Marlin 2.0 for Flying Bear 4S/5
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2477 lines
74 KiB

/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/**
* configuration_store.cpp
*
* Settings and EEPROM storage
*
* IMPORTANT: Whenever there are changes made to the variables stored in EEPROM
* in the functions below, also increment the version number. This makes sure that
* the default values are used whenever there is a change to the data, to prevent
* wrong data being written to the variables.
*
* ALSO: Variables in the Store and Retrieve sections must be in the same order.
* If a feature is disabled, some data must still be written that, when read,
* either sets a Sane Default, or results in No Change to the existing value.
*
*/
// Change EEPROM version if the structure changes
#define EEPROM_VERSION "V52"
#define EEPROM_OFFSET 100
// Check the integrity of data offsets.
// Can be disabled for production build.
//#define DEBUG_EEPROM_READWRITE
#include "configuration_store.h"
#include "endstops.h"
#include "planner.h"
#include "stepper.h"
7 years ago
#include "temperature.h"
#include "../lcd/ultralcd.h"
#include "../core/language.h"
#include "../libs/vector_3.h"
#include "../gcode/gcode.h"
7 years ago
#include "../Marlin.h"
#if HAS_LEVELING
#include "../feature/bedlevel/bedlevel.h"
#endif
7 years ago
#if HAS_BED_PROBE
#include "../module/probe.h"
#endif
#if ENABLED(HAVE_TMC2130)
#include "stepper_indirection.h"
#endif
7 years ago
#if ENABLED(FWRETRACT)
#include "../feature/fwretract.h"
#endif
#if ENABLED(ADVANCED_PAUSE_FEATURE)
#include "../feature/pause.h"
#endif
#pragma pack(push, 1) // No padding between variables
typedef struct PID { float Kp, Ki, Kd; } PID;
typedef struct PIDC { float Kp, Ki, Kd, Kc; } PIDC;
/**
* Current EEPROM Layout
*
* Keep this data structure up to date so
* EEPROM size is known at compile time!
*/
typedef struct SettingsDataStruct {
char version[4]; // Vnn\0
uint16_t crc; // Data Checksum
//
// DISTINCT_E_FACTORS
//
uint8_t esteppers; // XYZE_N - XYZ
float planner_axis_steps_per_mm[XYZE_N], // M92 XYZE planner.axis_steps_per_mm[XYZE_N]
planner_max_feedrate_mm_s[XYZE_N]; // M203 XYZE planner.max_feedrate_mm_s[XYZE_N]
uint32_t planner_max_acceleration_mm_per_s2[XYZE_N]; // M201 XYZE planner.max_acceleration_mm_per_s2[XYZE_N]
float planner_acceleration, // M204 P planner.acceleration
planner_retract_acceleration, // M204 R planner.retract_acceleration
planner_travel_acceleration, // M204 T planner.travel_acceleration
planner_min_feedrate_mm_s, // M205 S planner.min_feedrate_mm_s
planner_min_travel_feedrate_mm_s; // M205 T planner.min_travel_feedrate_mm_s
uint32_t planner_min_segment_time_us; // M205 B planner.min_segment_time_us
float planner_max_jerk[XYZE]; // M205 XYZE planner.max_jerk[XYZE]
float home_offset[XYZ]; // M206 XYZ
#if HOTENDS > 1
float hotend_offset[XYZ][HOTENDS - 1]; // M218 XYZ
#endif
//
// ENABLE_LEVELING_FADE_HEIGHT
//
float planner_z_fade_height; // M420 Zn planner.z_fade_height
//
// MESH_BED_LEVELING
//
float mbl_z_offset; // mbl.z_offset
uint8_t mesh_num_x, mesh_num_y; // GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y
#if ENABLED(MESH_BED_LEVELING)
float mbl_z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y]; // mbl.z_values
#else
float mbl_z_values[3][3];
#endif
//
// HAS_BED_PROBE
//
float zprobe_zoffset; // M851 Z
//
// ABL_PLANAR
//
matrix_3x3 planner_bed_level_matrix; // planner.bed_level_matrix
//
// AUTO_BED_LEVELING_BILINEAR
//
uint8_t grid_max_x, grid_max_y; // GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y
int bilinear_grid_spacing[2],
bilinear_start[2]; // G29 L F
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
float z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y]; // G29
#else
float z_values[3][3];
#endif
//
// AUTO_BED_LEVELING_UBL
//
bool planner_leveling_active; // M420 S planner.leveling_active
int8_t ubl_storage_slot; // ubl.storage_slot
//
// DELTA / [XYZ]_DUAL_ENDSTOPS
//
#if ENABLED(DELTA)
float delta_height, // M666 H
delta_endstop_adj[ABC], // M666 XYZ
delta_radius, // M665 R
delta_diagonal_rod, // M665 L
delta_segments_per_second, // M665 S
delta_calibration_radius, // M665 B
delta_tower_angle_trim[ABC]; // M665 XYZ
#elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
float x_endstop_adj, // M666 X
y_endstop_adj, // M666 Y
z_endstop_adj; // M666 Z
#endif
//
// ULTIPANEL
//
int16_t lcd_preheat_hotend_temp[2], // M145 S0 H
lcd_preheat_bed_temp[2], // M145 S0 B
lcd_preheat_fan_speed[2]; // M145 S0 F
//
// PIDTEMP
//
PIDC hotendPID[MAX_EXTRUDERS]; // M301 En PIDC / M303 En U
int lpq_len; // M301 L
//
// PIDTEMPBED
//
PID bedPID; // M304 PID / M303 E-1 U
//
// HAS_LCD_CONTRAST
//
int16_t lcd_contrast; // M250 C
//
// FWRETRACT
//
bool autoretract_enabled; // M209 S
float retract_length, // M207 S
retract_feedrate_mm_s, // M207 F
retract_zlift, // M207 Z
retract_recover_length, // M208 S
retract_recover_feedrate_mm_s, // M208 F
swap_retract_length, // M207 W
swap_retract_recover_length, // M208 W
swap_retract_recover_feedrate_mm_s; // M208 R
//
// !NO_VOLUMETRIC
//
bool parser_volumetric_enabled; // M200 D parser.volumetric_enabled
float planner_filament_size[MAX_EXTRUDERS]; // M200 T D planner.filament_size[]
//
// HAS_TRINAMIC
//
uint16_t tmc_stepper_current[11]; // M906 X Y Z X2 Y2 Z2 E0 E1 E2 E3 E4
int16_t tmc_sgt[XYZ]; // M914 X Y Z
//
// LIN_ADVANCE
//
float planner_extruder_advance_K; // M900 K planner.extruder_advance_K
//
// HAS_MOTOR_CURRENT_PWM
//
uint32_t motor_current_setting[XYZ]; // M907 X Z E
//
// CNC_COORDINATE_SYSTEMS
//
float coordinate_system[MAX_COORDINATE_SYSTEMS][XYZ]; // G54-G59.3
//
// SKEW_CORRECTION
//
float planner_xy_skew_factor, // M852 I planner.xy_skew_factor
planner_xz_skew_factor, // M852 J planner.xz_skew_factor
planner_yz_skew_factor; // M852 K planner.yz_skew_factor
//
// ADVANCED_PAUSE_FEATURE
//
float filament_change_unload_length[MAX_EXTRUDERS], // M603 T U
filament_change_load_length[MAX_EXTRUDERS]; // M603 T L
} SettingsData;
#pragma pack(pop)
MarlinSettings settings;
uint16_t MarlinSettings::datasize() { return sizeof(SettingsData); }
/**
* Post-process after Retrieve or Reset
*/
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
float new_z_fade_height;
#endif
void MarlinSettings::postprocess() {
const float oldpos[] = { current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] };
// steps per s2 needs to be updated to agree with units per s2
planner.reset_acceleration_rates();
// Make sure delta kinematics are updated before refreshing the
// planner position so the stepper counts will be set correctly.
#if ENABLED(DELTA)
recalc_delta_settings();
#endif
#if ENABLED(PIDTEMP)
thermalManager.updatePID();
#endif
#if DISABLED(NO_VOLUMETRICS)
planner.calculate_volumetric_multipliers();
#else
for (uint8_t i = COUNT(planner.e_factor); i--;)
planner.refresh_e_factor(i);
#endif
#if HAS_HOME_OFFSET || ENABLED(DUAL_X_CARRIAGE)
// Software endstops depend on home_offset
LOOP_XYZ(i) update_software_endstops((AxisEnum)i);
#endif
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
set_z_fade_height(new_z_fade_height, false); // false = no report
#endif
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
refresh_bed_level();
#endif
#if HAS_MOTOR_CURRENT_PWM
stepper.refresh_motor_power();
#endif
#if ENABLED(FWRETRACT)
fwretract.refresh_autoretract();
#endif
// Refresh steps_to_mm with the reciprocal of axis_steps_per_mm
// and init stepper.count[], planner.position[] with current_position
planner.refresh_positioning();
// Various factors can change the current position
if (memcmp(oldpos, current_position, sizeof(oldpos)))
report_current_position();
}
#if ENABLED(EEPROM_SETTINGS)
7 years ago
#include "../HAL/persistent_store_api.h"
#define DUMMY_PID_VALUE 3000.0f
#define EEPROM_START() int eeprom_index = EEPROM_OFFSET; HAL::PersistentStore::access_start()
#define EEPROM_FINISH() HAL::PersistentStore::access_finish()
#define EEPROM_SKIP(VAR) eeprom_index += sizeof(VAR)
#define EEPROM_WRITE(VAR) HAL::PersistentStore::write_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc)
#define EEPROM_READ(VAR) HAL::PersistentStore::read_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc, !validating)
#define EEPROM_READ_ALWAYS(VAR) HAL::PersistentStore::read_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc)
#define EEPROM_ASSERT(TST,ERR) if (!(TST)) do{ SERIAL_ERROR_START_P(port); SERIAL_ERRORLNPGM_P(port, ERR); eeprom_error = true; }while(0)
#if ENABLED(DEBUG_EEPROM_READWRITE)
#define _FIELD_TEST(FIELD) \
EEPROM_ASSERT( \
eeprom_error || eeprom_index == offsetof(SettingsData, FIELD) + EEPROM_OFFSET, \
"Field " STRINGIFY(FIELD) " mismatch." \
)
#else
#define _FIELD_TEST(FIELD) NOOP
#endif
const char version[4] = EEPROM_VERSION;
bool MarlinSettings::eeprom_error, MarlinSettings::validating;
bool MarlinSettings::size_error(const uint16_t size
#if ADD_PORT_ARG
, const int8_t port/*=-1*/
#endif
) {
if (size != datasize()) {
#if ENABLED(EEPROM_CHITCHAT)
SERIAL_ERROR_START_P(port);
SERIAL_ERRORLNPGM_P(port, "EEPROM datasize error.");
#endif
return true;
}
return false;
}
/**
* M500 - Store Configuration
*/
bool MarlinSettings::save(
#if ADD_PORT_ARG
const int8_t port/*=-1*/
#endif
) {
float dummy = 0.0f;
char ver[4] = "ERR";
uint16_t working_crc = 0;
EEPROM_START();
eeprom_error = false;
[2.0.x] Multiple updates to STM32F1 HAL (#8733) * STM32F1 HAL Adding files for STM32F1 HAL based on libmaple/stm32duino core. Current persistent_store uses cardreader changes to be sent in separate commit, but could be changed to use i2c eeprom. There is another persistent_store implementation that uses the MCU flash memory to emulate eeprom Adding readme with some information about the stm32 HAL. * Switch to Timer4 to avoid a hard reset on STM32F103C6 boards On bluepill STM32F103C6 boards, using Timer5 results in a error() vector call. Switch to 4 since these are both general purpose, 16 bit timers. * Add support for EEPROM emulation using Flash Some low end machines doe not have EEPROM support. Simulate it using the last two pages of flash. Flash does not allow rewrite between erases, so skip writing the working version if that's enabled. * Basic Pins for a malyan M200 This is a work in progress to go hand in hand with the STM32 work. * Add support for ADC with DMA. This work has exposed a problem with the pin enumerations in STM boards vs what marlin expects (i.e, try defining PA0 as a temp pin). The hack can be removed with we go to fastio completely. To see this work, set something in adc_pins to a value like PA0 and connect your pullup resistor'd thermistor. * Missing file - change HAL_adc_init to actually do something We have an actual ADC init function now. * Remove pinmode hack Remove the pin mode hack that I was using to init PA0. Updated Readme.md * Several changes to timers and GPIO Faster GPIO, and faster timer functions by accesing registers and libmaple. Still more changes pending for the Timer's code to skip using the HardwareTimer class altogether. Switch all enums to be within #defines This change allows a user to have, for instance, TEMP_4 and TEMP_BED definied but nothing else. The enums which are not defined move "out", allowing the first ones to take the slots in the enum, and since the array is sized on ADC_PIN_COUNT, we always have the right size data and in order. * Update Malyan M200 pins Update Malyan M200 pins with correct fan values. * Test all pins on actual hardware, update definitions Some of the pin definitions were from knowlege base/pdfs. Now they've been tested against actual hardware. This should be very close to final. * Update HAL_timers_Stm32f1.cpp * Add sample configurations for Malyan M200 Add sample configuration for Malyan M200 without bed leveling, and move fan to auto cool E0 since this printer by default has only one fan. Choose the timer based on MCU defintion. Timer5 is not valid on C8/CB class boards, so use Timer4 for the step timer. readme.md update * Updates to timers, and some stm32 boards definitiions * Correct pin toggle macro. * Remove duplicated Malyan M200 entry from pins.h * Update configuration_store.cpp * Formatting, indentation * Formatting in HAL_Stm32f1.cpp
7 years ago
#if ENABLED(FLASH_EEPROM_EMULATION)
EEPROM_SKIP(ver); // Flash doesn't allow rewriting without erase
#else
EEPROM_WRITE(ver); // invalidate data first
#endif
EEPROM_SKIP(working_crc); // Skip the checksum slot
8 years ago
working_crc = 0; // clear before first "real data"
_FIELD_TEST(esteppers);
const uint8_t esteppers = COUNT(planner.axis_steps_per_mm) - XYZ;
EEPROM_WRITE(esteppers);
EEPROM_WRITE(planner.axis_steps_per_mm);
EEPROM_WRITE(planner.max_feedrate_mm_s);
EEPROM_WRITE(planner.max_acceleration_mm_per_s2);
EEPROM_WRITE(planner.acceleration);
EEPROM_WRITE(planner.retract_acceleration);
EEPROM_WRITE(planner.travel_acceleration);
EEPROM_WRITE(planner.min_feedrate_mm_s);
EEPROM_WRITE(planner.min_travel_feedrate_mm_s);
EEPROM_WRITE(planner.min_segment_time_us);
EEPROM_WRITE(planner.max_jerk);
_FIELD_TEST(home_offset);
#if !HAS_HOME_OFFSET
const float home_offset[XYZ] = { 0 };
#endif
EEPROM_WRITE(home_offset);
#if HOTENDS > 1
// Skip hotend 0 which must be 0
for (uint8_t e = 1; e < HOTENDS; e++)
LOOP_XYZ(i) EEPROM_WRITE(hotend_offset[i][e]);
#endif
//
// Global Leveling
//
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
const float zfh = planner.z_fade_height;
#else
const float zfh = 10.0;
#endif
EEPROM_WRITE(zfh);
//
// Mesh Bed Leveling
//
#if ENABLED(MESH_BED_LEVELING)
// Compile time test that sizeof(mbl.z_values) is as expected
static_assert(
sizeof(mbl.z_values) == GRID_MAX_POINTS * sizeof(mbl.z_values[0][0]),
"MBL Z array is the wrong size."
);
const uint8_t mesh_num_x = GRID_MAX_POINTS_X, mesh_num_y = GRID_MAX_POINTS_Y;
EEPROM_WRITE(mbl.z_offset);
EEPROM_WRITE(mesh_num_x);
EEPROM_WRITE(mesh_num_y);
EEPROM_WRITE(mbl.z_values);
#else // For disabled MBL write a default mesh
dummy = 0.0f;
const uint8_t mesh_num_x = 3, mesh_num_y = 3;
EEPROM_WRITE(dummy); // z_offset
EEPROM_WRITE(mesh_num_x);
EEPROM_WRITE(mesh_num_y);
for (uint8_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_WRITE(dummy);
#endif // MESH_BED_LEVELING
_FIELD_TEST(zprobe_zoffset);
#if !HAS_BED_PROBE
const float zprobe_zoffset = 0;
#endif
EEPROM_WRITE(zprobe_zoffset);
//
// Planar Bed Leveling matrix
//
#if ABL_PLANAR
EEPROM_WRITE(planner.bed_level_matrix);
#else
dummy = 0.0;
for (uint8_t q = 9; q--;) EEPROM_WRITE(dummy);
#endif
//
// Bilinear Auto Bed Leveling
//
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
// Compile time test that sizeof(z_values) is as expected
static_assert(
sizeof(z_values) == GRID_MAX_POINTS * sizeof(z_values[0][0]),
"Bilinear Z array is the wrong size."
);
const uint8_t grid_max_x = GRID_MAX_POINTS_X, grid_max_y = GRID_MAX_POINTS_Y;
EEPROM_WRITE(grid_max_x); // 1 byte
EEPROM_WRITE(grid_max_y); // 1 byte
EEPROM_WRITE(bilinear_grid_spacing); // 2 ints
EEPROM_WRITE(bilinear_start); // 2 ints
EEPROM_WRITE(z_values); // 9-256 floats
#else
// For disabled Bilinear Grid write an empty 3x3 grid
const uint8_t grid_max_x = 3, grid_max_y = 3;
const int bilinear_start[2] = { 0 }, bilinear_grid_spacing[2] = { 0 };
dummy = 0.0f;
EEPROM_WRITE(grid_max_x);
EEPROM_WRITE(grid_max_y);
EEPROM_WRITE(bilinear_grid_spacing);
EEPROM_WRITE(bilinear_start);
for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_WRITE(dummy);
#endif // AUTO_BED_LEVELING_BILINEAR
_FIELD_TEST(planner_leveling_active);
#if ENABLED(AUTO_BED_LEVELING_UBL)
EEPROM_WRITE(planner.leveling_active);
EEPROM_WRITE(ubl.storage_slot);
#else
const bool ubl_active = false;
const int8_t storage_slot = -1;
EEPROM_WRITE(ubl_active);
EEPROM_WRITE(storage_slot);
#endif // AUTO_BED_LEVELING_UBL
// 11 floats for DELTA / [XYZ]_DUAL_ENDSTOPS
#if ENABLED(DELTA)
_FIELD_TEST(delta_height);
EEPROM_WRITE(delta_height); // 1 float
EEPROM_WRITE(delta_endstop_adj); // 3 floats
EEPROM_WRITE(delta_radius); // 1 float
EEPROM_WRITE(delta_diagonal_rod); // 1 float
EEPROM_WRITE(delta_segments_per_second); // 1 float
EEPROM_WRITE(delta_calibration_radius); // 1 float
EEPROM_WRITE(delta_tower_angle_trim); // 3 floats
#elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
_FIELD_TEST(x_endstop_adj);
// Write dual endstops in X, Y, Z order. Unused = 0.0
dummy = 0.0f;
#if ENABLED(X_DUAL_ENDSTOPS)
EEPROM_WRITE(endstops.x_endstop_adj); // 1 float
#else
EEPROM_WRITE(dummy);
#endif
#if ENABLED(Y_DUAL_ENDSTOPS)
EEPROM_WRITE(endstops.y_endstop_adj); // 1 float
#else
EEPROM_WRITE(dummy);
#endif
#if ENABLED(Z_DUAL_ENDSTOPS)
EEPROM_WRITE(endstops.z_endstop_adj); // 1 float
#else
EEPROM_WRITE(dummy);
#endif
#endif
_FIELD_TEST(lcd_preheat_hotend_temp);
#if DISABLED(ULTIPANEL)
constexpr int16_t lcd_preheat_hotend_temp[2] = { PREHEAT_1_TEMP_HOTEND, PREHEAT_2_TEMP_HOTEND },
lcd_preheat_bed_temp[2] = { PREHEAT_1_TEMP_BED, PREHEAT_2_TEMP_BED },
lcd_preheat_fan_speed[2] = { PREHEAT_1_FAN_SPEED, PREHEAT_2_FAN_SPEED };
#endif
EEPROM_WRITE(lcd_preheat_hotend_temp);
EEPROM_WRITE(lcd_preheat_bed_temp);
EEPROM_WRITE(lcd_preheat_fan_speed);
for (uint8_t e = 0; e < MAX_EXTRUDERS; e++) {
#if ENABLED(PIDTEMP)
if (e < HOTENDS) {
EEPROM_WRITE(PID_PARAM(Kp, e));
EEPROM_WRITE(PID_PARAM(Ki, e));
EEPROM_WRITE(PID_PARAM(Kd, e));
#if ENABLED(PID_EXTRUSION_SCALING)
EEPROM_WRITE(PID_PARAM(Kc, e));
#else
dummy = 1.0f; // 1.0 = default kc
EEPROM_WRITE(dummy);
#endif
}
else
#endif // !PIDTEMP
{
dummy = DUMMY_PID_VALUE; // When read, will not change the existing value
EEPROM_WRITE(dummy); // Kp
dummy = 0.0f;
for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy); // Ki, Kd, Kc
}
} // Hotends Loop
_FIELD_TEST(lpq_len);
#if DISABLED(PID_EXTRUSION_SCALING)
int lpq_len = 20;
#endif
EEPROM_WRITE(lpq_len);
#if DISABLED(PIDTEMPBED)
dummy = DUMMY_PID_VALUE;
for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy);
#else
EEPROM_WRITE(thermalManager.bedKp);
EEPROM_WRITE(thermalManager.bedKi);
EEPROM_WRITE(thermalManager.bedKd);
#endif
_FIELD_TEST(lcd_contrast);
#if !HAS_LCD_CONTRAST
const int16_t lcd_contrast = 32;
#endif
EEPROM_WRITE(lcd_contrast);
#if DISABLED(FWRETRACT)
const bool autoretract_enabled = false;
const float autoretract_defaults[] = { 3, 45, 0, 0, 0, 13, 0, 8 };
EEPROM_WRITE(autoretract_enabled);
EEPROM_WRITE(autoretract_defaults);
#else
EEPROM_WRITE(fwretract.autoretract_enabled);
EEPROM_WRITE(fwretract.retract_length);
EEPROM_WRITE(fwretract.retract_feedrate_mm_s);
EEPROM_WRITE(fwretract.retract_zlift);
EEPROM_WRITE(fwretract.retract_recover_length);
EEPROM_WRITE(fwretract.retract_recover_feedrate_mm_s);
EEPROM_WRITE(fwretract.swap_retract_length);
EEPROM_WRITE(fwretract.swap_retract_recover_length);
EEPROM_WRITE(fwretract.swap_retract_recover_feedrate_mm_s);
#endif
//
// Volumetric & Filament Size
//
_FIELD_TEST(parser_volumetric_enabled);
#if DISABLED(NO_VOLUMETRICS)
EEPROM_WRITE(parser.volumetric_enabled);
// Save filament sizes
for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
if (q < COUNT(planner.filament_size)) dummy = planner.filament_size[q];
EEPROM_WRITE(dummy);
}
#else
const bool volumetric_enabled = false;
dummy = DEFAULT_NOMINAL_FILAMENT_DIA;
EEPROM_WRITE(volumetric_enabled);
for (uint8_t q = MAX_EXTRUDERS; q--;) EEPROM_WRITE(dummy);
#endif
//
// Save TMC2130 or TMC2208 Configuration, and placeholder values
//
_FIELD_TEST(tmc_stepper_current);
uint16_t currents[11] = {
#if HAS_TRINAMIC
#if X_IS_TRINAMIC
stepperX.getCurrent(),
#else
0,
#endif
#if Y_IS_TRINAMIC
stepperY.getCurrent(),
#else
0,
#endif
#if Z_IS_TRINAMIC
stepperZ.getCurrent(),
#else
0,
#endif
#if X2_IS_TRINAMIC
stepperX2.getCurrent(),
#else
0,
#endif
#if Y2_IS_TRINAMIC
stepperY2.getCurrent(),
#else
0,
#endif
#if Z2_IS_TRINAMIC
stepperZ2.getCurrent(),
#else
0,
#endif
#if E0_IS_TRINAMIC
stepperE0.getCurrent(),
#else
0,
#endif
#if E1_IS_TRINAMIC
stepperE1.getCurrent(),
#else
0,
#endif
#if E2_IS_TRINAMIC
stepperE2.getCurrent(),
#else
0,
#endif
#if E3_IS_TRINAMIC
stepperE3.getCurrent(),
#else
0,
#endif
#if E4_IS_TRINAMIC
stepperE4.getCurrent()
#else
0
#endif
#else
0
#endif
};
EEPROM_WRITE(currents);
//
// TMC2130 Sensorless homing threshold
//
int16_t thrs[XYZ] = {
#if ENABLED(SENSORLESS_HOMING)
#if ENABLED(X_IS_TMC2130) && defined(X_HOMING_SENSITIVITY)
stepperX.sgt(),
#else
0,
#endif
#if ENABLED(Y_IS_TMC2130) && defined(Y_HOMING_SENSITIVITY)
stepperY.sgt(),
#else
0
#endif
#if ENABLED(Z_IS_TMC2130) && defined(Z_HOMING_SENSITIVITY)
stepperZ.sgt()
#else
0
#endif
#else
0
#endif
};
EEPROM_WRITE(thrs);
//
// Linear Advance
//
_FIELD_TEST(planner_extruder_advance_K);
#if ENABLED(LIN_ADVANCE)
EEPROM_WRITE(planner.extruder_advance_K);
#else
dummy = 0.0f;
EEPROM_WRITE(dummy);
#endif
_FIELD_TEST(motor_current_setting);
#if HAS_MOTOR_CURRENT_PWM
for (uint8_t q = XYZ; q--;) EEPROM_WRITE(stepper.motor_current_setting[q]);
#else
const uint32_t dummyui32[XYZ] = { 0 };
EEPROM_WRITE(dummyui32);
#endif
//
// CNC Coordinate Systems
//
_FIELD_TEST(coordinate_system);
#if ENABLED(CNC_COORDINATE_SYSTEMS)
EEPROM_WRITE(coordinate_system); // 27 floats
#else
dummy = 0.0f;
for (uint8_t q = MAX_COORDINATE_SYSTEMS * XYZ; q--;) EEPROM_WRITE(dummy);
#endif
//
// Skew correction factors
//
_FIELD_TEST(planner_xy_skew_factor);
#if ENABLED(SKEW_CORRECTION)
EEPROM_WRITE(planner.xy_skew_factor);
EEPROM_WRITE(planner.xz_skew_factor);
EEPROM_WRITE(planner.yz_skew_factor);
#else
dummy = 0.0f;
for (uint8_t q = XYZ; q--;) EEPROM_WRITE(dummy);
#endif
//
// Advanced Pause filament load & unload lengths
//
_FIELD_TEST(filament_change_unload_length);
#if ENABLED(ADVANCED_PAUSE_FEATURE)
for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
if (q < COUNT(filament_change_unload_length)) dummy = filament_change_unload_length[q];
EEPROM_WRITE(dummy);
}
for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
if (q < COUNT(filament_change_load_length)) dummy = filament_change_load_length[q];
EEPROM_WRITE(dummy);
}
#else
dummy = 0.0f;
for (uint8_t q = MAX_EXTRUDERS * 2; q--;) EEPROM_WRITE(dummy);
#endif
//
// Validate CRC and Data Size
//
if (!eeprom_error) {
const uint16_t eeprom_size = eeprom_index - (EEPROM_OFFSET),
final_crc = working_crc;
// Write the EEPROM header
eeprom_index = EEPROM_OFFSET;
EEPROM_WRITE(version);
EEPROM_WRITE(final_crc);
// Report storage size
#if ENABLED(EEPROM_CHITCHAT)
SERIAL_ECHO_START_P(port);
SERIAL_ECHOPAIR_P(port, "Settings Stored (", eeprom_size);
SERIAL_ECHOPAIR_P(port, " bytes; crc ", (uint32_t)final_crc);
SERIAL_ECHOLNPGM_P(port, ")");
#endif
eeprom_error |= size_error(eeprom_size);
}
EEPROM_FINISH();
//
// UBL Mesh
//
#if ENABLED(UBL_SAVE_ACTIVE_ON_M500)
if (ubl.storage_slot >= 0)
store_mesh(ubl.storage_slot);
#endif
return !eeprom_error;
}
/**
* M501 - Retrieve Configuration
*/
bool MarlinSettings::_load(
#if ADD_PORT_ARG
const int8_t port/*=-1*/
#endif
) {
uint16_t working_crc = 0;
EEPROM_START();
char stored_ver[4];
EEPROM_READ_ALWAYS(stored_ver);
uint16_t stored_crc;
EEPROM_READ_ALWAYS(stored_crc);
// Version has to match or defaults are used
if (strncmp(version, stored_ver, 3) != 0) {
if (stored_ver[3] != '\0') {
stored_ver[0] = '?';
stored_ver[1] = '\0';
}
#if ENABLED(EEPROM_CHITCHAT)
SERIAL_ECHO_START_P(port);
SERIAL_ECHOPGM_P(port, "EEPROM version mismatch ");
SERIAL_ECHOPAIR_P(port, "(EEPROM=", stored_ver);
SERIAL_ECHOLNPGM_P(port, " Marlin=" EEPROM_VERSION ")");
#endif
if (!validating) reset();
eeprom_error = true;
8 years ago
}
else {
float dummy = 0;
6 years ago
#if DISABLED(AUTO_BED_LEVELING_UBL) || DISABLED(FWRETRACT) || ENABLED(NO_VOLUMETRICS)
bool dummyb;
#endif
working_crc = 0; // Init to 0. Accumulated by EEPROM_READ
_FIELD_TEST(esteppers);
// Number of esteppers may change
uint8_t esteppers;
EEPROM_READ_ALWAYS(esteppers);
//
// Planner Motion
//
// Get only the number of E stepper parameters previously stored
// Any steppers added later are set to their defaults
const float def1[] = DEFAULT_AXIS_STEPS_PER_UNIT, def2[] = DEFAULT_MAX_FEEDRATE;
const uint32_t def3[] = DEFAULT_MAX_ACCELERATION;
float tmp1[XYZ + esteppers], tmp2[XYZ + esteppers];
uint32_t tmp3[XYZ + esteppers];
EEPROM_READ(tmp1);
EEPROM_READ(tmp2);
EEPROM_READ(tmp3);
if (!validating) LOOP_XYZE_N(i) {
planner.axis_steps_per_mm[i] = i < XYZ + esteppers ? tmp1[i] : def1[i < COUNT(def1) ? i : COUNT(def1) - 1];
planner.max_feedrate_mm_s[i] = i < XYZ + esteppers ? tmp2[i] : def2[i < COUNT(def2) ? i : COUNT(def2) - 1];
planner.max_acceleration_mm_per_s2[i] = i < XYZ + esteppers ? tmp3[i] : def3[i < COUNT(def3) ? i : COUNT(def3) - 1];
}
EEPROM_READ(planner.acceleration);
EEPROM_READ(planner.retract_acceleration);
EEPROM_READ(planner.travel_acceleration);
EEPROM_READ(planner.min_feedrate_mm_s);
EEPROM_READ(planner.min_travel_feedrate_mm_s);
EEPROM_READ(planner.min_segment_time_us);
EEPROM_READ(planner.max_jerk);
//
// Home Offset (M206)
//
_FIELD_TEST(home_offset);
#if !HAS_HOME_OFFSET
float home_offset[XYZ];
#endif
EEPROM_READ(home_offset);
//
// Hotend Offsets, if any
//
#if HOTENDS > 1
// Skip hotend 0 which must be 0
for (uint8_t e = 1; e < HOTENDS; e++)
LOOP_XYZ(i) EEPROM_READ(hotend_offset[i][e]);
#endif
//
// Global Leveling
//
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
EEPROM_READ(new_z_fade_height);
#else
EEPROM_READ(dummy);
#endif
//
// Mesh (Manual) Bed Leveling
//
uint8_t mesh_num_x, mesh_num_y;
EEPROM_READ(dummy);
EEPROM_READ_ALWAYS(mesh_num_x);
EEPROM_READ_ALWAYS(mesh_num_y);
#if ENABLED(MESH_BED_LEVELING)
if (!validating) mbl.z_offset = dummy;
if (mesh_num_x == GRID_MAX_POINTS_X && mesh_num_y == GRID_MAX_POINTS_Y) {
// EEPROM data fits the current mesh
EEPROM_READ(mbl.z_values);
}
else {
// EEPROM data is stale
if (!validating) mbl.reset();
for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummy);
}
#else
// MBL is disabled - skip the stored data
for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummy);
#endif // MESH_BED_LEVELING
_FIELD_TEST(zprobe_zoffset);
#if !HAS_BED_PROBE
float zprobe_zoffset;
#endif
EEPROM_READ(zprobe_zoffset);
//
// Planar Bed Leveling matrix
//
#if ABL_PLANAR
EEPROM_READ(planner.bed_level_matrix);
#else
for (uint8_t q = 9; q--;) EEPROM_READ(dummy);
#endif
//
// Bilinear Auto Bed Leveling
//
uint8_t grid_max_x, grid_max_y;
EEPROM_READ_ALWAYS(grid_max_x); // 1 byte
EEPROM_READ_ALWAYS(grid_max_y); // 1 byte
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
if (grid_max_x == GRID_MAX_POINTS_X && grid_max_y == GRID_MAX_POINTS_Y) {
if (!validating) set_bed_leveling_enabled(false);
EEPROM_READ(bilinear_grid_spacing); // 2 ints
EEPROM_READ(bilinear_start); // 2 ints
EEPROM_READ(z_values); // 9 to 256 floats
}
else // EEPROM data is stale
#endif // AUTO_BED_LEVELING_BILINEAR
{
// Skip past disabled (or stale) Bilinear Grid data
int bgs[2], bs[2];
EEPROM_READ(bgs);
EEPROM_READ(bs);
for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_READ(dummy);
}
//
// Unified Bed Leveling active state
//
_FIELD_TEST(planner_leveling_active);
#if ENABLED(AUTO_BED_LEVELING_UBL)
EEPROM_READ(planner.leveling_active);
EEPROM_READ(ubl.storage_slot);
#else
uint8_t dummyui8;
EEPROM_READ(dummyb);
EEPROM_READ(dummyui8);
#endif // AUTO_BED_LEVELING_UBL
//
// DELTA Geometry or Dual Endstops offsets
//
#if ENABLED(DELTA)
_FIELD_TEST(delta_height);
EEPROM_READ(delta_height); // 1 float
EEPROM_READ(delta_endstop_adj); // 3 floats
EEPROM_READ(delta_radius); // 1 float
EEPROM_READ(delta_diagonal_rod); // 1 float
EEPROM_READ(delta_segments_per_second); // 1 float
EEPROM_READ(delta_calibration_radius); // 1 float
EEPROM_READ(delta_tower_angle_trim); // 3 floats
#elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
_FIELD_TEST(x_endstop_adj);
#if ENABLED(X_DUAL_ENDSTOPS)
EEPROM_READ(endstops.x_endstop_adj); // 1 float
#else
EEPROM_READ(dummy);
#endif
#if ENABLED(Y_DUAL_ENDSTOPS)
EEPROM_READ(endstops.y_endstop_adj); // 1 float
#else
EEPROM_READ(dummy);
#endif
#if ENABLED(Z_DUAL_ENDSTOPS)
EEPROM_READ(endstops.z_endstop_adj); // 1 float
#else
EEPROM_READ(dummy);
#endif
#endif
//
// LCD Preheat settings
//
_FIELD_TEST(lcd_preheat_hotend_temp);
#if DISABLED(ULTIPANEL)
int16_t lcd_preheat_hotend_temp[2], lcd_preheat_bed_temp[2], lcd_preheat_fan_speed[2];
#endif
EEPROM_READ(lcd_preheat_hotend_temp); // 2 floats
EEPROM_READ(lcd_preheat_bed_temp); // 2 floats
EEPROM_READ(lcd_preheat_fan_speed); // 2 floats
//EEPROM_ASSERT(
// WITHIN(lcd_preheat_fan_speed, 0, 255),
// "lcd_preheat_fan_speed out of range"
//);
//
// Hotend PID
//
#if ENABLED(PIDTEMP)
for (uint8_t e = 0; e < MAX_EXTRUDERS; e++) {
EEPROM_READ(dummy); // Kp
if (e < HOTENDS && dummy != DUMMY_PID_VALUE) {
// do not need to scale PID values as the values in EEPROM are already scaled
if (!validating) PID_PARAM(Kp, e) = dummy;
EEPROM_READ(PID_PARAM(Ki, e));
EEPROM_READ(PID_PARAM(Kd, e));
#if ENABLED(PID_EXTRUSION_SCALING)
EEPROM_READ(PID_PARAM(Kc, e));
#else
EEPROM_READ(dummy);
#endif
}
else {
for (uint8_t q=3; q--;) EEPROM_READ(dummy); // Ki, Kd, Kc
}
}
#else // !PIDTEMP
// 4 x 4 = 16 slots for PID parameters
for (uint8_t q = MAX_EXTRUDERS * 4; q--;) EEPROM_READ(dummy); // Kp, Ki, Kd, Kc
#endif // !PIDTEMP
//
// PID Extrusion Scaling
//
_FIELD_TEST(lpq_len);
#if DISABLED(PID_EXTRUSION_SCALING)
int lpq_len;
#endif
EEPROM_READ(lpq_len);
//
// Heated Bed PID
//
#if ENABLED(PIDTEMPBED)
EEPROM_READ(dummy); // bedKp
if (dummy != DUMMY_PID_VALUE) {
if (!validating) thermalManager.bedKp = dummy;
EEPROM_READ(thermalManager.bedKi);
EEPROM_READ(thermalManager.bedKd);
}
#else
for (uint8_t q=3; q--;) EEPROM_READ(dummy); // bedKp, bedKi, bedKd
#endif
//
// LCD Contrast
//
_FIELD_TEST(lcd_contrast);
#if !HAS_LCD_CONTRAST
int16_t lcd_contrast;
#endif
EEPROM_READ(lcd_contrast);
//
// Firmware Retraction
//
#if ENABLED(FWRETRACT)
EEPROM_READ(fwretract.autoretract_enabled);
EEPROM_READ(fwretract.retract_length);
EEPROM_READ(fwretract.retract_feedrate_mm_s);
EEPROM_READ(fwretract.retract_zlift);
EEPROM_READ(fwretract.retract_recover_length);
EEPROM_READ(fwretract.retract_recover_feedrate_mm_s);
EEPROM_READ(fwretract.swap_retract_length);
EEPROM_READ(fwretract.swap_retract_recover_length);
EEPROM_READ(fwretract.swap_retract_recover_feedrate_mm_s);
#else
EEPROM_READ(dummyb);
for (uint8_t q=8; q--;) EEPROM_READ(dummy);
#endif
//
// Volumetric & Filament Size
//
_FIELD_TEST(parser_volumetric_enabled);
#if DISABLED(NO_VOLUMETRICS)
EEPROM_READ(parser.volumetric_enabled);
for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
EEPROM_READ(dummy);
if (!validating && q < COUNT(planner.filament_size))
planner.filament_size[q] = dummy;
}
#else
EEPROM_READ(dummyb);
for (uint8_t q=MAX_EXTRUDERS; q--;) EEPROM_READ(dummy);
#endif
//
// TMC2130 Stepper Current
//
_FIELD_TEST(tmc_stepper_current);
#if HAS_TRINAMIC
#define SET_CURR(N,Q) stepper##Q.setCurrent(currents[N] ? currents[N] : Q##_CURRENT, R_SENSE, HOLD_MULTIPLIER)
uint16_t currents[11];
EEPROM_READ(currents);
if (!validating) {
#if X_IS_TRINAMIC
SET_CURR(0, X);
#endif
#if Y_IS_TRINAMIC
SET_CURR(1, Y);
#endif
#if Z_IS_TRINAMIC
SET_CURR(2, Z);
#endif
#if X2_IS_TRINAMIC
SET_CURR(3, X2);
#endif
#if Y2_IS_TRINAMIC
SET_CURR(4, Y2);
#endif
#if Z2_IS_TRINAMIC
SET_CURR(5, Z2);
#endif
#if E0_IS_TRINAMIC
SET_CURR(6, E0);
#endif
#if E1_IS_TRINAMIC
SET_CURR(7, E1);
#endif
#if E2_IS_TRINAMIC
SET_CURR(8, E2);
#endif
#if E3_IS_TRINAMIC
SET_CURR(9, E3);
#endif
#if E4_IS_TRINAMIC
SET_CURR(10, E4);
#endif
}
#else
uint16_t val;
for (uint8_t q=11; q--;) EEPROM_READ(val);
#endif
/*
* TMC2130 Sensorless homing threshold.
* X and X2 use the same value
* Y and Y2 use the same value
* Z and Z2 use the same value
*/
int16_t thrs[XYZ];
EEPROM_READ(thrs);
#if ENABLED(SENSORLESS_HOMING)
if (!validating) {
#ifdef X_HOMING_SENSITIVITY
#if ENABLED(X_IS_TMC2130)
stepperX.sgt(thrs[0]);
#endif
#if ENABLED(X2_IS_TMC2130)
stepperX2.sgt(thrs[0]);
#endif
#endif
#ifdef Y_HOMING_SENSITIVITY
#if ENABLED(Y_IS_TMC2130)
stepperY.sgt(thrs[1]);
#endif
#if ENABLED(Y2_IS_TMC2130)
stepperY2.sgt(thrs[1]);
#endif
#endif
#ifdef Z_HOMING_SENSITIVITY
#if ENABLED(Z_IS_TMC2130)
stepperZ.sgt(thrs[2]);
#endif
#if ENABLED(Z2_IS_TMC2130)
stepperZ2.sgt(thrs[2]);
#endif
#endif
}
#endif
//
// Linear Advance
//
_FIELD_TEST(planner_extruder_advance_K);
#if ENABLED(LIN_ADVANCE)
EEPROM_READ(planner.extruder_advance_K);
#else
EEPROM_READ(dummy);
#endif
//
// Motor Current PWM
//
_FIELD_TEST(motor_current_setting);
#if HAS_MOTOR_CURRENT_PWM
for (uint8_t q = XYZ; q--;) EEPROM_READ(stepper.motor_current_setting[q]);
#else
uint32_t dummyui32[XYZ];
EEPROM_READ(dummyui32);
#endif
//
// CNC Coordinate System
//
_FIELD_TEST(coordinate_system);
#if ENABLED(CNC_COORDINATE_SYSTEMS)
if (!validating) (void)gcode.select_coordinate_system(-1); // Go back to machine space
EEPROM_READ(gcode.coordinate_system); // 27 floats
#else
for (uint8_t q = MAX_COORDINATE_SYSTEMS * XYZ; q--;) EEPROM_READ(dummy);
#endif
//
// Skew correction factors
//
_FIELD_TEST(planner_xy_skew_factor);
#if ENABLED(SKEW_CORRECTION_GCODE)
EEPROM_READ(planner.xy_skew_factor);
#if ENABLED(SKEW_CORRECTION_FOR_Z)
EEPROM_READ(planner.xz_skew_factor);
EEPROM_READ(planner.yz_skew_factor);
#else
EEPROM_READ(dummy);
EEPROM_READ(dummy);
#endif
#else
for (uint8_t q = XYZ; q--;) EEPROM_READ(dummy);
#endif
//
// Advanced Pause filament load & unload lengths
//
_FIELD_TEST(filament_change_unload_length);
#if ENABLED(ADVANCED_PAUSE_FEATURE)
for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
EEPROM_READ(dummy);
if (!validating && q < COUNT(filament_change_unload_length)) filament_change_unload_length[q] = dummy;
}
for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
EEPROM_READ(dummy);
if (!validating && q < COUNT(filament_change_load_length)) filament_change_load_length[q] = dummy;
}
#else
for (uint8_t q = MAX_EXTRUDERS * 2; q--;) EEPROM_READ(dummy);
#endif
eeprom_error = size_error(eeprom_index - (EEPROM_OFFSET));
if (eeprom_error) {
SERIAL_ECHO_START_P(port);
SERIAL_ECHOPAIR_P(port, "Index: ", int(eeprom_index - (EEPROM_OFFSET)));
SERIAL_ECHOLNPAIR_P(port, " Size: ", datasize());
}
else if (working_crc != stored_crc) {
eeprom_error = true;
#if ENABLED(EEPROM_CHITCHAT)
SERIAL_ERROR_START_P(port);
SERIAL_ERRORPGM_P(port, "EEPROM CRC mismatch - (stored) ");
SERIAL_ERROR_P(port, stored_crc);
SERIAL_ERRORPGM_P(port, " != ");
SERIAL_ERROR_P(port, working_crc);
SERIAL_ERRORLNPGM_P(port, " (calculated)!");
#endif
}
else if (!validating) {
#if ENABLED(EEPROM_CHITCHAT)
SERIAL_ECHO_START_P(port);
SERIAL_ECHO_P(port, version);
SERIAL_ECHOPAIR_P(port, " stored settings retrieved (", eeprom_index - (EEPROM_OFFSET));
SERIAL_ECHOPAIR_P(port, " bytes; crc ", (uint32_t)working_crc);
SERIAL_ECHOLNPGM_P(port, ")");
#endif
}
if (!validating) {
if (eeprom_error) reset(); else postprocess();
}
#if ENABLED(AUTO_BED_LEVELING_UBL)
ubl.report_state();
if (!validating) {
if (!ubl.sanity_check()) {
SERIAL_EOL_P(port);
#if ENABLED(EEPROM_CHITCHAT)
ubl.echo_name();
SERIAL_ECHOLNPGM_P(port, " initialized.\n");
#endif
}
else {
eeprom_error = true;
#if ENABLED(EEPROM_CHITCHAT)
SERIAL_PROTOCOLPGM_P(port, "?Can't enable ");
ubl.echo_name();
SERIAL_PROTOCOLLNPGM_P(port, ".");
#endif
ubl.reset();
}
if (ubl.storage_slot >= 0) {
load_mesh(ubl.storage_slot);
#if ENABLED(EEPROM_CHITCHAT)
SERIAL_ECHOPAIR_P(port, "Mesh ", ubl.storage_slot);
SERIAL_ECHOLNPGM_P(port, " loaded from storage.");
#endif
}
else {
ubl.reset();
#if ENABLED(EEPROM_CHITCHAT)
SERIAL_ECHOLNPGM_P(port, "UBL System reset()");
#endif
}
}
#endif
}
#if ENABLED(EEPROM_CHITCHAT) && DISABLED(DISABLE_M503)
if (!validating) report(
#if ADD_PORT_ARG
port
#endif
);
#endif
EEPROM_FINISH();
return !eeprom_error;
}
bool MarlinSettings::validate(
#if ADD_PORT_ARG
const int8_t port/*=-1*/
#endif
) {
validating = true;
const bool success = _load(
#if ADD_PORT_ARG
port
#endif
);
validating = false;
return success;
}
bool MarlinSettings::load(
#if ADD_PORT_ARG
const int8_t port/*=-1*/
#endif
) {
if (validate()) return _load(
#if ADD_PORT_ARG
port
#endif
);
reset();
return true;
}
#if ENABLED(AUTO_BED_LEVELING_UBL)
#if ENABLED(EEPROM_CHITCHAT)
void ubl_invalid_slot(const int s) {
SERIAL_PROTOCOLLNPGM("?Invalid slot.");
SERIAL_PROTOCOL(s);
SERIAL_PROTOCOLLNPGM(" mesh slots available.");
}
#endif
int16_t MarlinSettings::meshes_start_index() {
return (datasize() + EEPROM_OFFSET + 32) & 0xFFF8; // Pad the end of configuration data so it can float up
// or down a little bit without disrupting the mesh data
}
uint16_t MarlinSettings::calc_num_meshes() {
return (meshes_end - meshes_start_index()) / sizeof(ubl.z_values);
}
void MarlinSettings::store_mesh(const int8_t slot) {
#if ENABLED(AUTO_BED_LEVELING_UBL)
const int16_t a = calc_num_meshes();
if (!WITHIN(slot, 0, a - 1)) {
#if ENABLED(EEPROM_CHITCHAT)
ubl_invalid_slot(a);
SERIAL_PROTOCOLPAIR("E2END=", E2END);
SERIAL_PROTOCOLPAIR(" meshes_end=", meshes_end);
SERIAL_PROTOCOLLNPAIR(" slot=", slot);
SERIAL_EOL();
#endif
return;
}
uint16_t crc = 0;
int pos = meshes_end - (slot + 1) * sizeof(ubl.z_values);
HAL::PersistentStore::access_start();
const bool status = HAL::PersistentStore::write_data(pos, (uint8_t *)&ubl.z_values, sizeof(ubl.z_values), &crc);
HAL::PersistentStore::access_finish();
if (status)
SERIAL_PROTOCOLPGM("?Unable to save mesh data.\n");
// Write crc to MAT along with other data, or just tack on to the beginning or end
#if ENABLED(EEPROM_CHITCHAT)
if (!status)
SERIAL_PROTOCOLLNPAIR("Mesh saved in slot ", slot);
#endif
#else
// Other mesh types
#endif
}
void MarlinSettings::load_mesh(const int8_t slot, void * const into/*=NULL*/) {
#if ENABLED(AUTO_BED_LEVELING_UBL)
const int16_t a = settings.calc_num_meshes();
if (!WITHIN(slot, 0, a - 1)) {
#if ENABLED(EEPROM_CHITCHAT)
ubl_invalid_slot(a);
#endif
return;
}
uint16_t crc = 0;
int pos = meshes_end - (slot + 1) * sizeof(ubl.z_values);
uint8_t * const dest = into ? (uint8_t*)into : (uint8_t*)&ubl.z_values;
HAL::PersistentStore::access_start();
const uint16_t status = HAL::PersistentStore::read_data(pos, dest, sizeof(ubl.z_values), &crc);
HAL::PersistentStore::access_finish();
if (status)
SERIAL_PROTOCOLPGM("?Unable to load mesh data.\n");
#if ENABLED(EEPROM_CHITCHAT)
else
SERIAL_PROTOCOLLNPAIR("Mesh loaded from slot ", slot);
#endif
EEPROM_FINISH();
#else
// Other mesh types
#endif
}
//void MarlinSettings::delete_mesh() { return; }
//void MarlinSettings::defrag_meshes() { return; }
#endif // AUTO_BED_LEVELING_UBL
#else // !EEPROM_SETTINGS
bool MarlinSettings::save(
#if ADD_PORT_ARG
const int8_t port/*=-1*/
#endif
) {
#if ENABLED(EEPROM_CHITCHAT)
SERIAL_ERROR_START_P(port);
SERIAL_ERRORLNPGM_P(port, "EEPROM disabled");
#endif
return false;
}
#endif // !EEPROM_SETTINGS
/**
* M502 - Reset Configuration
*/
void MarlinSettings::reset(
#if ADD_PORT_ARG
const int8_t port/*=-1*/
#endif
) {
static const float tmp1[] PROGMEM = DEFAULT_AXIS_STEPS_PER_UNIT, tmp2[] PROGMEM = DEFAULT_MAX_FEEDRATE;
static const uint32_t tmp3[] PROGMEM = DEFAULT_MAX_ACCELERATION;
LOOP_XYZE_N(i) {
planner.axis_steps_per_mm[i] = pgm_read_float(&tmp1[i < COUNT(tmp1) ? i : COUNT(tmp1) - 1]);
planner.max_feedrate_mm_s[i] = pgm_read_float(&tmp2[i < COUNT(tmp2) ? i : COUNT(tmp2) - 1]);
7 years ago
planner.max_acceleration_mm_per_s2[i] = pgm_read_dword_near(&tmp3[i < COUNT(tmp3) ? i : COUNT(tmp3) - 1]);
}
planner.acceleration = DEFAULT_ACCELERATION;
planner.retract_acceleration = DEFAULT_RETRACT_ACCELERATION;
planner.travel_acceleration = DEFAULT_TRAVEL_ACCELERATION;
planner.min_feedrate_mm_s = DEFAULT_MINIMUMFEEDRATE;
planner.min_travel_feedrate_mm_s = DEFAULT_MINTRAVELFEEDRATE;
planner.min_segment_time_us = DEFAULT_MINSEGMENTTIME;
planner.max_jerk[X_AXIS] = DEFAULT_XJERK;
planner.max_jerk[Y_AXIS] = DEFAULT_YJERK;
planner.max_jerk[Z_AXIS] = DEFAULT_ZJERK;
planner.max_jerk[E_AXIS] = DEFAULT_EJERK;
#if HAS_HOME_OFFSET
ZERO(home_offset);
#endif
#if HOTENDS > 1
constexpr float tmp4[XYZ][HOTENDS] = {
HOTEND_OFFSET_X,
HOTEND_OFFSET_Y
#ifdef HOTEND_OFFSET_Z
, HOTEND_OFFSET_Z
#else
, { 0 }
#endif
};
static_assert(
tmp4[X_AXIS][0] == 0 && tmp4[Y_AXIS][0] == 0 && tmp4[Z_AXIS][0] == 0,
"Offsets for the first hotend must be 0.0."
);
LOOP_XYZ(i) HOTEND_LOOP() hotend_offset[i][e] = tmp4[i][e];
#endif
//
// Global Leveling
//
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
new_z_fade_height = 0.0;
#endif
#if HAS_LEVELING
reset_bed_level();
#endif
#if HAS_BED_PROBE
zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
#endif
#if ENABLED(DELTA)
const float adj[ABC] = DELTA_ENDSTOP_ADJ,
dta[ABC] = DELTA_TOWER_ANGLE_TRIM;
delta_height = DELTA_HEIGHT;
COPY(delta_endstop_adj, adj);
delta_radius = DELTA_RADIUS;
delta_diagonal_rod = DELTA_DIAGONAL_ROD;
delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
delta_calibration_radius = DELTA_CALIBRATION_RADIUS;
COPY(delta_tower_angle_trim, dta);
#elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
#if ENABLED(X_DUAL_ENDSTOPS)
endstops.x_endstop_adj = (
#ifdef X_DUAL_ENDSTOPS_ADJUSTMENT
X_DUAL_ENDSTOPS_ADJUSTMENT
#else
0
#endif
);
#endif
#if ENABLED(Y_DUAL_ENDSTOPS)
endstops.y_endstop_adj = (
#ifdef Y_DUAL_ENDSTOPS_ADJUSTMENT
Y_DUAL_ENDSTOPS_ADJUSTMENT
#else
0
#endif
);
#endif
#if ENABLED(Z_DUAL_ENDSTOPS)
endstops.z_endstop_adj = (
#ifdef Z_DUAL_ENDSTOPS_ADJUSTMENT
Z_DUAL_ENDSTOPS_ADJUSTMENT
#else
0
#endif
);
#endif
#endif
#if ENABLED(ULTIPANEL)
lcd_preheat_hotend_temp[0] = PREHEAT_1_TEMP_HOTEND;
lcd_preheat_hotend_temp[1] = PREHEAT_2_TEMP_HOTEND;
lcd_preheat_bed_temp[0] = PREHEAT_1_TEMP_BED;
lcd_preheat_bed_temp[1] = PREHEAT_2_TEMP_BED;
lcd_preheat_fan_speed[0] = PREHEAT_1_FAN_SPEED;
lcd_preheat_fan_speed[1] = PREHEAT_2_FAN_SPEED;
#endif
#if ENABLED(PIDTEMP)
#if ENABLED(PID_PARAMS_PER_HOTEND) && HOTENDS > 1
HOTEND_LOOP()
#endif
{
PID_PARAM(Kp, e) = DEFAULT_Kp;
PID_PARAM(Ki, e) = scalePID_i(DEFAULT_Ki);
PID_PARAM(Kd, e) = scalePID_d(DEFAULT_Kd);
#if ENABLED(PID_EXTRUSION_SCALING)
PID_PARAM(Kc, e) = DEFAULT_Kc;
#endif
}
#if ENABLED(PID_EXTRUSION_SCALING)
lpq_len = 20; // default last-position-queue size
#endif
#endif // PIDTEMP
#if ENABLED(PIDTEMPBED)
thermalManager.bedKp = DEFAULT_bedKp;
thermalManager.bedKi = scalePID_i(DEFAULT_bedKi);
thermalManager.bedKd = scalePID_d(DEFAULT_bedKd);
#endif
#if HAS_LCD_CONTRAST
lcd_contrast = DEFAULT_LCD_CONTRAST;
#endif
#if ENABLED(FWRETRACT)
fwretract.reset();
#endif
#if DISABLED(NO_VOLUMETRICS)
parser.volumetric_enabled =
#if ENABLED(VOLUMETRIC_DEFAULT_ON)
true
#else
false
#endif
;
for (uint8_t q = 0; q < COUNT(planner.filament_size); q++)
planner.filament_size[q] = DEFAULT_NOMINAL_FILAMENT_DIA;
#endif
endstops.enable_globally(
#if ENABLED(ENDSTOPS_ALWAYS_ON_DEFAULT)
true
#else
false
#endif
);
#if X_IS_TRINAMIC
stepperX.setCurrent(X_CURRENT, R_SENSE, HOLD_MULTIPLIER);
#endif
#if Y_IS_TRINAMIC
stepperY.setCurrent(Y_CURRENT, R_SENSE, HOLD_MULTIPLIER);
#endif
#if Z_IS_TRINAMIC
stepperZ.setCurrent(Z_CURRENT, R_SENSE, HOLD_MULTIPLIER);
#endif
#if X2_IS_TRINAMIC
stepperX2.setCurrent(X2_CURRENT, R_SENSE, HOLD_MULTIPLIER);
#endif
#if Y2_IS_TRINAMIC
stepperY2.setCurrent(Y2_CURRENT, R_SENSE, HOLD_MULTIPLIER);
#endif
#if Z2_IS_TRINAMIC
stepperZ2.setCurrent(Z2_CURRENT, R_SENSE, HOLD_MULTIPLIER);
#endif
#if E0_IS_TRINAMIC
stepperE0.setCurrent(E0_CURRENT, R_SENSE, HOLD_MULTIPLIER);
#endif
#if E1_IS_TRINAMIC
stepperE1.setCurrent(E1_CURRENT, R_SENSE, HOLD_MULTIPLIER);
#endif
#if E2_IS_TRINAMIC
stepperE2.setCurrent(E2_CURRENT, R_SENSE, HOLD_MULTIPLIER);
#endif
#if E3_IS_TRINAMIC
stepperE3.setCurrent(E3_CURRENT, R_SENSE, HOLD_MULTIPLIER);
#endif
#if E4_IS_TRINAMIC
stepperE4.setCurrent(E4_CURRENT, R_SENSE, HOLD_MULTIPLIER);
#endif
#if ENABLED(SENSORLESS_HOMING)
#ifdef X_HOMING_SENSITIVITY
#if ENABLED(X_IS_TMC2130)
stepperX.sgt(X_HOMING_SENSITIVITY);
#endif
#if ENABLED(X2_IS_TMC2130)
stepperX2.sgt(X_HOMING_SENSITIVITY);
#endif
#endif
#ifdef Y_HOMING_SENSITIVITY
#if ENABLED(Y_IS_TMC2130)
stepperY.sgt(Y_HOMING_SENSITIVITY);
#endif
#if ENABLED(Y2_IS_TMC2130)
stepperY2.sgt(Y_HOMING_SENSITIVITY);
#endif
#endif
#ifdef Z_HOMING_SENSITIVITY
#if ENABLED(Z_IS_TMC2130)
stepperZ.sgt(Z_HOMING_SENSITIVITY);
#endif
#if ENABLED(Z2_IS_TMC2130)
stepperZ2.sgt(Z_HOMING_SENSITIVITY);
#endif
#endif
#endif
#if ENABLED(LIN_ADVANCE)
planner.extruder_advance_K = LIN_ADVANCE_K;
#endif
#if HAS_MOTOR_CURRENT_PWM
uint32_t tmp_motor_current_setting[XYZ] = PWM_MOTOR_CURRENT;
for (uint8_t q = XYZ; q--;)
stepper.digipot_current(q, (stepper.motor_current_setting[q] = tmp_motor_current_setting[q]));
#endif
#if ENABLED(SKEW_CORRECTION_GCODE)
planner.xy_skew_factor = XY_SKEW_FACTOR;
#if ENABLED(SKEW_CORRECTION_FOR_Z)
planner.xz_skew_factor = XZ_SKEW_FACTOR;
planner.yz_skew_factor = YZ_SKEW_FACTOR;
#endif
#endif
#if ENABLED(ADVANCED_PAUSE_FEATURE)
for (uint8_t e = 0; e < E_STEPPERS; e++) {
filament_change_unload_length[e] = FILAMENT_CHANGE_UNLOAD_LENGTH;
filament_change_load_length[e] = FILAMENT_CHANGE_LOAD_LENGTH;
}
#endif
postprocess();
#if ENABLED(EEPROM_CHITCHAT)
SERIAL_ECHO_START_P(port);
SERIAL_ECHOLNPGM_P(port, "Hardcoded Default Settings Loaded");
#endif
}
#if DISABLED(DISABLE_M503)
#if ADD_PORT_ARG
#define CONFIG_ECHO_START do{ if (!forReplay) SERIAL_ECHO_START_P(port); }while(0)
#else
#define CONFIG_ECHO_START do{ if (!forReplay) SERIAL_ECHO_START(); }while(0)
#endif
/**
* M503 - Report current settings in RAM
*
* Unless specifically disabled, M503 is available even without EEPROM
*/
void MarlinSettings::report(const bool forReplay
#if ADD_PORT_ARG
, const int8_t port/*=-1*/
#endif
) {
/**
* Announce current units, in case inches are being displayed
*/
CONFIG_ECHO_START;
#if ENABLED(INCH_MODE_SUPPORT)
#define LINEAR_UNIT(N) (float(N) / parser.linear_unit_factor)
#define VOLUMETRIC_UNIT(N) (float(N) / (parser.volumetric_enabled ? parser.volumetric_unit_factor : parser.linear_unit_factor))
SERIAL_ECHOPGM_P(port, " G2");
SERIAL_CHAR_P(port, parser.linear_unit_factor == 1.0 ? '1' : '0');
SERIAL_ECHOPGM_P(port, " ; Units in ");
serialprintPGM(parser.linear_unit_factor == 1.0 ? PSTR("mm\n") : PSTR("inches\n"));
#else
#define LINEAR_UNIT(N) (N)
#define VOLUMETRIC_UNIT(N) (N)
SERIAL_ECHOLNPGM_P(port, " G21 ; Units in mm");
#endif
#if ENABLED(ULTIPANEL)
// Temperature units - for Ultipanel temperature options
CONFIG_ECHO_START;
#if ENABLED(TEMPERATURE_UNITS_SUPPORT)
#define TEMP_UNIT(N) parser.to_temp_units(N)
SERIAL_ECHOPGM_P(port, " M149 ");
SERIAL_CHAR_P(port, parser.temp_units_code());
SERIAL_ECHOPGM_P(port, " ; Units in ");
serialprintPGM_P(port, parser.temp_units_name());
#else
#define TEMP_UNIT(N) (N)
SERIAL_ECHOLNPGM_P(port, " M149 C ; Units in Celsius");
#endif
#endif
SERIAL_EOL_P(port);
#if DISABLED(NO_VOLUMETRICS)
/**
* Volumetric extrusion M200
*/
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOPGM_P(port, "Filament settings:");
if (parser.volumetric_enabled)
SERIAL_EOL_P(port);
else
SERIAL_ECHOLNPGM_P(port, " Disabled");
}
CONFIG_ECHO_START;
SERIAL_ECHOPAIR_P(port, " M200 D", LINEAR_UNIT(planner.filament_size[0]));
SERIAL_EOL_P(port);
#if EXTRUDERS > 1
CONFIG_ECHO_START;
SERIAL_ECHOPAIR_P(port, " M200 T1 D", LINEAR_UNIT(planner.filament_size[1]));
SERIAL_EOL_P(port);
#if EXTRUDERS > 2
CONFIG_ECHO_START;
SERIAL_ECHOPAIR_P(port, " M200 T2 D", LINEAR_UNIT(planner.filament_size[2]));
SERIAL_EOL_P(port);
#if EXTRUDERS > 3
CONFIG_ECHO_START;
SERIAL_ECHOPAIR_P(port, " M200 T3 D", LINEAR_UNIT(planner.filament_size[3]));
SERIAL_EOL_P(port);
#if EXTRUDERS > 4
CONFIG_ECHO_START;
SERIAL_ECHOPAIR_P(port, " M200 T4 D", LINEAR_UNIT(planner.filament_size[4]));
SERIAL_EOL_P(port);
#endif // EXTRUDERS > 4
#endif // EXTRUDERS > 3
#endif // EXTRUDERS > 2
#endif // EXTRUDERS > 1
if (!parser.volumetric_enabled) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM_P(port, " M200 D0");
}
#endif // !NO_VOLUMETRICS
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM_P(port, "Steps per unit:");
}
CONFIG_ECHO_START;
SERIAL_ECHOPAIR_P(port, " M92 X", LINEAR_UNIT(planner.axis_steps_per_mm[X_AXIS]));
SERIAL_ECHOPAIR_P(port, " Y", LINEAR_UNIT(planner.axis_steps_per_mm[Y_AXIS]));
SERIAL_ECHOPAIR_P(port, " Z", LINEAR_UNIT(planner.axis_steps_per_mm[Z_AXIS]));
#if DISABLED(DISTINCT_E_FACTORS)
SERIAL_ECHOPAIR_P(port, " E", VOLUMETRIC_UNIT(planner.axis_steps_per_mm[E_AXIS]));
#endif
SERIAL_EOL_P(port);
#if ENABLED(DISTINCT_E_FACTORS)
CONFIG_ECHO_START;
for (uint8_t i = 0; i < E_STEPPERS; i++) {
SERIAL_ECHOPAIR_P(port, " M92 T", (int)i);
SERIAL_ECHOLNPAIR_P(port, " E", VOLUMETRIC_UNIT(planner.axis_steps_per_mm[E_AXIS + i]));
}
#endif
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM_P(port, "Maximum feedrates (units/s):");
}
CONFIG_ECHO_START;
SERIAL_ECHOPAIR_P(port, " M203 X", LINEAR_UNIT(planner.max_feedrate_mm_s[X_AXIS]));
SERIAL_ECHOPAIR_P(port, " Y", LINEAR_UNIT(planner.max_feedrate_mm_s[Y_AXIS]));
SERIAL_ECHOPAIR_P(port, " Z", LINEAR_UNIT(planner.max_feedrate_mm_s[Z_AXIS]));
#if DISABLED(DISTINCT_E_FACTORS)
SERIAL_ECHOPAIR_P(port, " E", VOLUMETRIC_UNIT(planner.max_feedrate_mm_s[E_AXIS]));
#endif
SERIAL_EOL_P(port);
#if ENABLED(DISTINCT_E_FACTORS)
CONFIG_ECHO_START;
for (uint8_t i = 0; i < E_STEPPERS; i++) {
SERIAL_ECHOPAIR_P(port, " M203 T", (int)i);
SERIAL_ECHOLNPAIR_P(port, " E", VOLUMETRIC_UNIT(planner.max_feedrate_mm_s[E_AXIS + i]));
}
#endif
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM_P(port, "Maximum Acceleration (units/s2):");
}
CONFIG_ECHO_START;
SERIAL_ECHOPAIR_P(port, " M201 X", LINEAR_UNIT(planner.max_acceleration_mm_per_s2[X_AXIS]));
SERIAL_ECHOPAIR_P(port, " Y", LINEAR_UNIT(planner.max_acceleration_mm_per_s2[Y_AXIS]));
SERIAL_ECHOPAIR_P(port, " Z", LINEAR_UNIT(planner.max_acceleration_mm_per_s2[Z_AXIS]));
#if DISABLED(DISTINCT_E_FACTORS)
SERIAL_ECHOPAIR_P(port, " E", VOLUMETRIC_UNIT(planner.max_acceleration_mm_per_s2[E_AXIS]));
#endif
SERIAL_EOL_P(port);
#if ENABLED(DISTINCT_E_FACTORS)
CONFIG_ECHO_START;
for (uint8_t i = 0; i < E_STEPPERS; i++) {
SERIAL_ECHOPAIR_P(port, " M201 T", (int)i);
SERIAL_ECHOLNPAIR_P(port, " E", VOLUMETRIC_UNIT(planner.max_acceleration_mm_per_s2[E_AXIS + i]));
}
#endif
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM_P(port, "Acceleration (units/s2): P<print_accel> R<retract_accel> T<travel_accel>");
}
CONFIG_ECHO_START;
SERIAL_ECHOPAIR_P(port, " M204 P", LINEAR_UNIT(planner.acceleration));
SERIAL_ECHOPAIR_P(port, " R", LINEAR_UNIT(planner.retract_acceleration));
SERIAL_ECHOLNPAIR_P(port, " T", LINEAR_UNIT(planner.travel_acceleration));
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM_P(port, "Advanced: S<min_feedrate> T<min_travel_feedrate> B<min_segment_time_us> X<max_xy_jerk> Z<max_z_jerk> E<max_e_jerk>");
}
CONFIG_ECHO_START;
SERIAL_ECHOPAIR_P(port, " M205 S", LINEAR_UNIT(planner.min_feedrate_mm_s));
SERIAL_ECHOPAIR_P(port, " T", LINEAR_UNIT(planner.min_travel_feedrate_mm_s));
SERIAL_ECHOPAIR_P(port, " B", planner.min_segment_time_us);
SERIAL_ECHOPAIR_P(port, " X", LINEAR_UNIT(planner.max_jerk[X_AXIS]));
SERIAL_ECHOPAIR_P(port, " Y", LINEAR_UNIT(planner.max_jerk[Y_AXIS]));
SERIAL_ECHOPAIR_P(port, " Z", LINEAR_UNIT(planner.max_jerk[Z_AXIS]));
SERIAL_ECHOLNPAIR_P(port, " E", LINEAR_UNIT(planner.max_jerk[E_AXIS]));
#if HAS_M206_COMMAND
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM_P(port, "Home offset:");
}
CONFIG_ECHO_START;
SERIAL_ECHOPAIR_P(port, " M206 X", LINEAR_UNIT(home_offset[X_AXIS]));
SERIAL_ECHOPAIR_P(port, " Y", LINEAR_UNIT(home_offset[Y_AXIS]));
SERIAL_ECHOLNPAIR_P(port, " Z", LINEAR_UNIT(home_offset[Z_AXIS]));
#endif
#if HOTENDS > 1
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM_P(port, "Hotend offsets:");
}
CONFIG_ECHO_START;
for (uint8_t e = 1; e < HOTENDS; e++) {
SERIAL_ECHOPAIR_P(port, " M218 T", (int)e);
SERIAL_ECHOPAIR_P(port, " X", LINEAR_UNIT(hotend_offset[X_AXIS][e]));
SERIAL_ECHOPAIR_P(port, " Y", LINEAR_UNIT(hotend_offset[Y_AXIS][e]));
#if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_NOZZLE) ||ENABLED(PARKING_EXTRUDER)
SERIAL_ECHOPAIR_P(port, " Z", LINEAR_UNIT(hotend_offset[Z_AXIS][e]));
#endif
SERIAL_EOL_P(port);
}
#endif
/**
* Bed Leveling
*/
#if HAS_LEVELING
#if ENABLED(MESH_BED_LEVELING)
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM_P(port, "Mesh Bed Leveling:");
}
#elif ENABLED(AUTO_BED_LEVELING_UBL)
if (!forReplay) {
CONFIG_ECHO_START;
ubl.echo_name();
SERIAL_ECHOLNPGM_P(port, ":");
}
#elif HAS_ABL
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM_P(port, "Auto Bed Leveling:");
}
#endif
CONFIG_ECHO_START;
SERIAL_ECHOPAIR_P(port, " M420 S", planner.leveling_active ? 1 : 0);
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
SERIAL_ECHOPAIR_P(port, " Z", LINEAR_UNIT(planner.z_fade_height));
#endif
SERIAL_EOL_P(port);
#if ENABLED(MESH_BED_LEVELING)
if (leveling_is_valid()) {
for (uint8_t py = 0; py < GRID_MAX_POINTS_Y; py++) {
for (uint8_t px = 0; px < GRID_MAX_POINTS_X; px++) {
CONFIG_ECHO_START;
SERIAL_ECHOPAIR_P(port, " G29 S3 X", (int)px + 1);
SERIAL_ECHOPAIR_P(port, " Y", (int)py + 1);
SERIAL_ECHOPGM_P(port, " Z");
SERIAL_PROTOCOL_F_P(port, LINEAR_UNIT(mbl.z_values[px][py]), 5);
SERIAL_EOL_P(port);
}
}
}
#elif ENABLED(AUTO_BED_LEVELING_UBL)
if (!forReplay) {
SERIAL_EOL_P(port);
ubl.report_state();
SERIAL_ECHOLNPAIR_P(port, "\nActive Mesh Slot: ", ubl.storage_slot);
SERIAL_ECHOPAIR_P(port, "EEPROM can hold ", calc_num_meshes());
SERIAL_ECHOLNPGM_P(port, " meshes.\n");
}
ubl.report_current_mesh(
#if ADD_PORT_ARG
port
#endif
);
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
if (leveling_is_valid()) {
for (uint8_t py = 0; py < GRID_MAX_POINTS_Y; py++) {
for (uint8_t px = 0; px < GRID_MAX_POINTS_X; px++) {
CONFIG_ECHO_START;
SERIAL_ECHOPAIR_P(port, " G29 W I", (int)px + 1);
SERIAL_ECHOPAIR_P(port, " J", (int)py + 1);
SERIAL_ECHOPGM_P(port, " Z");
SERIAL_PROTOCOL_F_P(port, LINEAR_UNIT(z_values[px][py]), 5);
SERIAL_EOL_P(port);
}
}
}
#endif
#endif // HAS_LEVELING
#if ENABLED(DELTA)
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM_P(port, "Endstop adjustment:");
}
CONFIG_ECHO_START;
SERIAL_ECHOPAIR_P(port, " M666 X", LINEAR_UNIT(delta_endstop_adj[X_AXIS]));
SERIAL_ECHOPAIR_P(port, " Y", LINEAR_UNIT(delta_endstop_adj[Y_AXIS]));
SERIAL_ECHOLNPAIR_P(port, " Z", LINEAR_UNIT(delta_endstop_adj[Z_AXIS]));
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM_P(port, "Delta settings: L<diagonal_rod> R<radius> H<height> S<segments_per_s> B<calibration radius> XYZ<tower angle corrections>");
}
CONFIG_ECHO_START;
SERIAL_ECHOPAIR_P(port, " M665 L", LINEAR_UNIT(delta_diagonal_rod));
SERIAL_ECHOPAIR_P(port, " R", LINEAR_UNIT(delta_radius));
SERIAL_ECHOPAIR_P(port, " H", LINEAR_UNIT(delta_height));
SERIAL_ECHOPAIR_P(port, " S", delta_segments_per_second);
SERIAL_ECHOPAIR_P(port, " B", LINEAR_UNIT(delta_calibration_radius));
SERIAL_ECHOPAIR_P(port, " X", LINEAR_UNIT(delta_tower_angle_trim[A_AXIS]));
SERIAL_ECHOPAIR_P(port, " Y", LINEAR_UNIT(delta_tower_angle_trim[B_AXIS]));
SERIAL_ECHOPAIR_P(port, " Z", LINEAR_UNIT(delta_tower_angle_trim[C_AXIS]));
SERIAL_EOL_P(port);
#elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM_P(port, "Endstop adjustment:");
}
CONFIG_ECHO_START;
SERIAL_ECHOPGM_P(port, " M666");
#if ENABLED(X_DUAL_ENDSTOPS)
SERIAL_ECHOPAIR_P(port, " X", LINEAR_UNIT(endstops.x_endstop_adj));
#endif
#if ENABLED(Y_DUAL_ENDSTOPS)
SERIAL_ECHOPAIR_P(port, " Y", LINEAR_UNIT(endstops.y_endstop_adj));
#endif
#if ENABLED(Z_DUAL_ENDSTOPS)
SERIAL_ECHOPAIR_P(port, " Z", LINEAR_UNIT(endstops.z_endstop_adj));
#endif
SERIAL_EOL_P(port);
#endif // [XYZ]_DUAL_ENDSTOPS
#if ENABLED(ULTIPANEL)
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM_P(port, "Material heatup parameters:");
}
for (uint8_t i = 0; i < COUNT(lcd_preheat_hotend_temp); i++) {
CONFIG_ECHO_START;
SERIAL_ECHOPAIR_P(port, " M145 S", (int)i);
SERIAL_ECHOPAIR_P(port, " H", TEMP_UNIT(lcd_preheat_hotend_temp[i]));
SERIAL_ECHOPAIR_P(port, " B", TEMP_UNIT(lcd_preheat_bed_temp[i]));
SERIAL_ECHOLNPAIR_P(port, " F", lcd_preheat_fan_speed[i]);
}
#endif // ULTIPANEL
#if HAS_PID_HEATING
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM_P(port, "PID settings:");
}
#if ENABLED(PIDTEMP)
#if HOTENDS > 1
if (forReplay) {
HOTEND_LOOP() {
CONFIG_ECHO_START;
SERIAL_ECHOPAIR_P(port, " M301 E", e);
SERIAL_ECHOPAIR_P(port, " P", PID_PARAM(Kp, e));
SERIAL_ECHOPAIR_P(port, " I", unscalePID_i(PID_PARAM(Ki, e)));
SERIAL_ECHOPAIR_P(port, " D", unscalePID_d(PID_PARAM(Kd, e)));
#if ENABLED(PID_EXTRUSION_SCALING)
SERIAL_ECHOPAIR_P(port, " C", PID_PARAM(Kc, e));
if (e == 0) SERIAL_ECHOPAIR_P(port, " L", lpq_len);
#endif
SERIAL_EOL_P(port);
}
}
else
#endif // HOTENDS > 1
// !forReplay || HOTENDS == 1
{
CONFIG_ECHO_START;
SERIAL_ECHOPAIR_P(port, " M301 P", PID_PARAM(Kp, 0)); // for compatibility with hosts, only echo values for E0
SERIAL_ECHOPAIR_P(port, " I", unscalePID_i(PID_PARAM(Ki, 0)));
SERIAL_ECHOPAIR_P(port, " D", unscalePID_d(PID_PARAM(Kd, 0)));
#if ENABLED(PID_EXTRUSION_SCALING)
SERIAL_ECHOPAIR_P(port, " C", PID_PARAM(Kc, 0));
SERIAL_ECHOPAIR_P(port, " L", lpq_len);
#endif
SERIAL_EOL_P(port);
}
#endif // PIDTEMP
#if ENABLED(PIDTEMPBED)
CONFIG_ECHO_START;
SERIAL_ECHOPAIR_P(port, " M304 P", thermalManager.bedKp);
SERIAL_ECHOPAIR_P(port, " I", unscalePID_i(thermalManager.bedKi));
SERIAL_ECHOPAIR_P(port, " D", unscalePID_d(thermalManager.bedKd));
SERIAL_EOL_P(port);
#endif
#endif // PIDTEMP || PIDTEMPBED
#if HAS_LCD_CONTRAST
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM_P(port, "LCD Contrast:");
}
CONFIG_ECHO_START;
SERIAL_ECHOLNPAIR_P(port, " M250 C", lcd_contrast);
#endif
#if ENABLED(FWRETRACT)
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM_P(port, "Retract: S<length> F<units/m> Z<lift>");
}
CONFIG_ECHO_START;
SERIAL_ECHOPAIR_P(port, " M207 S", LINEAR_UNIT(fwretract.retract_length));
SERIAL_ECHOPAIR_P(port, " W", LINEAR_UNIT(fwretract.swap_retract_length));
SERIAL_ECHOPAIR_P(port, " F", MMS_TO_MMM(LINEAR_UNIT(fwretract.retract_feedrate_mm_s)));
SERIAL_ECHOLNPAIR_P(port, " Z", LINEAR_UNIT(fwretract.retract_zlift));
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM_P(port, "Recover: S<length> F<units/m>");
}
CONFIG_ECHO_START;
SERIAL_ECHOPAIR_P(port, " M208 S", LINEAR_UNIT(fwretract.retract_recover_length));
SERIAL_ECHOPAIR_P(port, " W", LINEAR_UNIT(fwretract.swap_retract_recover_length));
SERIAL_ECHOLNPAIR_P(port, " F", MMS_TO_MMM(LINEAR_UNIT(fwretract.retract_recover_feedrate_mm_s)));
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM_P(port, "Auto-Retract: S=0 to disable, 1 to interpret E-only moves as retract/recover");
}
CONFIG_ECHO_START;
SERIAL_ECHOLNPAIR_P(port, " M209 S", fwretract.autoretract_enabled ? 1 : 0);
#endif // FWRETRACT
/**
* Probe Offset
*/
#if HAS_BED_PROBE
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM_P(port, "Z-Probe Offset (mm):");
}
CONFIG_ECHO_START;
SERIAL_ECHOLNPAIR_P(port, " M851 Z", LINEAR_UNIT(zprobe_zoffset));
#endif
/**
* Bed Skew Correction
*/
#if ENABLED(SKEW_CORRECTION_GCODE)
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM_P(port, "Skew Factor: ");
}
CONFIG_ECHO_START;
#if ENABLED(SKEW_CORRECTION_FOR_Z)
SERIAL_ECHOPGM_P(port, " M852 I");
SERIAL_ECHO_F_P(port, LINEAR_UNIT(planner.xy_skew_factor), 6);
SERIAL_ECHOPGM_P(port, " J");
SERIAL_ECHO_F_P(port, LINEAR_UNIT(planner.xz_skew_factor), 6);
SERIAL_ECHOPGM_P(port, " K");
SERIAL_ECHO_F_P(port, LINEAR_UNIT(planner.yz_skew_factor), 6);
SERIAL_EOL_P(port);
#else
SERIAL_ECHOPGM_P(port, " M852 S");
SERIAL_ECHO_F_P(port, LINEAR_UNIT(planner.xy_skew_factor), 6);
SERIAL_EOL_P(port);
#endif
#endif
/**
* TMC2130 stepper driver current
*/
#if HAS_TRINAMIC
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM_P(port, "Stepper driver current:");
}
CONFIG_ECHO_START;
SERIAL_ECHOPGM_P(port, " M906");
#if ENABLED(X_IS_TMC2130) || ENABLED(X_IS_TMC2208)
SERIAL_ECHOPAIR_P(port, " X ", stepperX.getCurrent());
#endif
#if ENABLED(Y_IS_TMC2130) || ENABLED(Y_IS_TMC2208)
SERIAL_ECHOPAIR_P(port, " Y ", stepperY.getCurrent());
#endif
#if ENABLED(Z_IS_TMC2130) || ENABLED(Z_IS_TMC2208)
SERIAL_ECHOPAIR_P(port, " Z ", stepperZ.getCurrent());
#endif
#if ENABLED(X2_IS_TMC2130) || ENABLED(X2_IS_TMC2208)
SERIAL_ECHOPAIR_P(port, " X2 ", stepperX2.getCurrent());
#endif
#if ENABLED(Y2_IS_TMC2130) || ENABLED(Y2_IS_TMC2208)
SERIAL_ECHOPAIR_P(port, " Y2 ", stepperY2.getCurrent());
#endif
#if ENABLED(Z2_IS_TMC2130) || ENABLED(Z2_IS_TMC2208)
SERIAL_ECHOPAIR_P(port, " Z2 ", stepperZ2.getCurrent());
#endif
#if ENABLED(E0_IS_TMC2130) || ENABLED(E0_IS_TMC2208)
SERIAL_ECHOPAIR_P(port, " E0 ", stepperE0.getCurrent());
#endif
#if ENABLED(E1_IS_TMC2130) || ENABLED(E1_IS_TMC2208)
SERIAL_ECHOPAIR_P(port, " E1 ", stepperE1.getCurrent());
#endif
#if ENABLED(E2_IS_TMC2130) || ENABLED(E2_IS_TMC2208)
SERIAL_ECHOPAIR_P(port, " E2 ", stepperE2.getCurrent());
#endif
#if ENABLED(E3_IS_TMC2130) || ENABLED(E3_IS_TMC2208)
SERIAL_ECHOPAIR_P(port, " E3 ", stepperE3.getCurrent());
#endif
#if ENABLED(E4_IS_TMC2130) || ENABLED(E4_IS_TMC2208)
SERIAL_ECHOPAIR_P(port, " E4 ", stepperE4.getCurrent());
#endif
SERIAL_EOL_P(port);
#endif
/**
* TMC2130 Sensorless homing thresholds
*/
#if ENABLED(SENSORLESS_HOMING)
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM_P(port, "Sensorless homing threshold:");
}
CONFIG_ECHO_START;
SERIAL_ECHOPGM_P(port, " M914");
#ifdef X_HOMING_SENSITIVITY
#if ENABLED(X_IS_TMC2130)
SERIAL_ECHOPAIR_P(port, " X", stepperX.sgt());
#endif
#if ENABLED(X2_IS_TMC2130)
SERIAL_ECHOPAIR_P(port, " X2 ", stepperX2.sgt());
#endif
#endif
#ifdef Y_HOMING_SENSITIVITY
#if ENABLED(Y_IS_TMC2130)
SERIAL_ECHOPAIR_P(port, " Y", stepperY.sgt());
#endif
#if ENABLED(Y2_IS_TMC2130)
SERIAL_ECHOPAIR_P(port, " Y2 ", stepperY2.sgt());
#endif
#endif
#ifdef Z_HOMING_SENSITIVITY
#if ENABLED(Z_IS_TMC2130)
SERIAL_ECHOPAIR_P(port, " Z ", stepperZ.sgt());
#endif
#if ENABLED(Z2_IS_TMC2130)
SERIAL_ECHOPAIR_P(port, " Z2 ", stepperZ2.sgt());
#endif
#endif
SERIAL_EOL_P(port);
#endif
/**
* Linear Advance
*/
#if ENABLED(LIN_ADVANCE)
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM_P(port, "Linear Advance:");
}
CONFIG_ECHO_START;
SERIAL_ECHOLNPAIR_P(port, " M900 K", planner.extruder_advance_K);
#endif
#if HAS_MOTOR_CURRENT_PWM
CONFIG_ECHO_START;
if (!forReplay) {
SERIAL_ECHOLNPGM_P(port, "Stepper motor currents:");
CONFIG_ECHO_START;
}
SERIAL_ECHOPAIR_P(port, " M907 X", stepper.motor_current_setting[0]);
SERIAL_ECHOPAIR_P(port, " Z", stepper.motor_current_setting[1]);
SERIAL_ECHOPAIR_P(port, " E", stepper.motor_current_setting[2]);
SERIAL_EOL_P(port);
#endif
/**
* Advanced Pause filament load & unload lengths
*/
#if ENABLED(ADVANCED_PAUSE_FEATURE)
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM_P(port, "Filament load/unload lengths:");
}
CONFIG_ECHO_START;
#if EXTRUDERS == 1
SERIAL_ECHOPAIR_P(port, " M603 L", LINEAR_UNIT(filament_change_load_length[0]));
SERIAL_ECHOLNPAIR_P(port, " U", LINEAR_UNIT(filament_change_unload_length[0]));
#else
SERIAL_ECHOPAIR_P(port, " M603 T0 L", LINEAR_UNIT(filament_change_load_length[0]));
SERIAL_ECHOLNPAIR_P(port, " U", LINEAR_UNIT(filament_change_unload_length[0]));
CONFIG_ECHO_START;
SERIAL_ECHOPAIR_P(port, " M603 T1 L", LINEAR_UNIT(filament_change_load_length[1]));
SERIAL_ECHOLNPAIR_P(port, " U", LINEAR_UNIT(filament_change_unload_length[1]));
#if EXTRUDERS > 2
CONFIG_ECHO_START;
SERIAL_ECHOPAIR_P(port, " M603 T2 L", LINEAR_UNIT(filament_change_load_length[2]));
SERIAL_ECHOLNPAIR_P(port, " U", LINEAR_UNIT(filament_change_unload_length[2]));
#if EXTRUDERS > 3
CONFIG_ECHO_START;
SERIAL_ECHOPAIR_P(port, " M603 T3 L", LINEAR_UNIT(filament_change_load_length[3]));
SERIAL_ECHOLNPAIR_P(port, " U", LINEAR_UNIT(filament_change_unload_length[3]));
#if EXTRUDERS > 4
CONFIG_ECHO_START;
SERIAL_ECHOPAIR_P(port, " M603 T4 L", LINEAR_UNIT(filament_change_load_length[4]));
SERIAL_ECHOLNPAIR_P(port, " U", LINEAR_UNIT(filament_change_unload_length[4]));
#endif // EXTRUDERS > 4
#endif // EXTRUDERS > 3
#endif // EXTRUDERS > 2
#endif // EXTRUDERS == 1
#endif // ADVANCED_PAUSE_FEATURE
}
#endif // !DISABLE_M503