|
|
@ -559,25 +559,15 @@ static uint8_t target_extruder; |
|
|
|
float delta[ABC], |
|
|
|
endstop_adj[ABC] = { 0 }; |
|
|
|
|
|
|
|
// these are the default values, can be overriden with M665
|
|
|
|
float delta_radius = DELTA_RADIUS, |
|
|
|
delta_tower_angle_trim_1 = DELTA_TOWER_ANGLE_TRIM_1, |
|
|
|
delta_tower_angle_trim_2 = DELTA_TOWER_ANGLE_TRIM_2, |
|
|
|
delta_tower_angle_trim_3 = DELTA_TOWER_ANGLE_TRIM_3, |
|
|
|
delta_tower1_x = -sin(RADIANS(60 - delta_tower_angle_trim_1)) * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1), // front left tower
|
|
|
|
delta_tower1_y = -cos(RADIANS(60 - delta_tower_angle_trim_1)) * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1), |
|
|
|
delta_tower2_x = sin(RADIANS(60 + delta_tower_angle_trim_2)) * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2), // front right tower
|
|
|
|
delta_tower2_y = -cos(RADIANS(60 + delta_tower_angle_trim_2)) * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2), |
|
|
|
delta_tower3_x = -sin(RADIANS( delta_tower_angle_trim_3)), // back middle tower
|
|
|
|
delta_tower3_y = cos(RADIANS( delta_tower_angle_trim_3)) * (delta_radius + DELTA_RADIUS_TRIM_TOWER_3), |
|
|
|
delta_diagonal_rod = DELTA_DIAGONAL_ROD, |
|
|
|
delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1, |
|
|
|
delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2, |
|
|
|
delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3, |
|
|
|
delta_diagonal_rod_2_tower_1 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_1), |
|
|
|
delta_diagonal_rod_2_tower_2 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_2), |
|
|
|
delta_diagonal_rod_2_tower_3 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_3), |
|
|
|
delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND, |
|
|
|
// These values are loaded or reset at boot time when setup() calls
|
|
|
|
// Config_RetrieveSettings(), which calls recalc_delta_settings().
|
|
|
|
float delta_radius, |
|
|
|
delta_tower_angle_trim[ABC], |
|
|
|
delta_tower[ABC][2], |
|
|
|
delta_diagonal_rod, |
|
|
|
delta_diagonal_rod_trim[ABC], |
|
|
|
delta_diagonal_rod_2_tower[ABC], |
|
|
|
delta_segments_per_second, |
|
|
|
delta_clip_start_height = Z_MAX_POS; |
|
|
|
|
|
|
|
float delta_safe_distance_from_top(); |
|
|
@ -6334,12 +6324,12 @@ inline void gcode_M205() { |
|
|
|
if (code_seen('L')) delta_diagonal_rod = code_value_linear_units(); |
|
|
|
if (code_seen('R')) delta_radius = code_value_linear_units(); |
|
|
|
if (code_seen('S')) delta_segments_per_second = code_value_float(); |
|
|
|
if (code_seen('A')) delta_diagonal_rod_trim_tower_1 = code_value_linear_units(); |
|
|
|
if (code_seen('B')) delta_diagonal_rod_trim_tower_2 = code_value_linear_units(); |
|
|
|
if (code_seen('C')) delta_diagonal_rod_trim_tower_3 = code_value_linear_units(); |
|
|
|
if (code_seen('I')) delta_tower_angle_trim_1 = code_value_linear_units(); |
|
|
|
if (code_seen('J')) delta_tower_angle_trim_2 = code_value_linear_units(); |
|
|
|
if (code_seen('K')) delta_tower_angle_trim_3 = code_value_linear_units(); |
|
|
|
if (code_seen('A')) delta_diagonal_rod_trim[A_AXIS] = code_value_linear_units(); |
|
|
|
if (code_seen('B')) delta_diagonal_rod_trim[B_AXIS] = code_value_linear_units(); |
|
|
|
if (code_seen('C')) delta_diagonal_rod_trim[C_AXIS] = code_value_linear_units(); |
|
|
|
if (code_seen('I')) delta_tower_angle_trim[A_AXIS] = code_value_linear_units(); |
|
|
|
if (code_seen('J')) delta_tower_angle_trim[B_AXIS] = code_value_linear_units(); |
|
|
|
if (code_seen('K')) delta_tower_angle_trim[C_AXIS] = code_value_linear_units(); |
|
|
|
recalc_delta_settings(delta_radius, delta_diagonal_rod); |
|
|
|
} |
|
|
|
/**
|
|
|
@ -9143,15 +9133,15 @@ void ok_to_send() { |
|
|
|
* settings have been changed (e.g., by M665). |
|
|
|
*/ |
|
|
|
void recalc_delta_settings(float radius, float diagonal_rod) { |
|
|
|
delta_tower1_x = -sin(RADIANS(60 - delta_tower_angle_trim_1)) * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1), // front left tower
|
|
|
|
delta_tower1_y = -cos(RADIANS(60 - delta_tower_angle_trim_1)) * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1), |
|
|
|
delta_tower2_x = sin(RADIANS(60 + delta_tower_angle_trim_2)) * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2), // front right tower
|
|
|
|
delta_tower2_y = -cos(RADIANS(60 + delta_tower_angle_trim_2)) * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2), |
|
|
|
delta_tower3_x = -sin(RADIANS( delta_tower_angle_trim_3)), // back middle tower
|
|
|
|
delta_tower3_y = cos(RADIANS( delta_tower_angle_trim_3)) * (delta_radius + DELTA_RADIUS_TRIM_TOWER_3), |
|
|
|
delta_diagonal_rod_2_tower_1 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_1); |
|
|
|
delta_diagonal_rod_2_tower_2 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_2); |
|
|
|
delta_diagonal_rod_2_tower_3 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_3); |
|
|
|
delta_tower[A_AXIS][X_AXIS] = -sin(RADIANS(60 - delta_tower_angle_trim[A_AXIS])) * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1), // front left tower
|
|
|
|
delta_tower[A_AXIS][Y_AXIS] = -cos(RADIANS(60 - delta_tower_angle_trim[A_AXIS])) * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1), |
|
|
|
delta_tower[B_AXIS][X_AXIS] = sin(RADIANS(60 + delta_tower_angle_trim[B_AXIS])) * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2), // front right tower
|
|
|
|
delta_tower[B_AXIS][Y_AXIS] = -cos(RADIANS(60 + delta_tower_angle_trim[B_AXIS])) * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2), |
|
|
|
delta_tower[C_AXIS][X_AXIS] = -sin(RADIANS( delta_tower_angle_trim[C_AXIS])) * (delta_radius + DELTA_RADIUS_TRIM_TOWER_3), // back middle tower
|
|
|
|
delta_tower[C_AXIS][Y_AXIS] = cos(RADIANS( delta_tower_angle_trim[C_AXIS])) * (delta_radius + DELTA_RADIUS_TRIM_TOWER_3), |
|
|
|
delta_diagonal_rod_2_tower[A_AXIS] = sq(diagonal_rod + delta_diagonal_rod_trim[A_AXIS]); |
|
|
|
delta_diagonal_rod_2_tower[B_AXIS] = sq(diagonal_rod + delta_diagonal_rod_trim[B_AXIS]); |
|
|
|
delta_diagonal_rod_2_tower[C_AXIS] = sq(diagonal_rod + delta_diagonal_rod_trim[C_AXIS]); |
|
|
|
} |
|
|
|
|
|
|
|
#if ENABLED(DELTA_FAST_SQRT) |
|
|
@ -9201,17 +9191,17 @@ void ok_to_send() { |
|
|
|
*/ |
|
|
|
|
|
|
|
// Macro to obtain the Z position of an individual tower
|
|
|
|
#define DELTA_Z(T) raw[Z_AXIS] + _SQRT( \ |
|
|
|
delta_diagonal_rod_2_tower_##T - HYPOT2( \ |
|
|
|
delta_tower##T##_x - raw[X_AXIS], \ |
|
|
|
delta_tower##T##_y - raw[Y_AXIS] \ |
|
|
|
) \ |
|
|
|
#define DELTA_Z(T) raw[Z_AXIS] + _SQRT( \ |
|
|
|
delta_diagonal_rod_2_tower[T] - HYPOT2( \ |
|
|
|
delta_tower[T][X_AXIS] - raw[X_AXIS], \ |
|
|
|
delta_tower[T][Y_AXIS] - raw[Y_AXIS] \ |
|
|
|
) \ |
|
|
|
) |
|
|
|
|
|
|
|
#define DELTA_RAW_IK() do { \ |
|
|
|
delta[A_AXIS] = DELTA_Z(1); \ |
|
|
|
delta[B_AXIS] = DELTA_Z(2); \ |
|
|
|
delta[C_AXIS] = DELTA_Z(3); \ |
|
|
|
delta[A_AXIS] = DELTA_Z(A_AXIS); \ |
|
|
|
delta[B_AXIS] = DELTA_Z(B_AXIS); \ |
|
|
|
delta[C_AXIS] = DELTA_Z(C_AXIS); \ |
|
|
|
} while(0) |
|
|
|
|
|
|
|
#define DELTA_LOGICAL_IK() do { \ |
|
|
@ -9281,7 +9271,7 @@ void ok_to_send() { |
|
|
|
*/ |
|
|
|
void forward_kinematics_DELTA(float z1, float z2, float z3) { |
|
|
|
// Create a vector in old coordinates along x axis of new coordinate
|
|
|
|
float p12[3] = { delta_tower2_x - delta_tower1_x, delta_tower2_y - delta_tower1_y, z2 - z1 }; |
|
|
|
float p12[3] = { delta_tower[B_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS], delta_tower[B_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS], z2 - z1 }; |
|
|
|
|
|
|
|
// Get the Magnitude of vector.
|
|
|
|
float d = sqrt( sq(p12[0]) + sq(p12[1]) + sq(p12[2]) ); |
|
|
@ -9290,7 +9280,7 @@ void ok_to_send() { |
|
|
|
float ex[3] = { p12[0] / d, p12[1] / d, p12[2] / d }; |
|
|
|
|
|
|
|
// Get the vector from the origin of the new system to the third point.
|
|
|
|
float p13[3] = { delta_tower3_x - delta_tower1_x, delta_tower3_y - delta_tower1_y, z3 - z1 }; |
|
|
|
float p13[3] = { delta_tower[C_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS], delta_tower[C_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS], z3 - z1 }; |
|
|
|
|
|
|
|
// Use the dot product to find the component of this vector on the X axis.
|
|
|
|
float i = ex[0] * p13[0] + ex[1] * p13[1] + ex[2] * p13[2]; |
|
|
@ -9318,15 +9308,15 @@ void ok_to_send() { |
|
|
|
|
|
|
|
// We now have the d, i and j values defined in Wikipedia.
|
|
|
|
// Plug them into the equations defined in Wikipedia for Xnew, Ynew and Znew
|
|
|
|
float Xnew = (delta_diagonal_rod_2_tower_1 - delta_diagonal_rod_2_tower_2 + sq(d)) / (d * 2), |
|
|
|
Ynew = ((delta_diagonal_rod_2_tower_1 - delta_diagonal_rod_2_tower_3 + HYPOT2(i, j)) / 2 - i * Xnew) / j, |
|
|
|
Znew = sqrt(delta_diagonal_rod_2_tower_1 - HYPOT2(Xnew, Ynew)); |
|
|
|
float Xnew = (delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[B_AXIS] + sq(d)) / (d * 2), |
|
|
|
Ynew = ((delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[C_AXIS] + HYPOT2(i, j)) / 2 - i * Xnew) / j, |
|
|
|
Znew = sqrt(delta_diagonal_rod_2_tower[A_AXIS] - HYPOT2(Xnew, Ynew)); |
|
|
|
|
|
|
|
// Start from the origin of the old coordinates and add vectors in the
|
|
|
|
// old coords that represent the Xnew, Ynew and Znew to find the point
|
|
|
|
// in the old system.
|
|
|
|
cartes[X_AXIS] = delta_tower1_x + ex[0] * Xnew + ey[0] * Ynew - ez[0] * Znew; |
|
|
|
cartes[Y_AXIS] = delta_tower1_y + ex[1] * Xnew + ey[1] * Ynew - ez[1] * Znew; |
|
|
|
cartes[X_AXIS] = delta_tower[A_AXIS][X_AXIS] + ex[0] * Xnew + ey[0] * Ynew - ez[0] * Znew; |
|
|
|
cartes[Y_AXIS] = delta_tower[A_AXIS][Y_AXIS] + ex[1] * Xnew + ey[1] * Ynew - ez[1] * Znew; |
|
|
|
cartes[Z_AXIS] = z1 + ex[2] * Xnew + ey[2] * Ynew - ez[2] * Znew; |
|
|
|
} |
|
|
|
|
|
|
|