|
|
@ -45,6 +45,7 @@ |
|
|
|
* |
|
|
|
* Pn Number of probe points: |
|
|
|
* |
|
|
|
* P0 No probe. Normalize only. |
|
|
|
* P1 Probe center and set height only. |
|
|
|
* P2 Probe center and towers. Set height, endstops, and delta radius. |
|
|
|
* P3 Probe all positions: center, towers and opposite towers. Set all. |
|
|
@ -73,7 +74,7 @@ static void print_signed_float(const char * const prefix, const float &f) { |
|
|
|
SERIAL_PROTOCOL_F(f, 2); |
|
|
|
} |
|
|
|
|
|
|
|
static void print_G33_settings(const bool end_stops, const bool tower_angles){ // TODO echo these to LCD ???
|
|
|
|
static void print_G33_settings(const bool end_stops, const bool tower_angles) { |
|
|
|
SERIAL_PROTOCOLPAIR(".Height:", DELTA_HEIGHT + home_offset[Z_AXIS]); |
|
|
|
if (end_stops) { |
|
|
|
print_signed_float(PSTR(" Ex"), delta_endstop_adj[A_AXIS]); |
|
|
@ -86,7 +87,8 @@ static void print_G33_settings(const bool end_stops, const bool tower_angles){ / |
|
|
|
SERIAL_PROTOCOLPGM(".Tower angle : "); |
|
|
|
print_signed_float(PSTR("Tx"), delta_tower_angle_trim[A_AXIS]); |
|
|
|
print_signed_float(PSTR("Ty"), delta_tower_angle_trim[B_AXIS]); |
|
|
|
SERIAL_PROTOCOLLNPGM(" Tz:+0.00"); |
|
|
|
print_signed_float(PSTR("Tz"), delta_tower_angle_trim[C_AXIS]); |
|
|
|
SERIAL_EOL(); |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
@ -108,8 +110,8 @@ static void G33_cleanup( |
|
|
|
void GcodeSuite::G33() { |
|
|
|
|
|
|
|
const int8_t probe_points = parser.intval('P', DELTA_CALIBRATION_DEFAULT_POINTS); |
|
|
|
if (!WITHIN(probe_points, 1, 7)) { |
|
|
|
SERIAL_PROTOCOLLNPGM("?(P)oints is implausible (1-7)."); |
|
|
|
if (!WITHIN(probe_points, 0, 7)) { |
|
|
|
SERIAL_PROTOCOLLNPGM("?(P)oints is implausible (0-7)."); |
|
|
|
return; |
|
|
|
} |
|
|
|
|
|
|
@ -132,11 +134,12 @@ void GcodeSuite::G33() { |
|
|
|
} |
|
|
|
|
|
|
|
const bool towers_set = parser.boolval('T', true), |
|
|
|
_0p_calibration = probe_points == 0, |
|
|
|
_1p_calibration = probe_points == 1, |
|
|
|
_4p_calibration = probe_points == 2, |
|
|
|
_4p_towers_points = _4p_calibration && towers_set, |
|
|
|
_4p_opposite_points = _4p_calibration && !towers_set, |
|
|
|
_7p_calibration = probe_points >= 3, |
|
|
|
_7p_calibration = probe_points >= 3 || _0p_calibration, |
|
|
|
_7p_half_circle = probe_points == 3, |
|
|
|
_7p_double_circle = probe_points == 5, |
|
|
|
_7p_triple_circle = probe_points == 6, |
|
|
@ -157,17 +160,20 @@ void GcodeSuite::G33() { |
|
|
|
zero_std_dev = (verbose_level ? 999.0 : 0.0), // 0.0 in dry-run mode : forced end
|
|
|
|
zero_std_dev_old = zero_std_dev, |
|
|
|
zero_std_dev_min = zero_std_dev, |
|
|
|
e_old[XYZ] = { |
|
|
|
e_old[ABC] = { |
|
|
|
delta_endstop_adj[A_AXIS], |
|
|
|
delta_endstop_adj[B_AXIS], |
|
|
|
delta_endstop_adj[C_AXIS] |
|
|
|
}, |
|
|
|
dr_old = delta_radius, |
|
|
|
zh_old = home_offset[Z_AXIS], |
|
|
|
alpha_old = delta_tower_angle_trim[A_AXIS], |
|
|
|
beta_old = delta_tower_angle_trim[B_AXIS]; |
|
|
|
ta_old[ABC] = { |
|
|
|
delta_tower_angle_trim[A_AXIS], |
|
|
|
delta_tower_angle_trim[B_AXIS], |
|
|
|
delta_tower_angle_trim[C_AXIS] |
|
|
|
}; |
|
|
|
|
|
|
|
if (!_1p_calibration) { // test if the outer radius is reachable
|
|
|
|
if (!_1p_calibration && !_0p_calibration) { // test if the outer radius is reachable
|
|
|
|
const float circles = (_7p_quadruple_circle ? 1.5 : |
|
|
|
_7p_triple_circle ? 1.0 : |
|
|
|
_7p_double_circle ? 0.5 : 0), |
|
|
@ -198,9 +204,11 @@ void GcodeSuite::G33() { |
|
|
|
|
|
|
|
setup_for_endstop_or_probe_move(); |
|
|
|
endstops.enable(true); |
|
|
|
if (!home_delta()) |
|
|
|
return; |
|
|
|
endstops.not_homing(); |
|
|
|
if (!_0p_calibration) { |
|
|
|
if (!home_delta()) |
|
|
|
return; |
|
|
|
endstops.not_homing(); |
|
|
|
} |
|
|
|
|
|
|
|
// print settings
|
|
|
|
|
|
|
@ -213,67 +221,71 @@ void GcodeSuite::G33() { |
|
|
|
print_G33_settings(!_1p_calibration, _7p_calibration && towers_set); |
|
|
|
|
|
|
|
#if DISABLED(PROBE_MANUALLY) |
|
|
|
const float measured_z = probe_pt(dx, dy, stow_after_each, 1, false); // 1st probe to set height
|
|
|
|
if (isnan(measured_z)) return G33_CLEANUP(); |
|
|
|
home_offset[Z_AXIS] -= measured_z; |
|
|
|
if (!_0p_calibration) { |
|
|
|
const float measured_z = probe_pt(dx, dy, stow_after_each, 1, false); // 1st probe to set height
|
|
|
|
if (isnan(measured_z)) return G33_CLEANUP(); |
|
|
|
home_offset[Z_AXIS] -= measured_z; |
|
|
|
} |
|
|
|
#endif |
|
|
|
|
|
|
|
do { |
|
|
|
|
|
|
|
float z_at_pt[13] = { 0.0 }; |
|
|
|
|
|
|
|
test_precision = zero_std_dev_old != 999.0 ? (zero_std_dev + zero_std_dev_old) / 2 : zero_std_dev; |
|
|
|
test_precision = _0p_calibration ? 0.00 : zero_std_dev_old != 999.0 ? (zero_std_dev + zero_std_dev_old) / 2 : zero_std_dev; |
|
|
|
|
|
|
|
iterations++; |
|
|
|
|
|
|
|
// Probe the points
|
|
|
|
|
|
|
|
if (!_7p_half_circle && !_7p_triple_circle) { // probe the center
|
|
|
|
#if ENABLED(PROBE_MANUALLY) |
|
|
|
z_at_pt[0] += lcd_probe_pt(0, 0); |
|
|
|
#else |
|
|
|
z_at_pt[0] += probe_pt(dx, dy, stow_after_each, 1, false); |
|
|
|
if (isnan(z_at_pt[0])) return G33_CLEANUP(); |
|
|
|
#endif |
|
|
|
} |
|
|
|
if (_7p_calibration) { // probe extra center points
|
|
|
|
for (int8_t axis = _7p_multi_circle ? 11 : 9; axis > 0; axis -= _7p_multi_circle ? 2 : 4) { |
|
|
|
const float a = RADIANS(180 + 30 * axis), r = delta_calibration_radius * 0.1; |
|
|
|
if (!_0p_calibration){ |
|
|
|
if (!_7p_half_circle && !_7p_triple_circle) { // probe the center
|
|
|
|
#if ENABLED(PROBE_MANUALLY) |
|
|
|
z_at_pt[0] += lcd_probe_pt(cos(a) * r, sin(a) * r); |
|
|
|
z_at_pt[0] += lcd_probe_pt(0, 0); |
|
|
|
#else |
|
|
|
z_at_pt[0] += probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1); |
|
|
|
z_at_pt[0] += probe_pt(dx, dy, stow_after_each, 1, false); |
|
|
|
if (isnan(z_at_pt[0])) return G33_CLEANUP(); |
|
|
|
#endif |
|
|
|
} |
|
|
|
z_at_pt[0] /= float(_7p_double_circle ? 7 : probe_points); |
|
|
|
} |
|
|
|
if (!_1p_calibration) { // probe the radius
|
|
|
|
bool zig_zag = true; |
|
|
|
const uint8_t start = _4p_opposite_points ? 3 : 1, |
|
|
|
step = _4p_calibration ? 4 : _7p_half_circle ? 2 : 1; |
|
|
|
for (uint8_t axis = start; axis < 13; axis += step) { |
|
|
|
const float zigadd = (zig_zag ? 0.5 : 0.0), |
|
|
|
offset_circles = _7p_quadruple_circle ? zigadd + 1.0 : |
|
|
|
_7p_triple_circle ? zigadd + 0.5 : |
|
|
|
_7p_double_circle ? zigadd : 0; |
|
|
|
for (float circles = -offset_circles ; circles <= offset_circles; circles++) { |
|
|
|
const float a = RADIANS(180 + 30 * axis), |
|
|
|
r = delta_calibration_radius * (1 + circles * (zig_zag ? 0.1 : -0.1)); |
|
|
|
if (_7p_calibration) { // probe extra center points
|
|
|
|
for (int8_t axis = _7p_multi_circle ? 11 : 9; axis > 0; axis -= _7p_multi_circle ? 2 : 4) { |
|
|
|
const float a = RADIANS(180 + 30 * axis), r = delta_calibration_radius * 0.1; |
|
|
|
#if ENABLED(PROBE_MANUALLY) |
|
|
|
z_at_pt[axis] += lcd_probe_pt(cos(a) * r, sin(a) * r); |
|
|
|
z_at_pt[0] += lcd_probe_pt(cos(a) * r, sin(a) * r); |
|
|
|
#else |
|
|
|
z_at_pt[axis] += probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1); |
|
|
|
if (isnan(z_at_pt[axis])) return G33_CLEANUP(); |
|
|
|
z_at_pt[0] += probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1); |
|
|
|
if (isnan(z_at_pt[0])) return G33_CLEANUP(); |
|
|
|
#endif |
|
|
|
} |
|
|
|
zig_zag = !zig_zag; |
|
|
|
z_at_pt[axis] /= (2 * offset_circles + 1); |
|
|
|
z_at_pt[0] /= float(_7p_double_circle ? 7 : probe_points); |
|
|
|
} |
|
|
|
if (!_1p_calibration) { // probe the radius
|
|
|
|
bool zig_zag = true; |
|
|
|
const uint8_t start = _4p_opposite_points ? 3 : 1, |
|
|
|
step = _4p_calibration ? 4 : _7p_half_circle ? 2 : 1; |
|
|
|
for (uint8_t axis = start; axis < 13; axis += step) { |
|
|
|
const float zigadd = (zig_zag ? 0.5 : 0.0), |
|
|
|
offset_circles = _7p_quadruple_circle ? zigadd + 1.0 : |
|
|
|
_7p_triple_circle ? zigadd + 0.5 : |
|
|
|
_7p_double_circle ? zigadd : 0; |
|
|
|
for (float circles = -offset_circles ; circles <= offset_circles; circles++) { |
|
|
|
const float a = RADIANS(180 + 30 * axis), |
|
|
|
r = delta_calibration_radius * (1 + circles * (zig_zag ? 0.1 : -0.1)); |
|
|
|
#if ENABLED(PROBE_MANUALLY) |
|
|
|
z_at_pt[axis] += lcd_probe_pt(cos(a) * r, sin(a) * r); |
|
|
|
#else |
|
|
|
z_at_pt[axis] += probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1); |
|
|
|
if (isnan(z_at_pt[axis])) return G33_CLEANUP(); |
|
|
|
#endif |
|
|
|
} |
|
|
|
zig_zag = !zig_zag; |
|
|
|
z_at_pt[axis] /= (2 * offset_circles + 1); |
|
|
|
} |
|
|
|
} |
|
|
|
if (_7p_intermed_points) // average intermediates to tower and opposites
|
|
|
|
for (uint8_t axis = 1; axis < 13; axis += 2) |
|
|
|
z_at_pt[axis] = (z_at_pt[axis] + (z_at_pt[axis + 1] + z_at_pt[(axis + 10) % 12 + 1]) / 2.0) / 2.0; |
|
|
|
} |
|
|
|
if (_7p_intermed_points) // average intermediates to tower and opposites
|
|
|
|
for (uint8_t axis = 1; axis < 13; axis += 2) |
|
|
|
z_at_pt[axis] = (z_at_pt[axis] + (z_at_pt[axis + 1] + z_at_pt[(axis + 10) % 12 + 1]) / 2.0) / 2.0; |
|
|
|
|
|
|
|
float S1 = z_at_pt[0], |
|
|
|
S2 = sq(z_at_pt[0]); |
|
|
@ -294,27 +306,20 @@ void GcodeSuite::G33() { |
|
|
|
COPY(e_old, delta_endstop_adj); |
|
|
|
dr_old = delta_radius; |
|
|
|
zh_old = home_offset[Z_AXIS]; |
|
|
|
alpha_old = delta_tower_angle_trim[A_AXIS]; |
|
|
|
beta_old = delta_tower_angle_trim[B_AXIS]; |
|
|
|
COPY(ta_old, delta_tower_angle_trim); |
|
|
|
} |
|
|
|
|
|
|
|
float e_delta[XYZ] = { 0.0 }, r_delta = 0.0, t_alpha = 0.0, t_beta = 0.0; |
|
|
|
float e_delta[ABC] = { 0.0 }, r_delta = 0.0, t_delta[ABC] = { 0.0 }; |
|
|
|
const float r_diff = delta_radius - delta_calibration_radius, |
|
|
|
h_factor = 1.00 + r_diff * 0.001, //1.02 for r_diff = 20mm
|
|
|
|
r_factor = -(1.75 + 0.005 * r_diff + 0.001 * sq(r_diff)), //2.25 for r_diff = 20mm
|
|
|
|
a_factor = 100.0 / delta_calibration_radius; //1.25 for cal_rd = 80mm
|
|
|
|
h_factor = (1.00 + r_diff * 0.001) / 6.0, //1.02 / 6 for r_diff = 20mm
|
|
|
|
r_factor = -(1.75 + 0.005 * r_diff + 0.001 * sq(r_diff)) / 6.0, //2.25 / 6 for r_diff = 20mm
|
|
|
|
a_factor = 66.66 / delta_calibration_radius; //1.25 for cal_rd = 80mm
|
|
|
|
|
|
|
|
#define ZP(N,I) ((N) * z_at_pt[I]) |
|
|
|
#define Z1000(I) ZP(1.00, I) |
|
|
|
#define Z1050(I) ZP(h_factor, I) |
|
|
|
#define Z0700(I) ZP(h_factor * 2.0 / 3.00, I) |
|
|
|
#define Z0350(I) ZP(h_factor / 3.00, I) |
|
|
|
#define Z0175(I) ZP(h_factor / 6.00, I) |
|
|
|
#define Z2250(I) ZP(r_factor, I) |
|
|
|
#define Z0750(I) ZP(r_factor / 3.00, I) |
|
|
|
#define Z0375(I) ZP(r_factor / 6.00, I) |
|
|
|
#define Z0444(I) ZP(a_factor * 4.0 / 9.0, I) |
|
|
|
#define Z0888(I) ZP(a_factor * 8.0 / 9.0, I) |
|
|
|
#define Z6(I) ZP(6, I) |
|
|
|
#define Z4(I) ZP(4, I) |
|
|
|
#define Z2(I) ZP(2, I) |
|
|
|
#define Z1(I) ZP(1, I) |
|
|
|
|
|
|
|
#if ENABLED(PROBE_MANUALLY) |
|
|
|
test_precision = 0.00; // forced end
|
|
|
@ -323,58 +328,60 @@ void GcodeSuite::G33() { |
|
|
|
switch (probe_points) { |
|
|
|
case 1: |
|
|
|
test_precision = 0.00; // forced end
|
|
|
|
LOOP_XYZ(i) e_delta[i] = Z1000(0); |
|
|
|
LOOP_XYZ(axis) e_delta[axis] = Z1(0); |
|
|
|
break; |
|
|
|
|
|
|
|
case 2: |
|
|
|
if (towers_set) { |
|
|
|
e_delta[X_AXIS] = Z1050(0) + Z0700(1) - Z0350(5) - Z0350(9); |
|
|
|
e_delta[Y_AXIS] = Z1050(0) - Z0350(1) + Z0700(5) - Z0350(9); |
|
|
|
e_delta[Z_AXIS] = Z1050(0) - Z0350(1) - Z0350(5) + Z0700(9); |
|
|
|
r_delta = Z2250(0) - Z0750(1) - Z0750(5) - Z0750(9); |
|
|
|
e_delta[A_AXIS] = (Z6(0) + Z4(1) - Z2(5) - Z2(9)) * h_factor; |
|
|
|
e_delta[B_AXIS] = (Z6(0) - Z2(1) + Z4(5) - Z2(9)) * h_factor; |
|
|
|
e_delta[C_AXIS] = (Z6(0) - Z2(1) - Z2(5) + Z4(9)) * h_factor; |
|
|
|
r_delta = (Z6(0) - Z2(1) - Z2(5) - Z2(9)) * r_factor; |
|
|
|
} |
|
|
|
else { |
|
|
|
e_delta[X_AXIS] = Z1050(0) - Z0700(7) + Z0350(11) + Z0350(3); |
|
|
|
e_delta[Y_AXIS] = Z1050(0) + Z0350(7) - Z0700(11) + Z0350(3); |
|
|
|
e_delta[Z_AXIS] = Z1050(0) + Z0350(7) + Z0350(11) - Z0700(3); |
|
|
|
r_delta = Z2250(0) - Z0750(7) - Z0750(11) - Z0750(3); |
|
|
|
e_delta[A_AXIS] = (Z6(0) - Z4(7) + Z2(11) + Z2(3)) * h_factor; |
|
|
|
e_delta[B_AXIS] = (Z6(0) + Z2(7) - Z4(11) + Z2(3)) * h_factor; |
|
|
|
e_delta[C_AXIS] = (Z6(0) + Z2(7) + Z2(11) - Z4(3)) * h_factor; |
|
|
|
r_delta = (Z6(0) - Z2(7) - Z2(11) - Z2(3)) * r_factor; |
|
|
|
} |
|
|
|
break; |
|
|
|
|
|
|
|
default: |
|
|
|
e_delta[X_AXIS] = Z1050(0) + Z0350(1) - Z0175(5) - Z0175(9) - Z0350(7) + Z0175(11) + Z0175(3); |
|
|
|
e_delta[Y_AXIS] = Z1050(0) - Z0175(1) + Z0350(5) - Z0175(9) + Z0175(7) - Z0350(11) + Z0175(3); |
|
|
|
e_delta[Z_AXIS] = Z1050(0) - Z0175(1) - Z0175(5) + Z0350(9) + Z0175(7) + Z0175(11) - Z0350(3); |
|
|
|
r_delta = Z2250(0) - Z0375(1) - Z0375(5) - Z0375(9) - Z0375(7) - Z0375(11) - Z0375(3); |
|
|
|
e_delta[A_AXIS] = (Z6(0) + Z2(1) - Z1(5) - Z1(9) - Z2(7) + Z1(11) + Z1(3)) * h_factor; |
|
|
|
e_delta[B_AXIS] = (Z6(0) - Z1(1) + Z2(5) - Z1(9) + Z1(7) - Z2(11) + Z1(3)) * h_factor; |
|
|
|
e_delta[C_AXIS] = (Z6(0) - Z1(1) - Z1(5) + Z2(9) + Z1(7) + Z1(11) - Z2(3)) * h_factor; |
|
|
|
r_delta = (Z6(0) - Z1(1) - Z1(5) - Z1(9) - Z1(7) - Z1(11) - Z1(3)) * r_factor; |
|
|
|
|
|
|
|
if (towers_set) { |
|
|
|
t_alpha = Z0444(1) - Z0888(5) + Z0444(9) + Z0444(7) - Z0888(11) + Z0444(3); |
|
|
|
t_beta = Z0888(1) - Z0444(5) - Z0444(9) + Z0888(7) - Z0444(11) - Z0444(3); |
|
|
|
t_delta[A_AXIS] = ( - Z2(5) + Z1(9) - Z2(11) + Z1(3)) * a_factor; |
|
|
|
t_delta[B_AXIS] = ( Z2(1) - Z1(9) + Z2(7) - Z1(3)) * a_factor; |
|
|
|
t_delta[C_AXIS] = ( -Z2(1) + Z1(5) - Z2(7) + Z1(11) ) * a_factor; |
|
|
|
} |
|
|
|
break; |
|
|
|
} |
|
|
|
|
|
|
|
LOOP_XYZ(axis) delta_endstop_adj[axis] += e_delta[axis]; |
|
|
|
delta_radius += r_delta; |
|
|
|
delta_tower_angle_trim[A_AXIS] += t_alpha; |
|
|
|
delta_tower_angle_trim[B_AXIS] += t_beta; |
|
|
|
|
|
|
|
// adjust delta_height and endstops by the max amount
|
|
|
|
const float z_temp = MAX3(delta_endstop_adj[A_AXIS], delta_endstop_adj[B_AXIS], delta_endstop_adj[C_AXIS]); |
|
|
|
home_offset[Z_AXIS] -= z_temp; |
|
|
|
LOOP_XYZ(i) delta_endstop_adj[i] -= z_temp; |
|
|
|
|
|
|
|
recalc_delta_settings(delta_radius, delta_diagonal_rod); |
|
|
|
LOOP_XYZ(axis) delta_tower_angle_trim[axis] += t_delta[axis]; |
|
|
|
} |
|
|
|
else if (zero_std_dev >= test_precision) { // step one back
|
|
|
|
COPY(delta_endstop_adj, e_old); |
|
|
|
delta_radius = dr_old; |
|
|
|
home_offset[Z_AXIS] = zh_old; |
|
|
|
delta_tower_angle_trim[A_AXIS] = alpha_old; |
|
|
|
delta_tower_angle_trim[B_AXIS] = beta_old; |
|
|
|
|
|
|
|
recalc_delta_settings(delta_radius, delta_diagonal_rod); |
|
|
|
COPY(delta_tower_angle_trim, ta_old); |
|
|
|
} |
|
|
|
if (verbose_level != 0) { // !dry run
|
|
|
|
// normalise angles to least squares
|
|
|
|
float a_sum = 0.0; |
|
|
|
LOOP_XYZ(axis) a_sum += delta_tower_angle_trim[axis]; |
|
|
|
LOOP_XYZ(axis) delta_tower_angle_trim[axis] -= a_sum / 3.0; |
|
|
|
|
|
|
|
// adjust delta_height and endstops by the max amount
|
|
|
|
const float z_temp = MAX3(delta_endstop_adj[A_AXIS], delta_endstop_adj[B_AXIS], delta_endstop_adj[C_AXIS]); |
|
|
|
home_offset[Z_AXIS] -= z_temp; |
|
|
|
LOOP_XYZ(axis) delta_endstop_adj[axis] -= z_temp; |
|
|
|
} |
|
|
|
recalc_delta_settings(delta_radius, delta_diagonal_rod, delta_tower_angle_trim); |
|
|
|
NOMORE(zero_std_dev_min, zero_std_dev); |
|
|
|
|
|
|
|
// print report
|
|
|
|