
|
|
|
PSTR(" (mm)")
|
|
|
|
);
|
|
|
|
if (colon) SERIAL_ECHOLNPGM(":");
|
|
|
|
}
|
|
|
|
|
|
|
|
void report_M92(const bool echo=true, const int8_t e=-1);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* M503 - Report current settings in RAM
|
|
|
|
*
|
|
|
|
* Unless specifically disabled, M503 is available even without EEPROM
|
|
|
|
*/
|
|
|
|
void MarlinSettings::report(const bool forReplay) {
|
|
|
|
/**
|
|
|
|
* Announce current units, in case inches are being displayed
|
|
|
|
*/
|
|
|
|
CONFIG_ECHO_START();
|
|
|
|
#if ENABLED(INCH_MODE_SUPPORT)
|
|
|
|
SERIAL_ECHOPGM(" G2");
|
|
|
|
SERIAL_CHAR(parser.linear_unit_factor == 1.0 ? '1' : '0');
|
|
|
|
SERIAL_ECHOPGM(" ;");
|
|
|
|
say_units(false);
|
|
|
|
#else
|
|
|
|
SERIAL_ECHOPGM(" G21 ; Units in mm");
|
|
|
|
say_units(false);
|
|
|
|
#endif
|
|
|
|
SERIAL_EOL();
|
|
|
|
|
|
|
|
#if HAS_LCD_MENU
|
|
|
|
|
|
|
|
// Temperature units - for Ultipanel temperature options
|
|
|
|
|
|
|
|
CONFIG_ECHO_START();
|
|
|
|
#if ENABLED(TEMPERATURE_UNITS_SUPPORT)
|
|
|
|
SERIAL_ECHOPGM(" M149 ");
|
|
|
|
SERIAL_CHAR(parser.temp_units_code());
|
|
|
|
SERIAL_ECHOPGM(" ; Units in ");
|
|
|
|
serialprintPGM(parser.temp_units_name());
|
|
|
|
#else
|
|
|
|
SERIAL_ECHOLNPGM(" M149 C ; Units in Celsius");
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
SERIAL_EOL();
|
|
|
|
|
|
|
|
#if EXTRUDERS && DISABLED(NO_VOLUMETRICS)
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Volumetric extrusion M200
|
|
|
|
*/
|
|
|
|
if (!forReplay) {
|
|
|
|
config_heading(forReplay, PSTR("Filament settings:"), false);
|
|
|
|
if (parser.volumetric_enabled)
|
|
|
|
SERIAL_EOL();
|
|
|
|
else
|
|
|
|
SERIAL_ECHOLNPGM(" Disabled");
|
|
|
|
}
|
|
|
|
|
|
|
|
#if EXTRUDERS == 1
|
|
|
|
CONFIG_ECHO_START();
|
|
|
|
SERIAL_ECHOLNPAIR(" M200 S", int(parser.volumetric_enabled)
|
|
|
|
, " D", LINEAR_UNIT(planner.filament_size[0])
|
|
|
|
#if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
|
|
|
|
, " L", LINEAR_UNIT(planner.volumetric_extruder_limit[0])
|
|
|
|
#endif
|
|
|
|
);
|
|
|
|
#else
|
|
|
|
LOOP_L_N(i, EXTRUDERS) {
|
|
|
|
CONFIG_ECHO_START();
|
|
|
|
SERIAL_ECHOLNPAIR(" M200 T", int(i)
|
|
|
|
, " D", LINEAR_UNIT(planner.filament_size[i])
|
|
|
|
#if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
|
|
|
|
, " L", LINEAR_UNIT(planner.volumetric_extruder_limit[i])
|
|
|
|
#endif
|
|
|
|
);
|
|
|
|
}
|
|
|
|
CONFIG_ECHO_START();
|
|
|
|
SERIAL_ECHOLNPAIR(" M200 S", int(parser.volumetric_enabled));
|
|
|
|
#endif
|
|
|
|
#endif // EXTRUDERS && !NO_VOLUMETRICS
|
|
|
|
|
|
|
|
CONFIG_ECHO_HEADING("Steps per unit:");
|
|
|
|
report_M92(!forReplay);
|
|
|
|
|
|
|
|
CONFIG_ECHO_HEADING("Maximum feedrates (units/s):");
|
|
|
|
CONFIG_ECHO_START();
|
|
|
|
SERIAL_ECHOLNPAIR_P(
|
|
|
|
PSTR(" M203 X"), LINEAR_UNIT(planner.settings.max_feedrate_mm_s[X_AXIS])
|
|
|
|
, SP_Y_STR, LINEAR_UNIT(planner.settings.max_feedrate_mm_s[Y_AXIS])
|
|
|
|
, SP_Z_STR, LINEAR_UNIT(planner.settings.max_feedrate_mm_s[Z_AXIS])
|
|
|
|
#if DISABLED(DISTINCT_E_FACTORS)
|
|
|
|
, SP_E_STR, VOLUMETRIC_UNIT(planner.settings.max_feedrate_mm_s[E_AXIS])
|
|
|
|
#endif
|
|
|
|
);
|
|
|
|
#if ENABLED(DISTINCT_E_FACTORS)
|
|
|
|
LOOP_L_N(i, E_STEPPERS) {
|
|
|
|
CONFIG_ECHO_START();
|
|
|
|
SERIAL_ECHOLNPAIR_P(
|
|
|
|
PSTR(" M203 T"), (int)i
|
|
|
|
, SP_E_STR, VOLUMETRIC_UNIT(planner.settings.max_feedrate_mm_s[E_AXIS_N(i)])
|
|
|
|
);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
CONFIG_ECHO_HEADING("Maximum Acceleration (units/s2):");
|
|
|
|
CONFIG_ECHO_START();
|
|
|
|
SERIAL_ECHOLNPAIR_P(
|
|
|
|
PSTR(" M201 X"), LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[X_AXIS])
|
|
|
|
, SP_Y_STR, LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[Y_AXIS])
|
|
|
|
, SP_Z_STR, LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[Z_AXIS])
|
|
|
|
#if DISABLED(DISTINCT_E_FACTORS)
|
|
|
|
, SP_E_STR, VOLUMETRIC_UNIT(planner.settings.max_acceleration_mm_per_s2[E_AXIS])
|
|
|
|
#endif
|
|
|
|
);
|
|
|
|
#if ENABLED(DISTINCT_E_FACTORS)
|
|
|
|
LOOP_L_N(i, E_STEPPERS) {
|
|
|
|
CONFIG_ECHO_START();
|
|
|
|
SERIAL_ECHOLNPAIR_P(
|
|
|
|
PSTR(" M201 T"), (int)i
|
|
|
|
, SP_E_STR, VOLUMETRIC_UNIT(planner.settings.max_acceleration_mm_per_s2[E_AXIS_N(i)])
|
|
|
|
);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
CONFIG_ECHO_HEADING("Acceleration (units/s2): P<print_accel> R<retract_accel> T<travel_accel>");
|
|
|
|
CONFIG_ECHO_START();
|
|
|
|
SERIAL_ECHOLNPAIR_P(
|
|
|
|
PSTR(" M204 P"), LINEAR_UNIT(planner.settings.acceleration)
|
|
|
|
, PSTR(" R"), LINEAR_UNIT(planner.settings.retract_acceleration)
|
|
|
|
, SP_T_STR, LINEAR_UNIT(planner.settings.travel_acceleration)
|
|
|
|
);
|
|
|
|
|
|
|
|
CONFIG_ECHO_HEADING(
|
|
|
|
"Advanced: B<min_segment_time_us> S<min_feedrate> T<min_travel_feedrate>"
|
|
|
|
#if HAS_JUNCTION_DEVIATION
|
|
|
|
" J<junc_dev>"
|
|
|
|
#endif
|
|
|
|
#if HAS_CLASSIC_JERK
|
|
|
|
" X<max_x_jerk> Y<max_y_jerk> Z<max_z_jerk>"
|
|
|
|
TERN_(HAS_CLASSIC_E_JERK, " E<max_e_jerk>")
|
|
|
|
#endif
|
|
|
|
);
|
|
|
|
CONFIG_ECHO_START();
|
|
|
|
SERIAL_ECHOLNPAIR_P(
|
|
|
|
PSTR(" M205 B"), LINEAR_UNIT(planner.settings.min_segment_time_us)
|
|
|
|
, PSTR(" S"), LINEAR_UNIT(planner.settings.min_feedrate_mm_s)
|
|
|
|
, SP_T_STR, LINEAR_UNIT(planner.settings.min_travel_feedrate_mm_s)
|
|
|
|
#if HAS_JUNCTION_DEVIATION
|
|
|
|
, PSTR(" J"), LINEAR_UNIT(planner.junction_deviation_mm)
|
|
|
|
#endif
|
|
|
|
#if HAS_CLASSIC_JERK
|
|
|
|
, SP_X_STR, LINEAR_UNIT(planner.max_jerk.x)
|
|
|
|
, SP_Y_STR, LINEAR_UNIT(planner.max_jerk.y)
|
|
|
|
, SP_Z_STR, LINEAR_UNIT(planner.max_jerk.z)
|
|
|
|
#if HAS_CLASSIC_E_JERK
|
|
|
|
, SP_E_STR, LINEAR_UNIT(planner.max_jerk.e)
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
);
|
|
|
|
|
|
|
|
#if HAS_M206_COMMAND
|
|
|
|
CONFIG_ECHO_HEADING("Home offset:");
|
|
|
|
CONFIG_ECHO_START();
|
|
|
|
SERIAL_ECHOLNPAIR_P(
|
|
|
|
#if IS_CARTESIAN
|
|
|
|
PSTR(" M206 X"), LINEAR_UNIT(home_offset.x)
|
|
|
|
, SP_Y_STR, LINEAR_UNIT(home_offset.y)
|
|
|
|
, SP_Z_STR
|
|
|
|
#else
|
|
|
|
PSTR(" M206 Z")
|
|
|
|
#endif
|
|
|
|
, LINEAR_UNIT(home_offset.z)
|
|
|
|
);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if HAS_HOTEND_OFFSET
|
|
|
|
CONFIG_ECHO_HEADING("Hotend offsets:");
|
|
|
|
CONFIG_ECHO_START();
|
|
|
|
LOOP_S_L_N(e, 1, HOTENDS) {
|
|
|
|
SERIAL_ECHOPAIR_P(
|
|
|
|
PSTR(" M218 T"), (int)e,
|
|
|
|
SP_X_STR, LINEAR_UNIT(hotend_offset[e].x),
|
|
|
|
SP_Y_STR, LINEAR_UNIT(hotend_offset[e].y)
|
|
|
|
);
|
|
|
|
SERIAL_ECHOLNPAIR_F_P(SP_Z_STR, LINEAR_UNIT(hotend_offset[e].z), 3);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Bed Leveling
|
|
|
|
*/
|
|
|
|
#if HAS_LEVELING
|
|
|
|
|
|
|
|
#if ENABLED(MESH_BED_LEVELING)
|
|
|
|
|
|
|
|
CONFIG_ECHO_HEADING("Mesh Bed Leveling:");
|
|
|
|
|
|
|
|
#elif ENABLED(AUTO_BED_LEVELING_UBL)
|
|
|
|
|
|
|
|
config_heading(forReplay, PSTR(""), false);
|
|
|
|
if (!forReplay) {
|
|
|
|
ubl.echo_name();
|
|
|
|
SERIAL_CHAR(':');
|
|
|
|
SERIAL_EOL();
|
|
|
|
}
|
|
|
|
|
|
|
|
#elif HAS_ABL_OR_UBL
|
|
|
|
|
|
|
|
CONFIG_ECHO_HEADING("Auto Bed Leveling:");
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
CONFIG_ECHO_START();
|
|
|
|
SERIAL_ECHOLNPAIR_P(
|
|
|
|
PSTR(" M420 S"), planner.leveling_active ? 1 : 0
|
|
|
|
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
|
|
|
, SP_Z_STR, LINEAR_UNIT(planner.z_fade_height)
|
|
|
|
#endif
|
|
|
|
);
|
|
|
|
|
|
|
|
#if ENABLED(MESH_BED_LEVELING)
|
|
|
|
|
|
|
|
if (leveling_is_valid()) {
|
|
|
|
LOOP_L_N(py, GRID_MAX_POINTS_Y) {
|
|
|
|
LOOP_L_N(px, GRID_MAX_POINTS_X) {
|
|
|
|
CONFIG_ECHO_START();
|
|
|
|
SERIAL_ECHOPAIR_P(PSTR(" G29 S3 I"), (int)px, PSTR(" J"), (int)py);
|
|
|
|
SERIAL_ECHOLNPAIR_F_P(SP_Z_STR, LINEAR_UNIT(mbl.z_values[px][py]), 5);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
CONFIG_ECHO_START();
|
|
|
|
SERIAL_ECHOLNPAIR_F_P(PSTR(" G29 S4 Z"), LINEAR_UNIT(mbl.z_offset), 5);
|
|
|
|
}
|
|
|
|
|
|
|
|
#elif ENABLED(AUTO_BED_LEVELING_UBL)
|
|
|
|
|
|
|
|
if (!forReplay) {
|
|
|
|
SERIAL_EOL();
|
|
|
|
ubl.report_state();
|
|
|
|
SERIAL_EOL();
|
|
|
|
config_heading(false, PSTR("Active Mesh Slot: "), false);
|
|
|
|
SERIAL_ECHOLN(ubl.storage_slot);
|
|
|
|
config_heading(false, PSTR("EEPROM can hold "), false);
|
|
|
|
SERIAL_ECHO(calc_num_meshes());
|
|
|
|
SERIAL_ECHOLNPGM(" meshes.\n");
|
|
|
|
}
|
|
|
|
|
|
|
|
//ubl.report_current_mesh(); // This is too verbose for large meshes. A better (more terse)
|
|
|
|
// solution needs to be found.
|
|
|
|
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
|
|
|
|
|
|
|
if (leveling_is_valid()) {
|
|
|
|
LOOP_L_N(py, GRID_MAX_POINTS_Y) {
|
|
|
|
LOOP_L_N(px, GRID_MAX_POINTS_X) {
|
|
|
|
CONFIG_ECHO_START();
|
|
|
|
SERIAL_ECHOPAIR(" G29 W I", (int)px, " J", (int)py);
|
|
|
|
SERIAL_ECHOLNPAIR_F_P(SP_Z_STR, LINEAR_UNIT(z_values[px][py]), 5);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#endif // HAS_LEVELING
|
|
|
|
|
|
|
|
#if ENABLED(EDITABLE_SERVO_ANGLES)
|
|
|
|
|
|
|
|
CONFIG_ECHO_HEADING("Servo Angles:");
|
|
|
|
LOOP_L_N(i, NUM_SERVOS) {
|
|
|
|
switch (i) {
|
|
|
|
#if ENABLED(SWITCHING_EXTRUDER)
|
|
|
|
case SWITCHING_EXTRUDER_SERVO_NR:
|
|
|
|
#if EXTRUDERS > 3
|
|
|
|
case SWITCHING_EXTRUDER_E23_SERVO_NR:
|
|
|
|
#endif
|
|
|
|
#elif ENABLED(SWITCHING_NOZZLE)
|
|
|
|
case SWITCHING_NOZZLE_SERVO_NR:
|
|
|
|
#elif ENABLED(BLTOUCH) || (HAS_Z_SERVO_PROBE && defined(Z_SERVO_ANGLES))
|
|
|
|
case Z_PROBE_SERVO_NR:
|
|
|
|
#endif
|
|
|
|
CONFIG_ECHO_START();
|
|
|
|
SERIAL_ECHOLNPAIR(" M281 P", int(i), " L", servo_angles[i][0], " U", servo_angles[i][1]);
|
|
|
|
default: break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif // EDITABLE_SERVO_ANGLES
|
|
|
|
|
|
|
|
#if HAS_SCARA_OFFSET
|
|
|
|
|
|
|
|
CONFIG_ECHO_HEADING("SCARA settings: S<seg-per-sec> P<theta-psi-offset> T<theta-offset>");
|
|
|
|
CONFIG_ECHO_START();
|
|
|
|
SERIAL_ECHOLNPAIR_P(
|
|
|
|
PSTR(" M665 S"), delta_segments_per_second
|
|
|
|
, SP_P_STR, scara_home_offset.a
|
|
|
|
, SP_T_STR, scara_home_offset.b
|
|
|
|
, SP_Z_STR, LINEAR_UNIT(scara_home_offset.z)
|
|
|
|
);
|
|
|
|
|
|
|
|
#elif ENABLED(DELTA)
|
|
|
|
|
|
|
|
CONFIG_ECHO_HEADING("Endstop adjustment:");
|
|
|
|
CONFIG_ECHO_START();
|
|
|
|
SERIAL_ECHOLNPAIR_P(
|
|
|
|
PSTR(" M666 X"), LINEAR_UNIT(delta_endstop_adj.a)
|
|
|
|
, SP_Y_STR, LINEAR_UNIT(delta_endstop_adj.b)
|
|
|
|
, SP_Z_STR, LINEAR_UNIT(delta_endstop_adj.c)
|
|
|
|
);
|
|
|
|
|
|
|
|
CONFIG_ECHO_HEADING("Delta settings: L<diagonal rod> R<radius> H<height> S<segments per sec> XYZ<tower angle trim> ABC<rod trim>");
|
|
|
|
CONFIG_ECHO_START();
|
|
|
|
SERIAL_ECHOLNPAIR_P(
|
|
|
|
PSTR(" M665 L"), LINEAR_UNIT(delta_diagonal_rod)
|
|
|
|
, PSTR(" R"), LINEAR_UNIT(delta_radius)
|
|
|
|
, PSTR(" H"), LINEAR_UNIT(delta_height)
|
|
|
|
, PSTR(" S"), delta_segments_per_second
|
|
|
|
, SP_X_STR, LINEAR_UNIT(delta_tower_angle_trim.a)
|
|
|
|
, SP_Y_STR, LINEAR_UNIT(delta_tower_angle_trim.b)
|
|
|
|
, SP_Z_STR, LINEAR_UNIT(delta_tower_angle_trim.c)
|
|
|
|
, PSTR(" A"), LINEAR_UNIT(delta_diagonal_rod_trim.a)
|
|
|
|
, PSTR(" B"), LINEAR_UNIT(delta_diagonal_rod_trim.b)
|
|
|
|
, PSTR(" C"), LINEAR_UNIT(delta_diagonal_rod_trim.c)
|
|
|
|
);
|
|
|
|
|
|
|
|
#elif HAS_EXTRA_ENDSTOPS
|
|
|
|
|
|
|
|
CONFIG_ECHO_HEADING("Endstop adjustment:");
|
|
|
|
CONFIG_ECHO_START();
|
|
|
|
SERIAL_ECHOPGM(" M666");
|
|
|
|
#if ENABLED(X_DUAL_ENDSTOPS)
|
|
|
|
SERIAL_ECHOLNPAIR_P(SP_X_STR, LINEAR_UNIT(endstops.x2_endstop_adj));
|
|
|
|
#endif
|
|
|
|
#if ENABLED(Y_DUAL_ENDSTOPS)
|
|
|
|
SERIAL_ECHOLNPAIR_P(SP_Y_STR, LINEAR_UNIT(endstops.y2_endstop_adj));
|
|
|
|
#endif
|
|
|
|
#if ENABLED(Z_MULTI_ENDSTOPS)
|
|
|
|
#if NUM_Z_STEPPER_DRIVERS >= 3
|
|
|
|
SERIAL_ECHOPAIR(" S2 Z", LINEAR_UNIT(endstops.z3_endstop_adj));
|
|
|
|
CONFIG_ECHO_START();
|
|
|
|
SERIAL_ECHOPAIR(" M666 S3 Z", LINEAR_UNIT(endstops.z3_endstop_adj));
|
|
|
|
#if NUM_Z_STEPPER_DRIVERS >= 4
|
|
|
|
CONFIG_ECHO_START();
|
|
|
|
SERIAL_ECHOPAIR(" M666 S4 Z", LINEAR_UNIT(endstops.z4_endstop_adj));
|
|
|
|
#endif
|
|
|
|
#else
|
|
|
|
SERIAL_ECHOLNPAIR_P(SP_Z_STR, LINEAR_UNIT(endstops.z2_endstop_adj));
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#endif // [XYZ]_DUAL_ENDSTOPS
|
|
|
|
|
|
|
|
#if PREHEAT_COUNT
|
|
|
|
|
|
|
|
CONFIG_ECHO_HEADING("Material heatup parameters:");
|
|
|
|
LOOP_L_N(i, PREHEAT_COUNT) {
|
|
|
|
CONFIG_ECHO_START();
|
|
|
|
SERIAL_ECHOLNPAIR_P(
|
|
|
|
PSTR(" M145 S"), (int)i
|
|
|
|
#if HAS_HOTEND
|
|
|
|
, PSTR(" H"), TEMP_UNIT(ui.material_preset[i].hotend_temp)
|
|
|
|
#endif
|
|
|
|
#if HAS_HEATED_BED
|
|
|
|
, SP_B_STR, TEMP_UNIT(ui.material_preset[i].bed_temp)
|
|
|
|
#endif
|
|
|
|
#if HAS_FAN
|
|
|
|
, PSTR(" F"), ui.material_preset[i].fan_speed
|
|
|
|
#endif
|
|
|
|
);
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if HAS_PID_HEATING
|
|
|
|
|
|
|
|
CONFIG_ECHO_HEADING("PID settings:");
|
|
|
|
|
|
|
|
#if ENABLED(PIDTEMP)
|
|
|
|
HOTEND_LOOP() {
|
|
|
|
CONFIG_ECHO_START();
|
|
|
|
SERIAL_ECHOPAIR_P(
|
|
|
|
#if ENABLED(PID_PARAMS_PER_HOTEND)
|
|
|
|
PSTR(" M301 E"), e,
|
|
|
|
SP_P_STR
|
|
|
|
#else
|
|
|
|
PSTR(" M301 P")
|
|
|
|
#endif
|
|
|
|
, PID_PARAM(Kp, e)
|
|
|
|
, PSTR(" I"), unscalePID_i(PID_PARAM(Ki, e))
|
|
|
|
, PSTR(" D"), unscalePID_d(PID_PARAM(Kd, e))
|
|
|
|
);
|
|
|
|
#if ENABLED(PID_EXTRUSION_SCALING)
|
|
|
|
SERIAL_ECHOPAIR_P(SP_C_STR, PID_PARAM(Kc, e));
|
|
|
|
if (e == 0) SERIAL_ECHOPAIR(" L", thermalManager.lpq_len);
|
|
|
|
#endif
|
|
|
|
#if ENABLED(PID_FAN_SCALING)
|
|
|
|
SERIAL_ECHOPAIR(" F", PID_PARAM(Kf, e));
|
|
|
|
#endif
|
|
|
|
SERIAL_EOL();
|
|
|
|
}
|
|
|
|
#endif // PIDTEMP
|
|
|
|
|
|
|
|
#if ENABLED(PIDTEMPBED)
|
|
|
|
CONFIG_ECHO_START();
|
|
|
|
SERIAL_ECHOLNPAIR(
|
|
|
|
" M304 P", thermalManager.temp_bed.pid.Kp
|
|
|
|
, " I", unscalePID_i(thermalManager.temp_bed.pid.Ki)
|
|
|
|
, " D", unscalePID_d(thermalManager.temp_bed.pid.Kd)
|
|
|
|
);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#endif // PIDTEMP || PIDTEMPBED
|
|
|
|
|
|
|
|
#if HAS_USER_THERMISTORS
|
|
|
|
CONFIG_ECHO_HEADING("User thermistors:");
|
|
|
|
LOOP_L_N(i, USER_THERMISTORS)
|
|
|
|
thermalManager.log_user_thermistor(i, true);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if HAS_LCD_CONTRAST
|
|
|
|
CONFIG_ECHO_HEADING("LCD Contrast:");
|
|
|
|
CONFIG_ECHO_START();
|
|
|
|
SERIAL_ECHOLNPAIR(" M250 C", ui.contrast);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
TERN_(CONTROLLER_FAN_EDITABLE, M710_report(forReplay));
|
|
|
|
|
|
|
|
#if ENABLED(POWER_LOSS_RECOVERY)
|
|
|
|
CONFIG_ECHO_HEADING("Power-Loss Recovery:");
|
|
|
|
CONFIG_ECHO_START();
|
|
|
|
SERIAL_ECHOLNPAIR(" M413 S", int(recovery.enabled));
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(FWRETRACT)
|
|
|
|
|
|
|
|
CONFIG_ECHO_HEADING("Retract: S<length> F<units/m> Z<lift>");
|
|
|
|
CONFIG_ECHO_START();
|
|
|
|
SERIAL_ECHOLNPAIR_P(
|
|
|
|
PSTR(" M207 S"), LINEAR_UNIT(fwretract.settings.retract_length)
|
|
|
|
, PSTR(" W"), LINEAR_UNIT(fwretract.settings.swap_retract_length)
|
|
|
|
, PSTR(" F"), LINEAR_UNIT(MMS_TO_MMM(fwretract.settings.retract_feedrate_mm_s))
|
|
|
|
, SP_Z_STR, LINEAR_UNIT(fwretract.settings.retract_zraise)
|
|
|
|
);
|
|
|
|
|
|
|
|
CONFIG_ECHO_HEADING("Recover: S<length> F<units/m>");
|
|
|
|
CONFIG_ECHO_START();
|
|
|
|
SERIAL_ECHOLNPAIR(
|
|
|
|
" M208 S", LINEAR_UNIT(fwretract.settings.retract_recover_extra)
|
|
|
|
, " W", LINEAR_UNIT(fwretract.settings.swap_retract_recover_extra)
|
|
|
|
, " F", LINEAR_UNIT(MMS_TO_MMM(fwretract.settings.retract_recover_feedrate_mm_s))
|
|
|
|
);
|
|
|
|
|
|
|
|
#if ENABLED(FWRETRACT_AUTORETRACT)
|
|
|
|
|
|
|
|
CONFIG_ECHO_HEADING("Auto-Retract: S=0 to disable, 1 to interpret E-only moves as retract/recover");
|
|
|
|
CONFIG_ECHO_START();
|
|
|
|
SERIAL_ECHOLNPAIR(" M209 S", fwretract.autoretract_enabled ? 1 : 0);
|
|
|
|
|
|
|
|
#endif // FWRETRACT_AUTORETRACT
|
|
|
|
|
|
|
|
#endif // FWRETRACT
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Probe Offset
|
|
|
|
*/
|
|
|
|
#if HAS_BED_PROBE
|
|
|
|
config_heading(forReplay, PSTR("Z-Probe Offset"), false);
|
|
|
|
if (!forReplay) say_units(true);
|
|
|
|
CONFIG_ECHO_START();
|
|
|
|
SERIAL_ECHOLNPAIR_P(
|
|
|
|
#if HAS_PROBE_XY_OFFSET
|
|
|
|
PSTR(" M851 X"), LINEAR_UNIT(probe.offset_xy.x),
|
|
|
|
SP_Y_STR, LINEAR_UNIT(probe.offset_xy.y),
|
|
|
|
SP_Z_STR
|
|
|
|
#else
|
|
|
|
PSTR(" M851 X0 Y0 Z")
|
|
|
|
#endif
|
|
|
|
, LINEAR_UNIT(probe.offset.z)
|
|
|
|
);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Bed Skew Correction
|
|
|
|
*/
|
|
|
|
#if ENABLED(SKEW_CORRECTION_GCODE)
|
|
|
|
CONFIG_ECHO_HEADING("Skew Factor: ");
|
|
|
|
CONFIG_ECHO_START();
|
|
|
|
#if ENABLED(SKEW_CORRECTION_FOR_Z)
|
|
|
|
SERIAL_ECHOPAIR_F(" M852 I", LINEAR_UNIT(planner.skew_factor.xy), 6);
|
|
|
|
SERIAL_ECHOPAIR_F(" J", LINEAR_UNIT(planner.skew_factor.xz), 6);
|
|
|
|
SERIAL_ECHOLNPAIR_F(" K", LINEAR_UNIT(planner.skew_factor.yz), 6);
|
|
|
|
#else
|
|
|
|
SERIAL_ECHOLNPAIR_F(" M852 S", LINEAR_UNIT(planner.skew_factor.xy), 6);
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if HAS_TRINAMIC_CONFIG
|
|
|
|
|
|
|
|
/**
|
|
|
|
* TMC stepper driver current
|
|
|
|
*/
|
|
|
|
CONFIG_ECHO_HEADING("Stepper driver current:");
|
|
|
|
|
|
|
|
#if AXIS_IS_TMC(X) || AXIS_IS_TMC(Y) || AXIS_IS_TMC(Z)
|
|
|
|
say_M906(forReplay);
|
|
|
|
#if AXIS_IS_TMC(X)
|
|
|
|
SERIAL_ECHOPAIR_P(SP_X_STR, stepperX.getMilliamps());
|
|
|
|
#endif
|
|
|
|
#if AXIS_IS_TMC(Y)
|
|
|
|
SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY.getMilliamps());
|
|
|
|
#endif
|
|
|
|
#if AXIS_IS_TMC(Z)
|
|
|
|
SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ.getMilliamps());
|
|
|
|
#endif
|
|
|
|
SERIAL_EOL();
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if AXIS_IS_TMC(X2) || AXIS_IS_TMC(Y2) || AXIS_IS_TMC(Z2)
|
|
|
|
say_M906(forReplay);
|
|
|
|
SERIAL_ECHOPGM(" I1");
|
|
|
|
#if AXIS_IS_TMC(X2)
|
|
|
|
SERIAL_ECHOPAIR_P(SP_X_STR, stepperX2.getMilliamps());
|
|
|
|
#endif
|
|
|
|
#if AXIS_IS_TMC(Y2)
|
|
|
|
SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY2.getMilliamps());
|
|
|
|
#endif
|
|
|
|
#if AXIS_IS_TMC(Z2)
|
|
|
|
SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ2.getMilliamps());
|
|
|
|
#endif
|
|
|
|
SERIAL_EOL();
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if AXIS_IS_TMC(Z3)
|
|
|
|
say_M906(forReplay);
|
|
|
|
SERIAL_ECHOLNPAIR(" I2 Z", stepperZ3.getMilliamps());
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if AXIS_IS_TMC(Z4)
|
|
|
|
say_M906(forReplay);
|
|
|
|
SERIAL_ECHOLNPAIR(" I3 Z", stepperZ4.getMilliamps());
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if AXIS_IS_TMC(E0)
|
|
|
|
say_M906(forReplay);
|
|
|
|
SERIAL_ECHOLNPAIR(" T0 E", stepperE0.getMilliamps());
|
|
|
|
#endif
|
|
|
|
#if AXIS_IS_TMC(E1)
|
|
|
|
say_M906(forReplay);
|
|
|
|
SERIAL_ECHOLNPAIR(" T1 E", stepperE1.getMilliamps());
|
|
|
|
#endif
|
|
|
|
#if AXIS_IS_TMC(E2)
|
|
|
|
say_M906(forReplay);
|
|
|
|
SERIAL_ECHOLNPAIR(" T2 E", stepperE2.getMilliamps());
|
|
|
|
#endif
|
|
|
|
#if AXIS_IS_TMC(E3)
|
|
|
|
say_M906(forReplay);
|
|
|
|
SERIAL_ECHOLNPAIR(" T3 E", stepperE3.getMilliamps());
|
|
|
|
#endif
|
|
|
|
#if AXIS_IS_TMC(E4)
|
|
|
|
say_M906(forReplay);
|
|
|
|
SERIAL_ECHOLNPAIR(" T4 E", stepperE4.getMilliamps());
|
|
|
|
#endif
|
|
|
|
#if AXIS_IS_TMC(E5)
|
|
|
|
say_M906(forReplay);
|
|
|
|
SERIAL_ECHOLNPAIR(" T5 E", stepperE5.getMilliamps());
|
|
|
|
#endif
|
|
|
|
#if AXIS_IS_TMC(E6)
|
|
|
|
say_M906(forReplay);
|
|
|
|
SERIAL_ECHOLNPAIR(" T6 E", stepperE6.getMilliamps());
|
|
|
|
#endif
|
|
|
|
#if AXIS_IS_TMC(E7)
|
|
|
|
say_M906(forReplay);
|
|
|
|
SERIAL_ECHOLNPAIR(" T7 E", stepperE7.getMilliamps());
|
|
|
|
#endif
|
|
|
|
SERIAL_EOL();
|
|
|
|
|
|
|
|
/**
|
|
|
|
* TMC Hybrid Threshold
|
|
|
|
*/
|
|
|
|
#if ENABLED(HYBRID_THRESHOLD)
|
|
|
|
CONFIG_ECHO_HEADING("Hybrid Threshold:");
|
|
|
|
#if AXIS_HAS_STEALTHCHOP(X) || AXIS_HAS_STEALTHCHOP(Y) || AXIS_HAS_STEALTHCHOP(Z)
|
|
|
|
say_M913(forReplay);
|
|
|
|
#if AXIS_HAS_STEALTHCHOP(X)
|
|
|
|
SERIAL_ECHOPAIR_P(SP_X_STR, stepperX.get_pwm_thrs());
|
|
|
|
#endif
|
|
|
|
#if AXIS_HAS_STEALTHCHOP(Y)
|
|
|
|
SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY.get_pwm_thrs());
|
|
|
|
#endif
|
|
|
|
#if AXIS_HAS_STEALTHCHOP(Z)
|
|
|
|
SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ.get_pwm_thrs());
|
|
|
|
#endif
|
|
|
|
SERIAL_EOL();
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if AXIS_HAS_STEALTHCHOP(X2) || AXIS_HAS_STEALTHCHOP(Y2) || AXIS_HAS_STEALTHCHOP(Z2)
|
|
|
|
say_M913(forReplay);
|
|
|
|
SERIAL_ECHOPGM(" I1");
|
|
|
|
#if AXIS_HAS_STEALTHCHOP(X2)
|
|
|
|
SERIAL_ECHOPAIR_P(SP_X_STR, stepperX2.get_pwm_thrs());
|
|
|
|
#endif
|
|
|
|
#if AXIS_HAS_STEALTHCHOP(Y2)
|
|
|
|
SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY2.get_pwm_thrs());
|
|
|
|
#endif
|
|
|
|
#if AXIS_HAS_STEALTHCHOP(Z2)
|
|
|
|
SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ2.get_pwm_thrs());
|
|
|
|
#endif
|
|
|
|
SERIAL_EOL();
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if AXIS_HAS_STEALTHCHOP(Z3)
|
|
|
|
say_M913(forReplay);
|
|
|
|
SERIAL_ECHOLNPAIR(" I2 Z", stepperZ3.get_pwm_thrs());
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if AXIS_HAS_STEALTHCHOP(Z4)
|
|
|
|
say_M913(forReplay);
|
|
|
|
SERIAL_ECHOLNPAIR(" I3 Z", stepperZ4.get_pwm_thrs());
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if AXIS_HAS_STEALTHCHOP(E0)
|
|
|
|
say_M913(forReplay);
|
|
|
|
SERIAL_ECHOLNPAIR(" T0 E", stepperE0.get_pwm_thrs());
|
|
|
|
#endif
|
|
|
|
#if AXIS_HAS_STEALTHCHOP(E1)
|
|
|
|
say_M913(forReplay);
|
|
|
|
SERIAL_ECHOLNPAIR(" T1 E", stepperE1.get_pwm_thrs());
|
|
|
|
#endif
|
|
|
|
#if AXIS_HAS_STEALTHCHOP(E2)
|
|
|
|
say_M913(forReplay);
|
|
|
|
SERIAL_ECHOLNPAIR(" T2 E", stepperE2.get_pwm_thrs());
|
|
|
|
#endif
|
|
|
|
#if AXIS_HAS_STEALTHCHOP(E3)
|
|
|
|
say_M913(forReplay);
|
|
|
|
SERIAL_ECHOLNPAIR(" T3 E", stepperE3.get_pwm_thrs());
|
|
|
|
#endif
|
|
|
|
#if AXIS_HAS_STEALTHCHOP(E4)
|
|
|
|
say_M913(forReplay);
|
|
|
|
SERIAL_ECHOLNPAIR(" T4 E", stepperE4.get_pwm_thrs());
|
|
|
|
#endif
|
|
|
|
#if AXIS_HAS_STEALTHCHOP(E5)
|
|
|
|
say_M913(forReplay);
|
|
|
|
SERIAL_ECHOLNPAIR(" T5 E", stepperE5.get_pwm_thrs());
|
|
|
|
#endif
|
|
|
|
#if AXIS_HAS_STEALTHCHOP(E6)
|
|
|
|
say_M913(forReplay);
|
|
|
|
SERIAL_ECHOLNPAIR(" T6 E", stepperE6.get_pwm_thrs());
|
|
|
|
#endif
|
|
|
|
#if AXIS_HAS_STEALTHCHOP(E7)
|
|
|
|
say_M913(forReplay);
|
|
|
|
SERIAL_ECHOLNPAIR(" T7 E", stepperE7.get_pwm_thrs());
|
|
|
|
#endif
|
|
|
|
SERIAL_EOL();
|
|
|
|
#endif // HYBRID_THRESHOLD
|
|
|
|
|
|
|
|
/**
|
|
|
|
* TMC Sensorless homing thresholds
|
|
|
|
*/
|
|
|
|
#if USE_SENSORLESS
|
|
|
|
CONFIG_ECHO_HEADING("StallGuard threshold:");
|
|
|
|
#if X_SENSORLESS || Y_SENSORLESS || Z_SENSORLESS
|
|
|
|
CONFIG_ECHO_START();
|
|
|
|
say_M914();
|
|
|
|
#if X_SENSORLESS
|
|
|
|
SERIAL_ECHOPAIR_P(SP_X_STR, stepperX.homing_threshold());
|
|
|
|
#endif
|
|
|
|
#if Y_SENSORLESS
|
|
|
|
SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY.homing_threshold());
|
|
|
|
#endif
|
|
|
|
#if Z_SENSORLESS
|
|
|
|
SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ.homing_threshold());
|
|
|
|
#endif
|
|
|
|
SERIAL_EOL();
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if X2_SENSORLESS || Y2_SENSORLESS || Z2_SENSORLESS
|
|
|
|
CONFIG_ECHO_START();
|
|
|
|
say_M914();
|
|
|
|
SERIAL_ECHOPGM(" I1");
|
|
|
|
#if X2_SENSORLESS
|
|
|
|
SERIAL_ECHOPAIR_P(SP_X_STR, stepperX2.homing_threshold());
|
|
|
|
#endif
|
|
|
|
#if Y2_SENSORLESS
|
|
|
|
SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY2.homing_threshold());
|
|
|
|
#endif
|
|
|
|
#if Z2_SENSORLESS
|
|
|
|
SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ2.homing_threshold());
|
|
|
|
#endif
|
|
|
|
SERIAL_EOL();
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if Z3_SENSORLESS
|
|
|
|
CONFIG_ECHO_START();
|
|
|
|
say_M914();
|
|
|
|
SERIAL_ECHOLNPAIR(" I2 Z", stepperZ3.homing_threshold());
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if Z4_SENSORLESS
|
|
|
|
CONFIG_ECHO_START();
|
|
|
|
say_M914();
|
|
|
|
SERIAL_ECHOLNPAIR(" I3 Z", stepperZ4.homing_threshold());
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#endif // USE_SENSORLESS
|
|
|
|
|
|
|
|
/**
|
|
|
|
* TMC stepping mode
|
|
|
|
*/
|
|
|
|
#if HAS_STEALTHCHOP
|
|
|
|
CONFIG_ECHO_HEADING("Driver stepping mode:");
|
|
|
|
#if AXIS_HAS_STEALTHCHOP(X)
|
|
|
|
const bool chop_x = stepperX.get_stored_stealthChop_status();
|
|
|
|
#else
|
|
|
|
constexpr bool chop_x = false;
|
|
|
|
#endif
|
|
|
|
#if AXIS_HAS_STEALTHCHOP(Y)
|
|
|
|
const bool chop_y = stepperY.get_stored_stealthChop_status();
|
|
|
|
#else
|
|
|
|
constexpr bool chop_y = false;
|
|
|
|
#endif
|
|
|
|
#if AXIS_HAS_STEALTHCHOP(Z)
|
|
|
|
const bool chop_z = stepperZ.get_stored_stealthChop_status();
|
|
|
|
#else
|
|
|
|
constexpr bool chop_z = false;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
if (chop_x || chop_y || chop_z) {
|
|
|
|
say_M569(forReplay);
|
|
|
|
if (chop_x) SERIAL_ECHOPGM_P(SP_X_STR);
|
|
|
|
if (chop_y) SERIAL_ECHOPGM_P(SP_Y_STR);
|
|
|
|
if (chop_z) SERIAL_ECHOPGM_P(SP_Z_STR);
|
|
|
|
SERIAL_EOL();
|
|
|
|
}
|
|
|
|
|
|
|
|
#if AXIS_HAS_STEALTHCHOP(X2)
|
|
|
|
const bool chop_x2 = stepperX2.get_stored_stealthChop_status();
|
|
|
|
#else
|
|
|
|
constexpr bool chop_x2 = false;
|
|
|
|
#endif
|
|
|
|
#if AXIS_HAS_STEALTHCHOP(Y2)
|
|
|
|
const bool chop_y2 = stepperY2.get_stored_stealthChop_status();
|
|
|
|
#else
|
|
|
|
constexpr bool chop_y2 = false;
|
|
|
|
#endif
|
|
|
|
#if AXIS_HAS_STEALTHCHOP(Z2)
|
|
|
|
const bool chop_z2 = stepperZ2.get_stored_stealthChop_status();
|
|
|
|
#else
|
|
|
|
constexpr bool chop_z2 = false;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
if (chop_x2 || chop_y2 || chop_z2) {
|
|
|
|
say_M569(forReplay, PSTR("I1"));
|
|
|
|
if (chop_x2) SERIAL_ECHOPGM_P(SP_X_STR);
|
|
|
|
if (chop_y2) SERIAL_ECHOPGM_P(SP_Y_STR);
|
|
|
|
if (chop_z2) SERIAL_ECHOPGM_P(SP_Z_STR);
|
|
|
|
SERIAL_EOL();
|
|
|
|
}
|
|
|
|
|
|
|
|
#if AXIS_HAS_STEALTHCHOP(Z3)
|
|
|
|
if (stepperZ3.get_stored_stealthChop_status()) { say_M569(forReplay, PSTR("I2 Z"), true); }
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if AXIS_HAS_STEALTHCHOP(Z4)
|
|
|
|
if (stepperZ4.get_stored_stealthChop_status()) { say_M569(forReplay, PSTR("I3 Z"), true); }
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if AXIS_HAS_STEALTHCHOP(E0)
|
|
|
|
if (stepperE0.get_stored_stealthChop_status()) { say_M569(forReplay, PSTR("T0 E"), true); }
|
|
|
|
#endif
|
|
|
|
#if AXIS_HAS_STEALTHCHOP(E1)
|
|
|
|
if (stepperE1.get_stored_stealthChop_status()) { say_M569(forReplay, PSTR("T1 E"), true); }
|
|
|
|
#endif
|
|
|
|
#if AXIS_HAS_STEALTHCHOP(E2)
|
|
|
|
if (stepperE2.get_stored_stealthChop_status()) { say_M569(forReplay, PSTR("T2 E"), true); }
|
|
|
|
#endif
|
|
|
|
#if AXIS_HAS_STEALTHCHOP(E3)
|
|
|
|
if (stepperE3.get_stored_stealthChop_status()) { say_M569(forReplay, PSTR("T3 E"), true); }
|
|
|
|
#endif
|
|
|
|
#if AXIS_HAS_STEALTHCHOP(E4)
|
|
|
|
if (stepperE4.get_stored_stealthChop_status()) { say_M569(forReplay, PSTR("T4 E"), true); }
|
|
|
|
#endif
|
|
|
|
#if AXIS_HAS_STEALTHCHOP(E5)
|
|
|
|
if (stepperE5.get_stored_stealthChop_status()) { say_M569(forReplay, PSTR("T5 E"), true); }
|
|
|
|
#endif
|
|
|
|
#if AXIS_HAS_STEALTHCHOP(E6)
|
|
|
|
if (stepperE6.get_stored_stealthChop_status()) { say_M569(forReplay, PSTR("T6 E"), true); }
|
|
|
|
#endif
|
|
|
|
#if AXIS_HAS_STEALTHCHOP(E7)
|
|
|
|
if (stepperE7.get_stored_stealthChop_status()) { say_M569(forReplay, PSTR("T7 E"), true); }
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#endif // HAS_STEALTHCHOP
|
|
|
|
|
|
|
|
#endif // HAS_TRINAMIC_CONFIG
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Linear Advance
|
|
|
|
*/
|
|
|
|
#if ENABLED(LIN_ADVANCE)
|
|
|
|
CONFIG_ECHO_HEADING("Linear Advance:");
|
|
|
|
#if EXTRUDERS < 2
|
|
|
|
CONFIG_ECHO_START();
|
|
|
|
SERIAL_ECHOLNPAIR(" M900 K", planner.extruder_advance_K[0]);
|
|
|
|
#else
|
|
|
|
LOOP_L_N(i, EXTRUDERS) {
|
|
|
|
CONFIG_ECHO_START();
|
|
|
|
SERIAL_ECHOLNPAIR(" M900 T", int(i), " K", planner.extruder_advance_K[i]);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if HAS_MOTOR_CURRENT_SPI || HAS_MOTOR_CURRENT_PWM
|
|
|
|
CONFIG_ECHO_HEADING("Stepper motor currents:");
|
|
|
|
CONFIG_ECHO_START();
|
|
|
|
#if HAS_MOTOR_CURRENT_PWM
|
|
|
|
SERIAL_ECHOLNPAIR_P( // PWM-based has 3 values:
|
|
|
|
PSTR(" M907 X"), stepper.motor_current_setting[0] // X and Y
|
|
|
|
, SP_Z_STR, stepper.motor_current_setting[1] // Z
|
|
|
|
, SP_E_STR, stepper.motor_current_setting[2] // E
|
|
|
|
);
|
|
|
|
#elif HAS_MOTOR_CURRENT_SPI
|
|
|
|
SERIAL_ECHOPGM(" M907"); // SPI-based has 5 values:
|
|
|
|
LOOP_XYZE(q) { // X Y Z E (map to X Y Z E0 by default)
|
|
|
|
SERIAL_CHAR(' ', axis_codes[q]);
|
|
|
|
SERIAL_ECHO(stepper.motor_current_setting[q]);
|
|
|
|
}
|
|
|
|
SERIAL_CHAR(' ', 'B'); // B (maps to E1 by default)
|
|
|
|
SERIAL_ECHOLN(stepper.motor_current_setting[4]);
|
|
|
|
#endif
|
|
|
|
#elif HAS_MOTOR_CURRENT_I2C // i2c-based has any number of values
|
|
|
|
// Values sent over i2c are not stored.
|
|
|
|
// Indexes map directly to drivers, not axes.
|
|
|
|
#elif HAS_MOTOR_CURRENT_DAC // DAC-based has 4 values, for X Y Z E
|
|
|
|
// Values sent over i2c are not stored. Uses indirect mapping.
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Advanced Pause filament load & unload lengths
|
|
|
|
*/
|
|
|
|
#if ENABLED(ADVANCED_PAUSE_FEATURE)
|
|
|
|
CONFIG_ECHO_HEADING("Filament load/unload lengths:");
|
|
|
|
#if EXTRUDERS == 1
|
|
|
|
say_M603(forReplay);
|
|
|
|
SERIAL_ECHOLNPAIR("L", LINEAR_UNIT(fc_settings[0].load_length), " U", LINEAR_UNIT(fc_settings[0].unload_length));
|
|
|
|
#else
|
|
|
|
#define _ECHO_603(N) do{ say_M603(forReplay); SERIAL_ECHOLNPAIR("T" STRINGIFY(N) " L", LINEAR_UNIT(fc_settings[N].load_length), " U", LINEAR_UNIT(fc_settings[N].unload_length)); }while(0);
|
|
|
|
REPEAT(EXTRUDERS, _ECHO_603)
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if HAS_MULTI_EXTRUDER
|
|
|
|
CONFIG_ECHO_HEADING("Tool-changing:");
|
|
|
|
CONFIG_ECHO_START();
|
|
|
|
M217_report(true);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(BACKLASH_GCODE)
|
|
|
|
CONFIG_ECHO_HEADING("Backlash compensation:");
|
|
|
|
CONFIG_ECHO_START();
|
|
|
|
SERIAL_ECHOLNPAIR_P(
|
|
|
|
PSTR(" M425 F"), backlash.get_correction()
|
|
|
|
, SP_X_STR, LINEAR_UNIT(backlash.distance_mm.x)
|
|
|
|
, SP_Y_STR, LINEAR_UNIT(backlash.distance_mm.y)
|
|
|
|
, SP_Z_STR, LINEAR_UNIT(backlash.distance_mm.z)
|
|
|
|
#ifdef BACKLASH_SMOOTHING_MM
|
|
|
|
, PSTR(" S"), LINEAR_UNIT(backlash.smoothing_mm)
|
|
|
|
#endif
|
|
|
|
);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if HAS_FILAMENT_SENSOR
|
|
|
|
CONFIG_ECHO_HEADING("Filament runout sensor:");
|
|
|
|
CONFIG_ECHO_START();
|
|
|
|
SERIAL_ECHOLNPAIR(
|
|
|
|
" M412 S", int(runout.enabled)
|
|
|
|
#if HAS_FILAMENT_RUNOUT_DISTANCE
|
|
|
|
, " D", LINEAR_UNIT(runout.runout_distance())
|
|
|
|
#endif
|
|
|
|
);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if HAS_ETHERNET
|
|
|
|
CONFIG_ECHO_HEADING("Ethernet:");
|
|
|
|
if (!forReplay) { CONFIG_ECHO_START(); ETH0_report(); }
|
|
|
|
CONFIG_ECHO_START(); SERIAL_ECHO_SP(2); MAC_report();
|
|
|
|
CONFIG_ECHO_START(); SERIAL_ECHO_SP(2); M552_report();
|
|
|
|
CONFIG_ECHO_START(); SERIAL_ECHO_SP(2); M553_report();
|
|
|
|
CONFIG_ECHO_START(); SERIAL_ECHO_SP(2); M554_report();
|
|
|
|
#endif
|
|
|
|
}
|
Allow Edit menu to call fn after edit; Fix PID Ki and Kd display in menus; Actually use changed PID and Max Accel values
Add new 'callback' edit-menu types that call a function after the edit is done. Use this to display and edit Ki and Kd correctly (removing the scaling first and reapplying it after). Also use it to reset maximum stepwise acceleration rates, after updating mm/s^2 rates via menus. (Previously, changes did nothing to affect planner unless saved back to EEPROM, and the machine reset).
Add calls to updatePID() so that PID loop uses updated values whether set by gcode (it already did this), or by restoring defaults, or loading from EEPROM (it didn't do those last two). Similarly, update the maximum step/s^2 accel rates when the mm/s^2 values are changed - whether by menu edits, restore defaults, or EEPROM read.
Refactor the acceleration rate update logic, and the PID scaling logic, into new functions that can be called from wherever, including the callbacks.
Add menu items to allow the z jerk and e jerk to be viewed/edited in the Control->Motion menu, as per xy jerk.
Conflicts:
Marlin/language.h
12 years ago
|
|
|
|
|
|
|
#endif // !DISABLE_M503
|
|
|
|
|
|
|
|
#pragma pack(pop)
|