/**
* Marlin 3 D Printer Firmware
* Copyright ( C ) 2016 MarlinFirmware [ https : //github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl .
* Copyright ( C ) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software : you can redistribute it and / or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation , either version 3 of the License , or
* ( at your option ) any later version .
*
* This program is distributed in the hope that it will be useful ,
* but WITHOUT ANY WARRANTY ; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the
* GNU General Public License for more details .
*
* You should have received a copy of the GNU General Public License
* along with this program . If not , see < http : //www.gnu.org/licenses/>.
*
*/
# include "ultralcd.h"
# if ENABLED(ULTRA_LCD)
# include "Marlin.h"
# include "language.h"
# include "cardreader.h"
# include "temperature.h"
# include "stepper.h"
# include "configuration_store.h"
/**
* REVERSE_MENU_DIRECTION
*
* To reverse the menu direction we need a general way to reverse
* the direction of the encoder everywhere . So encoderDirection is
* added to allow the encoder to go the other way .
*
* This behavior is limited to scrolling Menus and SD card listings ,
* and is disabled in other contexts .
*/
# if ENABLED(REVERSE_MENU_DIRECTION)
int8_t encoderDirection = 1 ;
# define ENCODER_DIRECTION_NORMAL() (encoderDirection = 1)
# define ENCODER_DIRECTION_MENUS() (encoderDirection = -1)
# else
# define ENCODER_DIRECTION_NORMAL() ;
# define ENCODER_DIRECTION_MENUS() ;
# endif
int8_t encoderDiff ; // updated from interrupt context and added to encoderPosition every LCD update
bool encoderRateMultiplierEnabled ;
int32_t lastEncoderMovementMillis ;
int plaPreheatHotendTemp ;
int plaPreheatHPBTemp ;
int plaPreheatFanSpeed ;
int absPreheatHotendTemp ;
int absPreheatHPBTemp ;
int absPreheatFanSpeed ;
# if ENABLED(FILAMENT_LCD_DISPLAY)
millis_t previous_lcd_status_ms = 0 ;
# endif
// Function pointer to menu functions.
typedef void ( * menuFunc_t ) ( ) ;
uint8_t lcd_status_message_level ;
char lcd_status_message [ 3 * ( LCD_WIDTH ) + 1 ] = WELCOME_MSG ; // worst case is kana with up to 3*LCD_WIDTH+1
# if ENABLED(DOGLCD)
# include "dogm_lcd_implementation.h"
# else
# include "ultralcd_implementation_hitachi_HD44780.h"
# endif
// The main status screen
static void lcd_status_screen ( ) ;
# if ENABLED(ULTIPANEL)
# if HAS_POWER_SWITCH
extern bool powersupply ;
# endif
const float manual_feedrate [ ] = MANUAL_FEEDRATE ;
static void lcd_main_menu ( ) ;
static void lcd_tune_menu ( ) ;
static void lcd_prepare_menu ( ) ;
static void lcd_move_menu ( ) ;
static void lcd_control_menu ( ) ;
static void lcd_control_temperature_menu ( ) ;
static void lcd_control_temperature_preheat_pla_settings_menu ( ) ;
static void lcd_control_temperature_preheat_abs_settings_menu ( ) ;
static void lcd_control_motion_menu ( ) ;
static void lcd_control_volumetric_menu ( ) ;
# if ENABLED(HAS_LCD_CONTRAST)
static void lcd_set_contrast ( ) ;
# endif
# if ENABLED(FWRETRACT)
static void lcd_control_retract_menu ( ) ;
# endif
# if ENABLED(DELTA_CALIBRATION_MENU)
static void lcd_delta_calibrate_menu ( ) ;
# endif
# if ENABLED(MANUAL_BED_LEVELING)
# include "mesh_bed_leveling.h"
# endif
/* Different types of actions that can be used in menu items. */
static void menu_action_back ( ) ;
static void menu_action_submenu ( menuFunc_t data ) ;
static void menu_action_gcode ( const char * pgcode ) ;
static void menu_action_function ( menuFunc_t data ) ;
static void menu_action_setting_edit_bool ( const char * pstr , bool * ptr ) ;
static void menu_action_setting_edit_int3 ( const char * pstr , int * ptr , int minValue , int maxValue ) ;
static void menu_action_setting_edit_float3 ( const char * pstr , float * ptr , float minValue , float maxValue ) ;
static void menu_action_setting_edit_float32 ( const char * pstr , float * ptr , float minValue , float maxValue ) ;
static void menu_action_setting_edit_float43 ( const char * pstr , float * ptr , float minValue , float maxValue ) ;
static void menu_action_setting_edit_float5 ( const char * pstr , float * ptr , float minValue , float maxValue ) ;
static void menu_action_setting_edit_float51 ( const char * pstr , float * ptr , float minValue , float maxValue ) ;
static void menu_action_setting_edit_float52 ( const char * pstr , float * ptr , float minValue , float maxValue ) ;
static void menu_action_setting_edit_long5 ( const char * pstr , unsigned long * ptr , unsigned long minValue , unsigned long maxValue ) ;
static void menu_action_setting_edit_callback_bool ( const char * pstr , bool * ptr , menuFunc_t callbackFunc ) ;
static void menu_action_setting_edit_callback_int3 ( const char * pstr , int * ptr , int minValue , int maxValue , menuFunc_t callbackFunc ) ;
static void menu_action_setting_edit_callback_float3 ( const char * pstr , float * ptr , float minValue , float maxValue , menuFunc_t callbackFunc ) ;
static void menu_action_setting_edit_callback_float32 ( const char * pstr , float * ptr , float minValue , float maxValue , menuFunc_t callbackFunc ) ;
static void menu_action_setting_edit_callback_float43 ( const char * pstr , float * ptr , float minValue , float maxValue , menuFunc_t callbackFunc ) ;
static void menu_action_setting_edit_callback_float5 ( const char * pstr , float * ptr , float minValue , float maxValue , menuFunc_t callbackFunc ) ;
static void menu_action_setting_edit_callback_float51 ( const char * pstr , float * ptr , float minValue , float maxValue , menuFunc_t callbackFunc ) ;
static void menu_action_setting_edit_callback_float52 ( const char * pstr , float * ptr , float minValue , float maxValue , menuFunc_t callbackFunc ) ;
static void menu_action_setting_edit_callback_long5 ( const char * pstr , unsigned long * ptr , unsigned long minValue , unsigned long maxValue , menuFunc_t callbackFunc ) ;
# if ENABLED(SDSUPPORT)
static void lcd_sdcard_menu ( ) ;
static void menu_action_sdfile ( const char * filename , char * longFilename ) ;
static void menu_action_sddirectory ( const char * filename , char * longFilename ) ;
# endif
# define ENCODER_FEEDRATE_DEADZONE 10
# if DISABLED(LCD_I2C_VIKI)
# ifndef ENCODER_STEPS_PER_MENU_ITEM
# define ENCODER_STEPS_PER_MENU_ITEM 5
# endif
# ifndef ENCODER_PULSES_PER_STEP
# define ENCODER_PULSES_PER_STEP 1
# endif
# else
# ifndef ENCODER_STEPS_PER_MENU_ITEM
# define ENCODER_STEPS_PER_MENU_ITEM 2 // VIKI LCD rotary encoder uses a different number of steps per rotation
# endif
# ifndef ENCODER_PULSES_PER_STEP
# define ENCODER_PULSES_PER_STEP 1
# endif
# endif
/* Helper macros for menus */
/**
* START_MENU generates the init code for a menu function
*/
# define START_MENU() do { \
ENCODER_DIRECTION_MENUS ( ) ; \
encoderRateMultiplierEnabled = false ; \
if ( encoderPosition > 0x8000 ) encoderPosition = 0 ; \
uint8_t encoderLine = encoderPosition / ENCODER_STEPS_PER_MENU_ITEM ; \
NOMORE ( currentMenuViewOffset , encoderLine ) ; \
uint8_t _lineNr = currentMenuViewOffset , _menuItemNr ; \
bool wasClicked = LCD_CLICKED , itemSelected ; \
for ( uint8_t _drawLineNr = 0 ; _drawLineNr < LCD_HEIGHT ; _drawLineNr + + , _lineNr + + ) { \
_menuItemNr = 0 ;
/**
* MENU_ITEM generates draw & handler code for a menu item , potentially calling :
*
* lcd_implementation_drawmenu_ [ type ] ( sel , row , label , arg3 . . . )
* menu_action_ [ type ] ( arg3 . . . )
*
* Examples :
* MENU_ITEM ( back , MSG_WATCH )
* lcd_implementation_drawmenu_back ( sel , row , PSTR ( MSG_WATCH ) )
* menu_action_back ( )
*
* MENU_ITEM ( function , MSG_PAUSE_PRINT , lcd_sdcard_pause )
* lcd_implementation_drawmenu_function ( sel , row , PSTR ( MSG_PAUSE_PRINT ) , lcd_sdcard_pause )
* menu_action_function ( lcd_sdcard_pause )
*
* MENU_ITEM_EDIT ( int3 , MSG_SPEED , & feedrate_multiplier , 10 , 999 )
* MENU_ITEM ( setting_edit_int3 , MSG_SPEED , PSTR ( MSG_SPEED ) , & feedrate_multiplier , 10 , 999 )
* lcd_implementation_drawmenu_setting_edit_int3 ( sel , row , PSTR ( MSG_SPEED ) , PSTR ( MSG_SPEED ) , & feedrate_multiplier , 10 , 999 )
* menu_action_setting_edit_int3 ( PSTR ( MSG_SPEED ) , & feedrate_multiplier , 10 , 999 )
*
*/
# define _MENU_ITEM_PART_1(type, label, args...) \
if ( _menuItemNr = = _lineNr ) { \
itemSelected = encoderLine = = _menuItemNr ; \
if ( lcdDrawUpdate ) \
lcd_implementation_drawmenu_ # # type ( itemSelected , _drawLineNr , PSTR ( label ) , # # args ) ; \
if ( wasClicked & & itemSelected ) { \
lcd_quick_feedback ( )
# define _MENU_ITEM_PART_2(type, args...) \
menu_action_ # # type ( args ) ; \
return ; \
} \
} \
_menuItemNr + +
# define MENU_ITEM(type, label, args...) do { \
_MENU_ITEM_PART_1 ( type , label , # # args ) ; \
_MENU_ITEM_PART_2 ( type , # # args ) ; \
} while ( 0 )
# if ENABLED(ENCODER_RATE_MULTIPLIER)
//#define ENCODER_RATE_MULTIPLIER_DEBUG // If defined, output the encoder steps per second value
/**
* MENU_MULTIPLIER_ITEM generates drawing and handling code for a multiplier menu item
*/
# define MENU_MULTIPLIER_ITEM(type, label, args...) do { \
_MENU_ITEM_PART_1 ( type , label , # # args ) ; \
encoderRateMultiplierEnabled = true ; \
lastEncoderMovementMillis = 0 ; \
_MENU_ITEM_PART_2 ( type , # # args ) ; \
} while ( 0 )
# endif //ENCODER_RATE_MULTIPLIER
# define MENU_ITEM_DUMMY() do { _menuItemNr++; } while(0)
# define MENU_ITEM_EDIT(type, label, args...) MENU_ITEM(setting_edit_ ## type, label, PSTR(label), ## args)
# define MENU_ITEM_EDIT_CALLBACK(type, label, args...) MENU_ITEM(setting_edit_callback_ ## type, label, PSTR(label), ## args)
# if ENABLED(ENCODER_RATE_MULTIPLIER)
# define MENU_MULTIPLIER_ITEM_EDIT(type, label, args...) MENU_MULTIPLIER_ITEM(setting_edit_ ## type, label, PSTR(label), ## args)
# define MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(type, label, args...) MENU_MULTIPLIER_ITEM(setting_edit_callback_ ## type, label, PSTR(label), ## args)
# else //!ENCODER_RATE_MULTIPLIER
# define MENU_MULTIPLIER_ITEM_EDIT(type, label, args...) MENU_ITEM(setting_edit_ ## type, label, PSTR(label), ## args)
# define MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(type, label, args...) MENU_ITEM(setting_edit_callback_ ## type, label, PSTR(label), ## args)
# endif //!ENCODER_RATE_MULTIPLIER
# define END_MENU() \
if ( encoderLine > = _menuItemNr ) { encoderPosition = _menuItemNr * ( ENCODER_STEPS_PER_MENU_ITEM ) - 1 ; encoderLine = _menuItemNr - 1 ; } \
if ( encoderLine > = currentMenuViewOffset + LCD_HEIGHT ) { currentMenuViewOffset = encoderLine - ( LCD_HEIGHT ) + 1 ; lcdDrawUpdate = LCDVIEW_CALL_REDRAW_NEXT ; _lineNr = currentMenuViewOffset - 1 ; _drawLineNr = - 1 ; } \
} } while ( 0 )
/** Used variables to keep track of the menu */
volatile uint8_t buttons ; //the last checked buttons in a bit array.
# if ENABLED(REPRAPWORLD_KEYPAD)
volatile uint8_t buttons_reprapworld_keypad ; // to store the keypad shift register values
# endif
# if ENABLED(LCD_HAS_SLOW_BUTTONS)
volatile uint8_t slow_buttons ; // Bits of the pressed buttons.
# endif
uint8_t currentMenuViewOffset ; /* scroll offset in the current menu */
millis_t next_button_update_ms ;
uint8_t lastEncoderBits ;
uint32_t encoderPosition ;
# if PIN_EXISTS(SD_DETECT)
uint8_t lcd_sd_status ;
# endif
# endif // ULTIPANEL
typedef struct {
menuFunc_t menu_function ;
# if ENABLED(ULTIPANEL)
uint32_t encoder_position ;
# endif
} menuPosition ;
menuFunc_t currentMenu = lcd_status_screen ; // pointer to the currently active menu handler
menuPosition menu_history [ 10 ] ;
uint8_t menu_history_depth = 0 ;
millis_t next_lcd_update_ms ;
uint8_t lcd_status_update_delay ;
bool ignore_click = false ;
bool wait_for_unclick ;
bool defer_return_to_status = false ;
enum LCDViewAction {
LCDVIEW_NONE ,
LCDVIEW_REDRAW_NOW ,
LCDVIEW_CALL_REDRAW_NEXT ,
LCDVIEW_CLEAR_CALL_REDRAW ,
LCDVIEW_CALL_NO_REDRAW
} ;
uint8_t lcdDrawUpdate = LCDVIEW_CLEAR_CALL_REDRAW ; // Set when the LCD needs to draw, decrements after every draw. Set to 2 in LCD routines so the LCD gets at least 1 full redraw (first redraw is partial)
// Variables used when editing values.
const char * editLabel ;
void * editValue ;
int32_t minEditValue , maxEditValue ;
menuFunc_t callbackFunc ; // call this after editing
Allow Edit menu to call fn after edit; Fix PID Ki and Kd display in menus; Actually use changed PID and Max Accel values
Add new 'callback' edit-menu types that call a function after the edit is done. Use this to display and edit Ki and Kd correctly (removing the scaling first and reapplying it after). Also use it to reset maximum stepwise acceleration rates, after updating mm/s^2 rates via menus. (Previously, changes did nothing to affect planner unless saved back to EEPROM, and the machine reset).
Add calls to updatePID() so that PID loop uses updated values whether set by gcode (it already did this), or by restoring defaults, or loading from EEPROM (it didn't do those last two). Similarly, update the maximum step/s^2 accel rates when the mm/s^2 values are changed - whether by menu edits, restore defaults, or EEPROM read.
Refactor the acceleration rate update logic, and the PID scaling logic, into new functions that can be called from wherever, including the callbacks.
Add menu items to allow the z jerk and e jerk to be viewed/edited in the Control->Motion menu, as per xy jerk.
Conflicts:
Marlin/language.h
12 years ago
// place-holders for Ki and Kd edits
Allow Edit menu to call fn after edit; Fix PID Ki and Kd display in menus; Actually use changed PID and Max Accel values
Add new 'callback' edit-menu types that call a function after the edit is done. Use this to display and edit Ki and Kd correctly (removing the scaling first and reapplying it after). Also use it to reset maximum stepwise acceleration rates, after updating mm/s^2 rates via menus. (Previously, changes did nothing to affect planner unless saved back to EEPROM, and the machine reset).
Add calls to updatePID() so that PID loop uses updated values whether set by gcode (it already did this), or by restoring defaults, or loading from EEPROM (it didn't do those last two). Similarly, update the maximum step/s^2 accel rates when the mm/s^2 values are changed - whether by menu edits, restore defaults, or EEPROM read.
Refactor the acceleration rate update logic, and the PID scaling logic, into new functions that can be called from wherever, including the callbacks.
Add menu items to allow the z jerk and e jerk to be viewed/edited in the Control->Motion menu, as per xy jerk.
Conflicts:
Marlin/language.h
12 years ago
float raw_Ki , raw_Kd ;
/**
* General function to go directly to a menu
* Remembers the previous position
*/
static void lcd_goto_menu ( menuFunc_t menu , const bool feedback = false , const uint32_t encoder = 0 ) {
if ( currentMenu ! = menu ) {
currentMenu = menu ;
lcdDrawUpdate = LCDVIEW_CLEAR_CALL_REDRAW ;
# if ENABLED(NEWPANEL)
encoderPosition = encoder ;
if ( feedback ) lcd_quick_feedback ( ) ;
# endif
if ( menu = = lcd_status_screen ) {
defer_return_to_status = false ;
menu_history_depth = 0 ;
}
# if ENABLED(LCD_PROGRESS_BAR)
// For LCD_PROGRESS_BAR re-initialize custom characters
lcd_set_custom_characters ( menu = = lcd_status_screen ) ;
# endif
}
}
static void lcd_return_to_status ( ) { lcd_goto_menu ( lcd_status_screen ) ; }
inline void lcd_save_previous_menu ( ) {
if ( menu_history_depth < COUNT ( menu_history ) ) {
menu_history [ menu_history_depth ] . menu_function = currentMenu ;
# if ENABLED(ULTIPANEL)
menu_history [ menu_history_depth ] . encoder_position = encoderPosition ;
# endif
+ + menu_history_depth ;
}
}
static void lcd_goto_previous_menu ( bool feedback = false ) {
if ( menu_history_depth > 0 ) {
- - menu_history_depth ;
lcd_goto_menu ( menu_history [ menu_history_depth ] . menu_function , feedback
# if ENABLED(ULTIPANEL)
, menu_history [ menu_history_depth ] . encoder_position
# endif
) ;
}
else
lcd_return_to_status ( ) ;
}
/**
*
* " Info Screen "
*
* This is very display - dependent , so the lcd implementation draws this .
*/
static void lcd_status_screen ( ) {
ENCODER_DIRECTION_NORMAL ( ) ;
encoderRateMultiplierEnabled = false ;
# if ENABLED(LCD_PROGRESS_BAR)
millis_t ms = millis ( ) ;
# if DISABLED(PROGRESS_MSG_ONCE)
if ( ELAPSED ( ms , progress_bar_ms + PROGRESS_BAR_MSG_TIME + PROGRESS_BAR_BAR_TIME ) ) {
progress_bar_ms = ms ;
}
# endif
# if PROGRESS_MSG_EXPIRE > 0
// Handle message expire
if ( expire_status_ms > 0 ) {
# if ENABLED(SDSUPPORT)
if ( card . isFileOpen ( ) ) {
// Expire the message when printing is active
if ( IS_SD_PRINTING ) {
if ( ELAPSED ( ms , expire_status_ms ) ) {
lcd_status_message [ 0 ] = ' \0 ' ;
expire_status_ms = 0 ;
}
}
else {
expire_status_ms + = LCD_UPDATE_INTERVAL ;
}
}
else {
expire_status_ms = 0 ;
}
# else
expire_status_ms = 0 ;
# endif //SDSUPPORT
}
# endif
# endif //LCD_PROGRESS_BAR
lcd_implementation_status_screen ( ) ;
# if ENABLED(ULTIPANEL)
bool current_click = LCD_CLICKED ;
if ( ignore_click ) {
if ( wait_for_unclick ) {
if ( ! current_click )
ignore_click = wait_for_unclick = false ;
else
current_click = false ;
}
else if ( current_click ) {
lcd_quick_feedback ( ) ;
wait_for_unclick = true ;
current_click = false ;
}
}
if ( current_click ) {
lcd_goto_menu ( lcd_main_menu , true ) ;
lcd_implementation_init ( // to maybe revive the LCD if static electricity killed it.
# if ENABLED(LCD_PROGRESS_BAR)
currentMenu = = lcd_status_screen
# endif
) ;
# if ENABLED(FILAMENT_LCD_DISPLAY)
previous_lcd_status_ms = millis ( ) ; // get status message to show up for a while
# endif
}
# if ENABLED(ULTIPANEL_FEEDMULTIPLY)
int new_frm = feedrate_multiplier + ( int32_t ) encoderPosition ;
// Dead zone at 100% feedrate
if ( ( feedrate_multiplier < 100 & & new_frm > 100 ) | | ( feedrate_multiplier > 100 & & new_frm < 100 ) ) {
feedrate_multiplier = 100 ;
encoderPosition = 0 ;
}
else if ( feedrate_multiplier = = 100 ) {
if ( ( int32_t ) encoderPosition > ENCODER_FEEDRATE_DEADZONE ) {
feedrate_multiplier + = ( int32_t ) encoderPosition - ( ENCODER_FEEDRATE_DEADZONE ) ;
encoderPosition = 0 ;
}
else if ( ( int32_t ) encoderPosition < - ( ENCODER_FEEDRATE_DEADZONE ) ) {
feedrate_multiplier + = ( int32_t ) encoderPosition + ENCODER_FEEDRATE_DEADZONE ;
encoderPosition = 0 ;
}
}
else {
feedrate_multiplier = new_frm ;
encoderPosition = 0 ;
}
# endif // ULTIPANEL_FEEDMULTIPLY
feedrate_multiplier = constrain ( feedrate_multiplier , 10 , 999 ) ;
# endif //ULTIPANEL
}
# if ENABLED(ULTIPANEL)
inline void line_to_current ( AxisEnum axis ) {
# if ENABLED(DELTA)
calculate_delta ( current_position ) ;
planner . buffer_line ( delta [ X_AXIS ] , delta [ Y_AXIS ] , delta [ Z_AXIS ] , current_position [ E_AXIS ] , manual_feedrate [ axis ] / 60 , active_extruder ) ;
# else
planner . buffer_line ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] , manual_feedrate [ axis ] / 60 , active_extruder ) ;
# endif
}
# if ENABLED(SDSUPPORT)
static void lcd_sdcard_pause ( ) { card . pauseSDPrint ( ) ; }
static void lcd_sdcard_resume ( ) { card . startFileprint ( ) ; }
static void lcd_sdcard_stop ( ) {
stepper . quick_stop ( ) ;
card . sdprinting = false ;
card . closefile ( ) ;
autotempShutdown ( ) ;
cancel_heatup = true ;
lcd_setstatus ( MSG_PRINT_ABORTED , true ) ;
}
# endif //SDSUPPORT
/**
*
* " Main " menu
*
*/
static void lcd_main_menu ( ) {
START_MENU ( ) ;
MENU_ITEM ( back , MSG_WATCH ) ;
if ( planner . movesplanned ( ) | | IS_SD_PRINTING ) {
MENU_ITEM ( submenu , MSG_TUNE , lcd_tune_menu ) ;
}
else {
MENU_ITEM ( submenu , MSG_PREPARE , lcd_prepare_menu ) ;
# if ENABLED(DELTA_CALIBRATION_MENU)
MENU_ITEM ( submenu , MSG_DELTA_CALIBRATE , lcd_delta_calibrate_menu ) ;
# endif
}
MENU_ITEM ( submenu , MSG_CONTROL , lcd_control_menu ) ;
# if ENABLED(SDSUPPORT)
if ( card . cardOK ) {
if ( card . isFileOpen ( ) ) {
if ( card . sdprinting )
MENU_ITEM ( function , MSG_PAUSE_PRINT , lcd_sdcard_pause ) ;
else
MENU_ITEM ( function , MSG_RESUME_PRINT , lcd_sdcard_resume ) ;
MENU_ITEM ( function , MSG_STOP_PRINT , lcd_sdcard_stop ) ;
}
else {
MENU_ITEM ( submenu , MSG_CARD_MENU , lcd_sdcard_menu ) ;
# if !PIN_EXISTS(SD_DETECT)
MENU_ITEM ( gcode , MSG_CNG_SDCARD , PSTR ( " M21 " ) ) ; // SD-card changed by user
# endif
}
}
else {
MENU_ITEM ( submenu , MSG_NO_CARD , lcd_sdcard_menu ) ;
# if !PIN_EXISTS(SD_DETECT)
MENU_ITEM ( gcode , MSG_INIT_SDCARD , PSTR ( " M21 " ) ) ; // Manually initialize the SD-card via user interface
# endif
}
# endif //SDSUPPORT
END_MENU ( ) ;
}
/**
*
* " Tune " submenu items
*
*/
/**
* Set the home offset based on the current_position
*/
void lcd_set_home_offsets ( ) {
// M428 Command
enqueue_and_echo_commands_P ( PSTR ( " M428 " ) ) ;
lcd_return_to_status ( ) ;
}
# if ENABLED(BABYSTEPPING)
Add the socalled "Babystepping" feature.
It is a realtime control over the head position via the LCD menu system that works _while_ printing.
Using it, one can e.g. tune the z-position in realtime, while printing the first layer.
Also, lost steps can be manually added/removed, but thats not the prime feature.
Stuff is placed into the Tune->Babystep *
It is not possible to have realtime control via gcode sending due to the buffering, so I did not include a gcode yet. However, it could be added, but it movements will not be realtime then.
Historically, a very similar thing was implemented for the "Kaamermaker" project, while Joris was babysitting his offspring, hence the name.
say goodby to fuddling around with the z-axis.
11 years ago
int babysteps_done = 0 ;
static void _lcd_babystep ( const int axis , const char * msg ) {
ENCODER_DIRECTION_NORMAL ( ) ;
if ( encoderPosition ) {
int distance = ( int32_t ) encoderPosition * BABYSTEP_MULTIPLICATOR ;
encoderPosition = 0 ;
lcdDrawUpdate = LCDVIEW_REDRAW_NOW ;
# if ENABLED(COREXY) || ENABLED(COREXZ)
# if ENABLED(BABYSTEP_XY)
switch ( axis ) {
case X_AXIS : // X on CoreXY and CoreXZ
babystepsTodo [ A_AXIS ] + = distance * 2 ;
babystepsTodo [ CORE_AXIS_2 ] + = distance * 2 ;
break ;
case CORE_AXIS_2 : // Y on CoreXY, Z on CoreXZ
babystepsTodo [ A_AXIS ] + = distance * 2 ;
babystepsTodo [ CORE_AXIS_2 ] - = distance * 2 ;
break ;
case CORE_AXIS_3 : // Z on CoreXY, Y on CoreXZ
babystepsTodo [ CORE_AXIS_3 ] + = distance ;
break ;
}
# elif ENABLED(COREXZ)
babystepsTodo [ A_AXIS ] + = distance * 2 ;
babystepsTodo [ C_AXIS ] - = distance * 2 ;
# else
babystepsTodo [ Z_AXIS ] + = distance ;
# endif
# else
babystepsTodo [ axis ] + = distance ;
# endif
babysteps_done + = distance ;
Add the socalled "Babystepping" feature.
It is a realtime control over the head position via the LCD menu system that works _while_ printing.
Using it, one can e.g. tune the z-position in realtime, while printing the first layer.
Also, lost steps can be manually added/removed, but thats not the prime feature.
Stuff is placed into the Tune->Babystep *
It is not possible to have realtime control via gcode sending due to the buffering, so I did not include a gcode yet. However, it could be added, but it movements will not be realtime then.
Historically, a very similar thing was implemented for the "Kaamermaker" project, while Joris was babysitting his offspring, hence the name.
say goodby to fuddling around with the z-axis.
11 years ago
}
if ( lcdDrawUpdate ) lcd_implementation_drawedit ( msg , itostr3sign ( babysteps_done ) ) ;
if ( LCD_CLICKED ) lcd_goto_previous_menu ( true ) ;
}
# if ENABLED(BABYSTEP_XY)
static void _lcd_babystep_x ( ) { _lcd_babystep ( X_AXIS , PSTR ( MSG_BABYSTEPPING_X ) ) ; }
static void _lcd_babystep_y ( ) { _lcd_babystep ( Y_AXIS , PSTR ( MSG_BABYSTEPPING_Y ) ) ; }
static void lcd_babystep_x ( ) { babysteps_done = 0 ; lcd_goto_menu ( _lcd_babystep_x ) ; }
static void lcd_babystep_y ( ) { babysteps_done = 0 ; lcd_goto_menu ( _lcd_babystep_y ) ; }
# endif
static void _lcd_babystep_z ( ) { _lcd_babystep ( Z_AXIS , PSTR ( MSG_BABYSTEPPING_Z ) ) ; }
static void lcd_babystep_z ( ) { babysteps_done = 0 ; lcd_goto_menu ( _lcd_babystep_z ) ; }
Add the socalled "Babystepping" feature.
It is a realtime control over the head position via the LCD menu system that works _while_ printing.
Using it, one can e.g. tune the z-position in realtime, while printing the first layer.
Also, lost steps can be manually added/removed, but thats not the prime feature.
Stuff is placed into the Tune->Babystep *
It is not possible to have realtime control via gcode sending due to the buffering, so I did not include a gcode yet. However, it could be added, but it movements will not be realtime then.
Historically, a very similar thing was implemented for the "Kaamermaker" project, while Joris was babysitting his offspring, hence the name.
say goodby to fuddling around with the z-axis.
11 years ago
# endif //BABYSTEPPING
/**
* Watch temperature callbacks
*/
# if ENABLED(THERMAL_PROTECTION_HOTENDS)
# if TEMP_SENSOR_0 != 0
void watch_temp_callback_E0 ( ) { start_watching_heater ( 0 ) ; }
# endif
# if EXTRUDERS > 1 && TEMP_SENSOR_1 != 0
void watch_temp_callback_E1 ( ) { start_watching_heater ( 1 ) ; }
# endif // EXTRUDERS > 1
# if EXTRUDERS > 2 && TEMP_SENSOR_2 != 0
void watch_temp_callback_E2 ( ) { start_watching_heater ( 2 ) ; }
# endif // EXTRUDERS > 2
# if EXTRUDERS > 3 && TEMP_SENSOR_3 != 0
void watch_temp_callback_E3 ( ) { start_watching_heater ( 3 ) ; }
# endif // EXTRUDERS > 3
# else
# if TEMP_SENSOR_0 != 0
void watch_temp_callback_E0 ( ) { }
# endif
# if EXTRUDERS > 1 && TEMP_SENSOR_1 != 0
void watch_temp_callback_E1 ( ) { }
# endif // EXTRUDERS > 1
# if EXTRUDERS > 2 && TEMP_SENSOR_2 != 0
void watch_temp_callback_E2 ( ) { }
# endif // EXTRUDERS > 2
# if EXTRUDERS > 3 && TEMP_SENSOR_3 != 0
void watch_temp_callback_E3 ( ) { }
# endif // EXTRUDERS > 3
# endif
/**
*
* " Tune " submenu
*
*/
static void lcd_tune_menu ( ) {
START_MENU ( ) ;
//
// ^ Main
//
MENU_ITEM ( back , MSG_MAIN ) ;
//
// Speed:
//
MENU_ITEM_EDIT ( int3 , MSG_SPEED , & feedrate_multiplier , 10 , 999 ) ;
// Manual bed leveling, Bed Z:
# if ENABLED(MANUAL_BED_LEVELING)
MENU_ITEM_EDIT ( float43 , MSG_BED_Z , & mbl . z_offset , - 1 , 1 ) ;
# endif
//
// Nozzle:
// Nozzle [1-4]:
//
# if EXTRUDERS == 1
# if TEMP_SENSOR_0 != 0
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK ( int3 , MSG_NOZZLE , & target_temperature [ 0 ] , 0 , HEATER_0_MAXTEMP - 15 , watch_temp_callback_E0 ) ;
# endif
# else //EXTRUDERS > 1
# if TEMP_SENSOR_0 != 0
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK ( int3 , MSG_NOZZLE MSG_N1 , & target_temperature [ 0 ] , 0 , HEATER_0_MAXTEMP - 15 , watch_temp_callback_E0 ) ;
# endif
# if TEMP_SENSOR_1 != 0
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK ( int3 , MSG_NOZZLE MSG_N2 , & target_temperature [ 1 ] , 0 , HEATER_1_MAXTEMP - 15 , watch_temp_callback_E1 ) ;
# endif
# if EXTRUDERS > 2
# if TEMP_SENSOR_2 != 0
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK ( int3 , MSG_NOZZLE MSG_N3 , & target_temperature [ 2 ] , 0 , HEATER_2_MAXTEMP - 15 , watch_temp_callback_E2 ) ;
# endif
# if EXTRUDERS > 3
# if TEMP_SENSOR_3 != 0
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK ( int3 , MSG_NOZZLE MSG_N4 , & target_temperature [ 3 ] , 0 , HEATER_3_MAXTEMP - 15 , watch_temp_callback_E3 ) ;
# endif
# endif // EXTRUDERS > 3
# endif // EXTRUDERS > 2
# endif // EXTRUDERS > 1
//
// Bed:
//
# if TEMP_SENSOR_BED != 0
MENU_MULTIPLIER_ITEM_EDIT ( int3 , MSG_BED , & target_temperature_bed , 0 , BED_MAXTEMP - 15 ) ;
# endif
//
// Fan Speed:
//
# if FAN_COUNT > 0
# if HAS_FAN0
# if FAN_COUNT > 1
# define MSG_1ST_FAN_SPEED MSG_FAN_SPEED " 1"
# else
# define MSG_1ST_FAN_SPEED MSG_FAN_SPEED
# endif
MENU_MULTIPLIER_ITEM_EDIT ( int3 , MSG_1ST_FAN_SPEED , & fanSpeeds [ 0 ] , 0 , 255 ) ;
# endif
# if HAS_FAN1
MENU_MULTIPLIER_ITEM_EDIT ( int3 , MSG_FAN_SPEED " 2 " , & fanSpeeds [ 1 ] , 0 , 255 ) ;
# endif
# if HAS_FAN2
MENU_MULTIPLIER_ITEM_EDIT ( int3 , MSG_FAN_SPEED " 3 " , & fanSpeeds [ 2 ] , 0 , 255 ) ;
# endif
# endif // FAN_COUNT > 0
//
// Flow:
// Flow 1:
// Flow 2:
// Flow 3:
// Flow 4:
//
# if EXTRUDERS == 1
MENU_ITEM_EDIT ( int3 , MSG_FLOW , & extruder_multiplier [ 0 ] , 10 , 999 ) ;
# else // EXTRUDERS > 1
MENU_ITEM_EDIT ( int3 , MSG_FLOW , & extruder_multiplier [ active_extruder ] , 10 , 999 ) ;
MENU_ITEM_EDIT ( int3 , MSG_FLOW MSG_N1 , & extruder_multiplier [ 0 ] , 10 , 999 ) ;
MENU_ITEM_EDIT ( int3 , MSG_FLOW MSG_N2 , & extruder_multiplier [ 1 ] , 10 , 999 ) ;
# if EXTRUDERS > 2
MENU_ITEM_EDIT ( int3 , MSG_FLOW MSG_N3 , & extruder_multiplier [ 2 ] , 10 , 999 ) ;
# if EXTRUDERS > 3
MENU_ITEM_EDIT ( int3 , MSG_FLOW MSG_N4 , & extruder_multiplier [ 3 ] , 10 , 999 ) ;
# endif //EXTRUDERS > 3
# endif //EXTRUDERS > 2
# endif //EXTRUDERS > 1
//
// Babystep X:
// Babystep Y:
// Babystep Z:
//
# if ENABLED(BABYSTEPPING)
# if ENABLED(BABYSTEP_XY)
MENU_ITEM ( submenu , MSG_BABYSTEP_X , lcd_babystep_x ) ;
MENU_ITEM ( submenu , MSG_BABYSTEP_Y , lcd_babystep_y ) ;
Add the socalled "Babystepping" feature.
It is a realtime control over the head position via the LCD menu system that works _while_ printing.
Using it, one can e.g. tune the z-position in realtime, while printing the first layer.
Also, lost steps can be manually added/removed, but thats not the prime feature.
Stuff is placed into the Tune->Babystep *
It is not possible to have realtime control via gcode sending due to the buffering, so I did not include a gcode yet. However, it could be added, but it movements will not be realtime then.
Historically, a very similar thing was implemented for the "Kaamermaker" project, while Joris was babysitting his offspring, hence the name.
say goodby to fuddling around with the z-axis.
11 years ago
# endif //BABYSTEP_XY
MENU_ITEM ( submenu , MSG_BABYSTEP_Z , lcd_babystep_z ) ;
# endif
//
// Change filament
//
# if ENABLED(FILAMENTCHANGEENABLE)
Added a feature to have filament change by gcode or display trigger.
[default off for now]
syntax: M600 X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
if enabled, after a M600, the printer will retract by E, lift by Z, move to XY, retract even more filament.
Oh, and it will display "remove filament" and beep like crazy.
You are then supposed to insert a new filament (other color, e.g.) and click the display to continue.
After having the nozzle cleaned manually, aided by the disabled e-steppers.
After clicking, the printer will then go back the whole shebang, and continue printing with a fancy new color.
12 years ago
MENU_ITEM ( gcode , MSG_FILAMENTCHANGE , PSTR ( " M600 " ) ) ;
# endif
END_MENU ( ) ;
}
/**
*
* " Prepare " submenu items
*
*/
void _lcd_preheat ( int endnum , const float temph , const float tempb , const int fan ) {
if ( temph > 0 ) setTargetHotend ( temph , endnum ) ;
# if TEMP_SENSOR_BED != 0
setTargetBed ( tempb ) ;
# else
UNUSED ( tempb ) ;
# endif
# if FAN_COUNT > 0
# if FAN_COUNT > 1
fanSpeeds [ active_extruder < FAN_COUNT ? active_extruder : 0 ] = fan ;
# else
fanSpeeds [ 0 ] = fan ;
# endif
# else
UNUSED ( fan ) ;
# endif
lcd_return_to_status ( ) ;
}
# if TEMP_SENSOR_0 != 0
void lcd_preheat_pla0 ( ) { _lcd_preheat ( 0 , plaPreheatHotendTemp , plaPreheatHPBTemp , plaPreheatFanSpeed ) ; }
void lcd_preheat_abs0 ( ) { _lcd_preheat ( 0 , absPreheatHotendTemp , absPreheatHPBTemp , absPreheatFanSpeed ) ; }
# endif
# if EXTRUDERS > 1
void lcd_preheat_pla1 ( ) { _lcd_preheat ( 1 , plaPreheatHotendTemp , plaPreheatHPBTemp , plaPreheatFanSpeed ) ; }
void lcd_preheat_abs1 ( ) { _lcd_preheat ( 1 , absPreheatHotendTemp , absPreheatHPBTemp , absPreheatFanSpeed ) ; }
# if EXTRUDERS > 2
void lcd_preheat_pla2 ( ) { _lcd_preheat ( 2 , plaPreheatHotendTemp , plaPreheatHPBTemp , plaPreheatFanSpeed ) ; }
void lcd_preheat_abs2 ( ) { _lcd_preheat ( 2 , absPreheatHotendTemp , absPreheatHPBTemp , absPreheatFanSpeed ) ; }
# if EXTRUDERS > 3
void lcd_preheat_pla3 ( ) { _lcd_preheat ( 3 , plaPreheatHotendTemp , plaPreheatHPBTemp , plaPreheatFanSpeed ) ; }
void lcd_preheat_abs3 ( ) { _lcd_preheat ( 3 , absPreheatHotendTemp , absPreheatHPBTemp , absPreheatFanSpeed ) ; }
# endif
# endif
void lcd_preheat_pla0123 ( ) {
# if EXTRUDERS > 1
setTargetHotend0 ( plaPreheatHotendTemp ) ;
setTargetHotend1 ( plaPreheatHotendTemp ) ;
setTargetHotend2 ( plaPreheatHotendTemp ) ;
# endif
_lcd_preheat ( EXTRUDERS - 1 , plaPreheatHotendTemp , plaPreheatHPBTemp , plaPreheatFanSpeed ) ;
}
void lcd_preheat_abs0123 ( ) {
# if EXTRUDERS > 1
setTargetHotend0 ( absPreheatHotendTemp ) ;
setTargetHotend1 ( absPreheatHotendTemp ) ;
setTargetHotend2 ( absPreheatHotendTemp ) ;
# endif
_lcd_preheat ( EXTRUDERS - 1 , absPreheatHotendTemp , absPreheatHPBTemp , absPreheatFanSpeed ) ;
}
# endif // EXTRUDERS > 1
# if TEMP_SENSOR_BED != 0
void lcd_preheat_pla_bedonly ( ) { _lcd_preheat ( 0 , 0 , plaPreheatHPBTemp , plaPreheatFanSpeed ) ; }
void lcd_preheat_abs_bedonly ( ) { _lcd_preheat ( 0 , 0 , absPreheatHPBTemp , absPreheatFanSpeed ) ; }
# endif
# if TEMP_SENSOR_0 != 0 && (TEMP_SENSOR_1 != 0 || TEMP_SENSOR_2 != 0 || TEMP_SENSOR_3 != 0 || TEMP_SENSOR_BED != 0)
static void lcd_preheat_pla_menu ( ) {
START_MENU ( ) ;
MENU_ITEM ( back , MSG_PREPARE ) ;
# if EXTRUDERS == 1
MENU_ITEM ( function , MSG_PREHEAT_PLA , lcd_preheat_pla0 ) ;
# else
MENU_ITEM ( function , MSG_PREHEAT_PLA_N MSG_H1 , lcd_preheat_pla0 ) ;
MENU_ITEM ( function , MSG_PREHEAT_PLA_N MSG_H2 , lcd_preheat_pla1 ) ;
# if EXTRUDERS > 2
MENU_ITEM ( function , MSG_PREHEAT_PLA_N MSG_H3 , lcd_preheat_pla2 ) ;
# if EXTRUDERS > 3
MENU_ITEM ( function , MSG_PREHEAT_PLA_N MSG_H4 , lcd_preheat_pla3 ) ;
# endif
# endif
MENU_ITEM ( function , MSG_PREHEAT_PLA_ALL , lcd_preheat_pla0123 ) ;
# endif
# if TEMP_SENSOR_BED != 0
MENU_ITEM ( function , MSG_PREHEAT_PLA_BEDONLY , lcd_preheat_pla_bedonly ) ;
# endif
END_MENU ( ) ;
}
static void lcd_preheat_abs_menu ( ) {
START_MENU ( ) ;
MENU_ITEM ( back , MSG_PREPARE ) ;
# if EXTRUDERS == 1
MENU_ITEM ( function , MSG_PREHEAT_ABS , lcd_preheat_abs0 ) ;
# else
MENU_ITEM ( function , MSG_PREHEAT_ABS_N MSG_H1 , lcd_preheat_abs0 ) ;
MENU_ITEM ( function , MSG_PREHEAT_ABS_N MSG_H2 , lcd_preheat_abs1 ) ;
# if EXTRUDERS > 2
MENU_ITEM ( function , MSG_PREHEAT_ABS_N MSG_H3 , lcd_preheat_abs2 ) ;
# if EXTRUDERS > 3
MENU_ITEM ( function , MSG_PREHEAT_ABS_N MSG_H4 , lcd_preheat_abs3 ) ;
# endif
# endif
MENU_ITEM ( function , MSG_PREHEAT_ABS_ALL , lcd_preheat_abs0123 ) ;
# endif
# if TEMP_SENSOR_BED != 0
MENU_ITEM ( function , MSG_PREHEAT_ABS_BEDONLY , lcd_preheat_abs_bedonly ) ;
# endif
END_MENU ( ) ;
}
# endif // TEMP_SENSOR_0 && (TEMP_SENSOR_1 || TEMP_SENSOR_2 || TEMP_SENSOR_3 || TEMP_SENSOR_BED)
void lcd_cooldown ( ) {
# if FAN_COUNT > 0
for ( uint8_t i = 0 ; i < FAN_COUNT ; i + + ) fanSpeeds [ i ] = 0 ;
# endif
disable_all_heaters ( ) ;
lcd_return_to_status ( ) ;
}
# if ENABLED(SDSUPPORT) && ENABLED(MENU_ADDAUTOSTART)
static void lcd_autostart_sd ( ) {
card . autostart_index = 0 ;
card . setroot ( ) ;
card . checkautostart ( true ) ;
}
# endif
# if ENABLED(MANUAL_BED_LEVELING)
/**
*
* " Prepare " > " Bed Leveling " handlers
*
*/
static uint8_t _lcd_level_bed_position ;
// Utility to go to the next mesh point
// A raise is added between points if MIN_Z_HEIGHT_FOR_HOMING is in use
// Note: During Manual Bed Leveling the homed Z position is MESH_HOME_SEARCH_Z
// Z position will be restored with the final action, a G28
inline void _mbl_goto_xy ( float x , float y ) {
current_position [ Z_AXIS ] = MESH_HOME_SEARCH_Z
# if MIN_Z_HEIGHT_FOR_HOMING > 0
+ MIN_Z_HEIGHT_FOR_HOMING
# endif
;
line_to_current ( Z_AXIS ) ;
current_position [ X_AXIS ] = x + home_offset [ X_AXIS ] ;
current_position [ Y_AXIS ] = y + home_offset [ Y_AXIS ] ;
line_to_current ( manual_feedrate [ X_AXIS ] < = manual_feedrate [ Y_AXIS ] ? X_AXIS : Y_AXIS ) ;
# if MIN_Z_HEIGHT_FOR_HOMING > 0
current_position [ Z_AXIS ] = MESH_HOME_SEARCH_Z ;
line_to_current ( Z_AXIS ) ;
# endif
stepper . synchronize ( ) ;
}
static void _lcd_level_goto_next_point ( ) ;
static void _lcd_level_bed_done ( ) {
if ( lcdDrawUpdate ) lcd_implementation_drawedit ( PSTR ( MSG_LEVEL_BED_DONE ) ) ;
lcdDrawUpdate =
# if ENABLED(DOGLCD)
LCDVIEW_CALL_REDRAW_NEXT
# else
LCDVIEW_CALL_NO_REDRAW
# endif
;
}
/**
* Step 7 : Get the Z coordinate , then goto next point or exit
*/
static void _lcd_level_bed_get_z ( ) {
ENCODER_DIRECTION_NORMAL ( ) ;
// Encoder wheel adjusts the Z position
if ( encoderPosition & & planner . movesplanned ( ) < = 3 ) {
refresh_cmd_timeout ( ) ;
current_position [ Z_AXIS ] + = float ( ( int32_t ) encoderPosition ) * ( MBL_Z_STEP ) ;
NOLESS ( current_position [ Z_AXIS ] , 0 ) ;
NOMORE ( current_position [ Z_AXIS ] , MESH_HOME_SEARCH_Z * 2 ) ;
line_to_current ( Z_AXIS ) ;
lcdDrawUpdate =
# if ENABLED(DOGLCD)
LCDVIEW_CALL_REDRAW_NEXT
# else
LCDVIEW_REDRAW_NOW
# endif
;
}
encoderPosition = 0 ;
static bool debounce_click = false ;
if ( LCD_CLICKED ) {
if ( ! debounce_click ) {
debounce_click = true ; // ignore multiple "clicks" in a row
mbl . set_zigzag_z ( _lcd_level_bed_position + + , current_position [ Z_AXIS ] ) ;
if ( _lcd_level_bed_position = = ( MESH_NUM_X_POINTS ) * ( MESH_NUM_Y_POINTS ) ) {
lcd_goto_menu ( _lcd_level_bed_done , true ) ;
current_position [ Z_AXIS ] = MESH_HOME_SEARCH_Z
# if MIN_Z_HEIGHT_FOR_HOMING > 0
+ MIN_Z_HEIGHT_FOR_HOMING
# endif
;
line_to_current ( Z_AXIS ) ;
stepper . synchronize ( ) ;
mbl . active = true ;
enqueue_and_echo_commands_P ( PSTR ( " G28 " ) ) ;
lcd_return_to_status ( ) ;
//LCD_MESSAGEPGM(MSG_LEVEL_BED_DONE);
# if HAS_BUZZER
buzz ( 200 , 659 ) ;
buzz ( 200 , 698 ) ;
# endif
}
else {
lcd_goto_menu ( _lcd_level_goto_next_point , true ) ;
}
}
}
else {
debounce_click = false ;
}
// Update on first display, then only on updates to Z position
// Show message above on clicks instead
if ( lcdDrawUpdate ) {
float v = current_position [ Z_AXIS ] - MESH_HOME_SEARCH_Z ;
lcd_implementation_drawedit ( PSTR ( MSG_MOVE_Z ) , ftostr43 ( v + ( v < 0 ? - 0.0001 : 0.0001 ) , ' + ' ) ) ;
}
}
/**
* Step 6 : Display " Next point: 1 / 9 " while waiting for move to finish
*/
static void _lcd_level_bed_moving ( ) {
if ( lcdDrawUpdate ) {
char msg [ 10 ] ;
sprintf_P ( msg , PSTR ( " %i / %u " ) , ( int ) ( _lcd_level_bed_position + 1 ) , ( MESH_NUM_X_POINTS ) * ( MESH_NUM_Y_POINTS ) ) ;
lcd_implementation_drawedit ( PSTR ( MSG_LEVEL_BED_NEXT_POINT ) , msg ) ;
}
lcdDrawUpdate =
# if ENABLED(DOGLCD)
LCDVIEW_CALL_REDRAW_NEXT
# else
LCDVIEW_CALL_NO_REDRAW
# endif
;
}
/**
* Step 5 : Initiate a move to the next point
*/
static void _lcd_level_goto_next_point ( ) {
// Set the menu to display ahead of blocking call
lcd_goto_menu ( _lcd_level_bed_moving ) ;
// _mbl_goto_xy runs the menu loop until the move is done
int ix , iy ;
mbl . zigzag ( _lcd_level_bed_position , ix , iy ) ;
_mbl_goto_xy ( mbl . get_x ( ix ) , mbl . get_y ( iy ) ) ;
// After the blocking function returns, change menus
lcd_goto_menu ( _lcd_level_bed_get_z ) ;
}
/**
* Step 4 : Display " Click to Begin " , wait for click
* Move to the first probe position
*/
static void _lcd_level_bed_homing_done ( ) {
if ( lcdDrawUpdate ) lcd_implementation_drawedit ( PSTR ( MSG_LEVEL_BED_WAITING ) ) ;
if ( LCD_CLICKED ) {
_lcd_level_bed_position = 0 ;
current_position [ Z_AXIS ] = MESH_HOME_SEARCH_Z ;
planner . set_position ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] ) ;
lcd_goto_menu ( _lcd_level_goto_next_point , true ) ;
}
}
/**
* Step 3 : Display " Homing XYZ " - Wait for homing to finish
*/
static void _lcd_level_bed_homing ( ) {
if ( lcdDrawUpdate ) lcd_implementation_drawedit ( PSTR ( MSG_LEVEL_BED_HOMING ) , NULL ) ;
lcdDrawUpdate =
# if ENABLED(DOGLCD)
LCDVIEW_CALL_REDRAW_NEXT
# else
LCDVIEW_CALL_NO_REDRAW
# endif
;
if ( axis_homed [ X_AXIS ] & & axis_homed [ Y_AXIS ] & & axis_homed [ Z_AXIS ] )
lcd_goto_menu ( _lcd_level_bed_homing_done ) ;
}
/**
* Step 2 : Continue Bed Leveling . . .
*/
static void _lcd_level_bed_continue ( ) {
defer_return_to_status = true ;
axis_homed [ X_AXIS ] = axis_homed [ Y_AXIS ] = axis_homed [ Z_AXIS ] = false ;
mbl . reset ( ) ;
enqueue_and_echo_commands_P ( PSTR ( " G28 " ) ) ;
lcd_goto_menu ( _lcd_level_bed_homing ) ;
}
/**
* Step 1 : MBL entry - point : " Cancel " or " Level Bed "
*/
static void lcd_level_bed ( ) {
START_MENU ( ) ;
MENU_ITEM ( back , MSG_LEVEL_BED_CANCEL ) ;
MENU_ITEM ( submenu , MSG_LEVEL_BED , _lcd_level_bed_continue ) ;
END_MENU ( ) ;
}
# endif // MANUAL_BED_LEVELING
/**
*
* " Prepare " submenu
*
*/
static void lcd_prepare_menu ( ) {
START_MENU ( ) ;
//
// ^ Main
//
MENU_ITEM ( back , MSG_MAIN ) ;
//
// Auto Home
//
MENU_ITEM ( gcode , MSG_AUTO_HOME , PSTR ( " G28 " ) ) ;
//
// Set Home Offsets
//
MENU_ITEM ( function , MSG_SET_HOME_OFFSETS , lcd_set_home_offsets ) ;
//MENU_ITEM(gcode, MSG_SET_ORIGIN, PSTR("G92 X0 Y0 Z0"));
//
// Level Bed
//
# if ENABLED(AUTO_BED_LEVELING_FEATURE)
MENU_ITEM ( gcode , MSG_LEVEL_BED ,
axis_homed [ X_AXIS ] & & axis_homed [ Y_AXIS ] ? PSTR ( " G29 " ) : PSTR ( " G28 \n G29 " )
) ;
# elif ENABLED(MANUAL_BED_LEVELING)
MENU_ITEM ( submenu , MSG_LEVEL_BED , lcd_level_bed ) ;
# endif
//
// Move Axis
//
MENU_ITEM ( submenu , MSG_MOVE_AXIS , lcd_move_menu ) ;
//
// Disable Steppers
//
MENU_ITEM ( gcode , MSG_DISABLE_STEPPERS , PSTR ( " M84 " ) ) ;
//
// Preheat PLA
// Preheat ABS
//
# if TEMP_SENSOR_0 != 0
# if TEMP_SENSOR_1 != 0 || TEMP_SENSOR_2 != 0 || TEMP_SENSOR_3 != 0 || TEMP_SENSOR_BED != 0
MENU_ITEM ( submenu , MSG_PREHEAT_PLA , lcd_preheat_pla_menu ) ;
MENU_ITEM ( submenu , MSG_PREHEAT_ABS , lcd_preheat_abs_menu ) ;
# else
MENU_ITEM ( function , MSG_PREHEAT_PLA , lcd_preheat_pla0 ) ;
MENU_ITEM ( function , MSG_PREHEAT_ABS , lcd_preheat_abs0 ) ;
# endif
# endif
//
// Cooldown
//
MENU_ITEM ( function , MSG_COOLDOWN , lcd_cooldown ) ;
//
// Switch power on/off
//
# if HAS_POWER_SWITCH
if ( powersupply )
MENU_ITEM ( gcode , MSG_SWITCH_PS_OFF , PSTR ( " M81 " ) ) ;
else
MENU_ITEM ( gcode , MSG_SWITCH_PS_ON , PSTR ( " M80 " ) ) ;
# endif
//
// Autostart
//
# if ENABLED(SDSUPPORT) && ENABLED(MENU_ADDAUTOSTART)
MENU_ITEM ( function , MSG_AUTOSTART , lcd_autostart_sd ) ;
# endif
END_MENU ( ) ;
}
# if ENABLED(DELTA_CALIBRATION_MENU)
static void lcd_delta_calibrate_menu ( ) {
START_MENU ( ) ;
MENU_ITEM ( back , MSG_MAIN ) ;
MENU_ITEM ( gcode , MSG_AUTO_HOME , PSTR ( " G28 " ) ) ;
MENU_ITEM ( gcode , MSG_DELTA_CALIBRATE_X , PSTR ( " G0 F8000 X-77.94 Y-45 Z0 " ) ) ;
MENU_ITEM ( gcode , MSG_DELTA_CALIBRATE_Y , PSTR ( " G0 F8000 X77.94 Y-45 Z0 " ) ) ;
MENU_ITEM ( gcode , MSG_DELTA_CALIBRATE_Z , PSTR ( " G0 F8000 X0 Y90 Z0 " ) ) ;
MENU_ITEM ( gcode , MSG_DELTA_CALIBRATE_CENTER , PSTR ( " G0 F8000 X0 Y0 Z0 " ) ) ;
END_MENU ( ) ;
}
# endif // DELTA_CALIBRATION_MENU
/**
*
* " Prepare " > " Move Axis " submenu
*
*/
float move_menu_scale ;
static void _lcd_move ( const char * name , AxisEnum axis , float min , float max ) {
ENCODER_DIRECTION_NORMAL ( ) ;
if ( encoderPosition & & planner . movesplanned ( ) < = 3 ) {
refresh_cmd_timeout ( ) ;
current_position [ axis ] + = float ( ( int32_t ) encoderPosition ) * move_menu_scale ;
if ( min_software_endstops ) NOLESS ( current_position [ axis ] , min ) ;
if ( max_software_endstops ) NOMORE ( current_position [ axis ] , max ) ;
line_to_current ( axis ) ;
lcdDrawUpdate = LCDVIEW_REDRAW_NOW ;
}
encoderPosition = 0 ;
if ( lcdDrawUpdate ) lcd_implementation_drawedit ( name , ftostr31 ( current_position [ axis ] ) ) ;
if ( LCD_CLICKED ) lcd_goto_previous_menu ( true ) ;
}
# if ENABLED(DELTA)
static float delta_clip_radius_2 = ( DELTA_PRINTABLE_RADIUS ) * ( DELTA_PRINTABLE_RADIUS ) ;
static int delta_clip ( float a ) { return sqrt ( delta_clip_radius_2 - a * a ) ; }
static void lcd_move_x ( ) { int clip = delta_clip ( current_position [ Y_AXIS ] ) ; _lcd_move ( PSTR ( MSG_MOVE_X ) , X_AXIS , max ( sw_endstop_min [ X_AXIS ] , - clip ) , min ( sw_endstop_max [ X_AXIS ] , clip ) ) ; }
static void lcd_move_y ( ) { int clip = delta_clip ( current_position [ X_AXIS ] ) ; _lcd_move ( PSTR ( MSG_MOVE_Y ) , Y_AXIS , max ( sw_endstop_min [ Y_AXIS ] , - clip ) , min ( sw_endstop_max [ Y_AXIS ] , clip ) ) ; }
# else
static void lcd_move_x ( ) { _lcd_move ( PSTR ( MSG_MOVE_X ) , X_AXIS , sw_endstop_min [ X_AXIS ] , sw_endstop_max [ X_AXIS ] ) ; }
static void lcd_move_y ( ) { _lcd_move ( PSTR ( MSG_MOVE_Y ) , Y_AXIS , sw_endstop_min [ Y_AXIS ] , sw_endstop_max [ Y_AXIS ] ) ; }
# endif
static void lcd_move_z ( ) { _lcd_move ( PSTR ( MSG_MOVE_Z ) , Z_AXIS , sw_endstop_min [ Z_AXIS ] , sw_endstop_max [ Z_AXIS ] ) ; }
static void lcd_move_e (
# if EXTRUDERS > 1
uint8_t e
# endif
) {
ENCODER_DIRECTION_NORMAL ( ) ;
# if EXTRUDERS > 1
unsigned short original_active_extruder = active_extruder ;
active_extruder = e ;
# endif
if ( encoderPosition & & planner . movesplanned ( ) < = 3 ) {
current_position [ E_AXIS ] + = float ( ( int32_t ) encoderPosition ) * move_menu_scale ;
line_to_current ( E_AXIS ) ;
lcdDrawUpdate = LCDVIEW_REDRAW_NOW ;
}
encoderPosition = 0 ;
if ( lcdDrawUpdate ) {
PGM_P pos_label ;
# if EXTRUDERS == 1
pos_label = PSTR ( MSG_MOVE_E ) ;
# else
switch ( e ) {
case 0 : pos_label = PSTR ( MSG_MOVE_E MSG_MOVE_E1 ) ; break ;
case 1 : pos_label = PSTR ( MSG_MOVE_E MSG_MOVE_E2 ) ; break ;
# if EXTRUDERS > 2
case 2 : pos_label = PSTR ( MSG_MOVE_E MSG_MOVE_E3 ) ; break ;
# if EXTRUDERS > 3
case 3 : pos_label = PSTR ( MSG_MOVE_E MSG_MOVE_E4 ) ; break ;
# endif //EXTRUDERS > 3
# endif //EXTRUDERS > 2
}
# endif //EXTRUDERS > 1
lcd_implementation_drawedit ( pos_label , ftostr31 ( current_position [ E_AXIS ] ) ) ;
}
if ( LCD_CLICKED ) lcd_goto_previous_menu ( true ) ;
# if EXTRUDERS > 1
active_extruder = original_active_extruder ;
# endif
}
# if EXTRUDERS > 1
static void lcd_move_e0 ( ) { lcd_move_e ( 0 ) ; }
static void lcd_move_e1 ( ) { lcd_move_e ( 1 ) ; }
# if EXTRUDERS > 2
static void lcd_move_e2 ( ) { lcd_move_e ( 2 ) ; }
# if EXTRUDERS > 3
static void lcd_move_e3 ( ) { lcd_move_e ( 3 ) ; }
# endif
# endif
# endif // EXTRUDERS > 1
/**
*
* " Prepare " > " Move Xmm " > " Move XYZ " submenu
*
*/
# if ENABLED(DELTA) || ENABLED(SCARA)
# define _MOVE_XYZ_ALLOWED (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS])
# else
# define _MOVE_XYZ_ALLOWED true
# endif
static void _lcd_move_menu_axis ( ) {
START_MENU ( ) ;
MENU_ITEM ( back , MSG_MOVE_AXIS ) ;
if ( _MOVE_XYZ_ALLOWED ) {
MENU_ITEM ( submenu , MSG_MOVE_X , lcd_move_x ) ;
MENU_ITEM ( submenu , MSG_MOVE_Y , lcd_move_y ) ;
}
if ( move_menu_scale < 10.0 ) {
if ( _MOVE_XYZ_ALLOWED ) MENU_ITEM ( submenu , MSG_MOVE_Z , lcd_move_z ) ;
# if EXTRUDERS == 1
MENU_ITEM ( submenu , MSG_MOVE_E , lcd_move_e ) ;
# else
MENU_ITEM ( submenu , MSG_MOVE_E MSG_MOVE_E1 , lcd_move_e0 ) ;
MENU_ITEM ( submenu , MSG_MOVE_E MSG_MOVE_E2 , lcd_move_e1 ) ;
# if EXTRUDERS > 2
MENU_ITEM ( submenu , MSG_MOVE_E MSG_MOVE_E3 , lcd_move_e2 ) ;
# if EXTRUDERS > 3
MENU_ITEM ( submenu , MSG_MOVE_E MSG_MOVE_E4 , lcd_move_e3 ) ;
# endif
# endif
# endif // EXTRUDERS > 1
}
END_MENU ( ) ;
}
static void lcd_move_menu_10mm ( ) {
move_menu_scale = 10.0 ;
_lcd_move_menu_axis ( ) ;
}
static void lcd_move_menu_1mm ( ) {
move_menu_scale = 1.0 ;
_lcd_move_menu_axis ( ) ;
}
static void lcd_move_menu_01mm ( ) {
move_menu_scale = 0.1 ;
_lcd_move_menu_axis ( ) ;
}
/**
*
* " Prepare " > " Move Axis " submenu
*
*/
static void lcd_move_menu ( ) {
START_MENU ( ) ;
MENU_ITEM ( back , MSG_PREPARE ) ;
if ( _MOVE_XYZ_ALLOWED )
MENU_ITEM ( submenu , MSG_MOVE_10MM , lcd_move_menu_10mm ) ;
MENU_ITEM ( submenu , MSG_MOVE_1MM , lcd_move_menu_1mm ) ;
MENU_ITEM ( submenu , MSG_MOVE_01MM , lcd_move_menu_01mm ) ;
//TODO:X,Y,Z,E
END_MENU ( ) ;
}
/**
*
* " Control " submenu
*
*/
static void lcd_control_menu ( ) {
START_MENU ( ) ;
MENU_ITEM ( back , MSG_MAIN ) ;
MENU_ITEM ( submenu , MSG_TEMPERATURE , lcd_control_temperature_menu ) ;
MENU_ITEM ( submenu , MSG_MOTION , lcd_control_motion_menu ) ;
MENU_ITEM ( submenu , MSG_VOLUMETRIC , lcd_control_volumetric_menu ) ;
# if ENABLED(HAS_LCD_CONTRAST)
//MENU_ITEM_EDIT(int3, MSG_CONTRAST, &lcd_contrast, 0, 63);
MENU_ITEM ( submenu , MSG_CONTRAST , lcd_set_contrast ) ;
# endif
# if ENABLED(FWRETRACT)
MENU_ITEM ( submenu , MSG_RETRACT , lcd_control_retract_menu ) ;
# endif
# if ENABLED(EEPROM_SETTINGS)
MENU_ITEM ( function , MSG_STORE_EPROM , Config_StoreSettings ) ;
MENU_ITEM ( function , MSG_LOAD_EPROM , Config_RetrieveSettings ) ;
# endif
MENU_ITEM ( function , MSG_RESTORE_FAILSAFE , Config_ResetDefault ) ;
END_MENU ( ) ;
}
/**
*
* " Temperature " submenu
*
*/
# if ENABLED(PID_AUTOTUNE_MENU)
# if ENABLED(PIDTEMP)
int autotune_temp [ EXTRUDERS ] = { 150 } ;
const int heater_maxtemp [ EXTRUDERS ] = ARRAY_BY_EXTRUDERS ( HEATER_0_MAXTEMP , HEATER_1_MAXTEMP , HEATER_2_MAXTEMP , HEATER_3_MAXTEMP ) ;
# endif
# if ENABLED(PIDTEMPBED)
int autotune_temp_bed = 70 ;
# endif
static void _lcd_autotune ( int e ) {
char cmd [ 30 ] ;
sprintf_P ( cmd , PSTR ( " M303 U1 E%i S%i " ) , e ,
# if HAS_PID_FOR_BOTH
e < 0 ? autotune_temp_bed : autotune_temp [ e ]
# elif ENABLED(PIDTEMPBED)
autotune_temp_bed
# else
autotune_temp [ e ]
# endif
) ;
enqueue_and_echo_command ( cmd ) ;
}
# endif //PID_AUTOTUNE_MENU
# if ENABLED(PIDTEMP)
// Helpers for editing PID Ki & Kd values
// grab the PID value out of the temp variable; scale it; then update the PID driver
void copy_and_scalePID_i ( int e ) {
# if DISABLED(PID_PARAMS_PER_EXTRUDER)
UNUSED ( e ) ;
# endif
PID_PARAM ( Ki , e ) = scalePID_i ( raw_Ki ) ;
updatePID ( ) ;
}
void copy_and_scalePID_d ( int e ) {
# if DISABLED(PID_PARAMS_PER_EXTRUDER)
UNUSED ( e ) ;
# endif
PID_PARAM ( Kd , e ) = scalePID_d ( raw_Kd ) ;
updatePID ( ) ;
}
# define _PIDTEMP_BASE_FUNCTIONS(eindex) \
void copy_and_scalePID_i_E # # eindex ( ) { copy_and_scalePID_i ( eindex ) ; } \
void copy_and_scalePID_d_E # # eindex ( ) { copy_and_scalePID_d ( eindex ) ; }
# if ENABLED(PID_AUTOTUNE_MENU)
# define _PIDTEMP_FUNCTIONS(eindex) \
_PIDTEMP_BASE_FUNCTIONS ( eindex ) ; \
void lcd_autotune_callback_E # # eindex ( ) { _lcd_autotune ( eindex ) ; }
# else
# define _PIDTEMP_FUNCTIONS(eindex) _PIDTEMP_BASE_FUNCTIONS(eindex)
# endif
_PIDTEMP_FUNCTIONS ( 0 ) ;
# if ENABLED(PID_PARAMS_PER_EXTRUDER)
# if EXTRUDERS > 1
_PIDTEMP_FUNCTIONS ( 1 ) ;
# if EXTRUDERS > 2
_PIDTEMP_FUNCTIONS ( 2 ) ;
# if EXTRUDERS > 3
_PIDTEMP_FUNCTIONS ( 3 ) ;
# endif //EXTRUDERS > 3
# endif //EXTRUDERS > 2
# endif //EXTRUDERS > 1
# endif //PID_PARAMS_PER_EXTRUDER
# endif //PIDTEMP
/**
*
* " Control " > " Temperature " submenu
*
*/
static void lcd_control_temperature_menu ( ) {
START_MENU ( ) ;
//
// ^ Control
//
MENU_ITEM ( back , MSG_CONTROL ) ;
//
// Nozzle:
// Nozzle [1-4]:
//
# if EXTRUDERS == 1
# if TEMP_SENSOR_0 != 0
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK ( int3 , MSG_NOZZLE , & target_temperature [ 0 ] , 0 , HEATER_0_MAXTEMP - 15 , watch_temp_callback_E0 ) ;
# endif
# else //EXTRUDERS > 1
# if TEMP_SENSOR_0 != 0
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK ( int3 , MSG_NOZZLE MSG_N1 , & target_temperature [ 0 ] , 0 , HEATER_0_MAXTEMP - 15 , watch_temp_callback_E0 ) ;
# endif
# if TEMP_SENSOR_1 != 0
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK ( int3 , MSG_NOZZLE MSG_N2 , & target_temperature [ 1 ] , 0 , HEATER_1_MAXTEMP - 15 , watch_temp_callback_E1 ) ;
# endif
# if EXTRUDERS > 2
# if TEMP_SENSOR_2 != 0
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK ( int3 , MSG_NOZZLE MSG_N3 , & target_temperature [ 2 ] , 0 , HEATER_2_MAXTEMP - 15 , watch_temp_callback_E2 ) ;
# endif
# if EXTRUDERS > 3
# if TEMP_SENSOR_3 != 0
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK ( int3 , MSG_NOZZLE MSG_N4 , & target_temperature [ 3 ] , 0 , HEATER_3_MAXTEMP - 15 , watch_temp_callback_E3 ) ;
# endif
# endif // EXTRUDERS > 3
# endif // EXTRUDERS > 2
# endif // EXTRUDERS > 1
//
// Bed:
//
# if TEMP_SENSOR_BED != 0
MENU_MULTIPLIER_ITEM_EDIT ( int3 , MSG_BED , & target_temperature_bed , 0 , BED_MAXTEMP - 15 ) ;
# endif
//
// Fan Speed:
//
# if FAN_COUNT > 0
# if HAS_FAN0
# if FAN_COUNT > 1
# define MSG_1ST_FAN_SPEED MSG_FAN_SPEED " 1"
# else
# define MSG_1ST_FAN_SPEED MSG_FAN_SPEED
# endif
MENU_MULTIPLIER_ITEM_EDIT ( int3 , MSG_1ST_FAN_SPEED , & fanSpeeds [ 0 ] , 0 , 255 ) ;
# endif
# if HAS_FAN1
MENU_MULTIPLIER_ITEM_EDIT ( int3 , MSG_FAN_SPEED " 2 " , & fanSpeeds [ 1 ] , 0 , 255 ) ;
# endif
# if HAS_FAN2
MENU_MULTIPLIER_ITEM_EDIT ( int3 , MSG_FAN_SPEED " 3 " , & fanSpeeds [ 2 ] , 0 , 255 ) ;
# endif
# endif // FAN_COUNT > 0
//
// Autotemp, Min, Max, Fact
//
# if ENABLED(AUTOTEMP) && (TEMP_SENSOR_0 != 0)
MENU_ITEM_EDIT ( bool , MSG_AUTOTEMP , & planner . autotemp_enabled ) ;
MENU_ITEM_EDIT ( float3 , MSG_MIN , & planner . autotemp_min , 0 , HEATER_0_MAXTEMP - 15 ) ;
MENU_ITEM_EDIT ( float3 , MSG_MAX , & planner . autotemp_max , 0 , HEATER_0_MAXTEMP - 15 ) ;
MENU_ITEM_EDIT ( float32 , MSG_FACTOR , & planner . autotemp_factor , 0.0 , 1.0 ) ;
# endif
//
// PID-P, PID-I, PID-D, PID-C, PID Autotune
// PID-P E1, PID-I E1, PID-D E1, PID-C E1, PID Autotune E1
// PID-P E2, PID-I E2, PID-D E2, PID-C E2, PID Autotune E2
// PID-P E3, PID-I E3, PID-D E3, PID-C E3, PID Autotune E3
// PID-P E4, PID-I E4, PID-D E4, PID-C E4, PID Autotune E4
//
# if ENABLED(PIDTEMP)
# define _PID_BASE_MENU_ITEMS(ELABEL, eindex) \
raw_Ki = unscalePID_i ( PID_PARAM ( Ki , eindex ) ) ; \
raw_Kd = unscalePID_d ( PID_PARAM ( Kd , eindex ) ) ; \
MENU_ITEM_EDIT ( float52 , MSG_PID_P ELABEL , & PID_PARAM ( Kp , eindex ) , 1 , 9990 ) ; \
MENU_ITEM_EDIT_CALLBACK ( float52 , MSG_PID_I ELABEL , & raw_Ki , 0.01 , 9990 , copy_and_scalePID_i_E # # eindex ) ; \
MENU_ITEM_EDIT_CALLBACK ( float52 , MSG_PID_D ELABEL , & raw_Kd , 1 , 9990 , copy_and_scalePID_d_E # # eindex )
# if ENABLED(PID_ADD_EXTRUSION_RATE)
# define _PID_MENU_ITEMS(ELABEL, eindex) \
_PID_BASE_MENU_ITEMS ( ELABEL , eindex ) ; \
MENU_ITEM_EDIT ( float3 , MSG_PID_C ELABEL , & PID_PARAM ( Kc , eindex ) , 1 , 9990 )
# else
# define _PID_MENU_ITEMS(ELABEL, eindex) _PID_BASE_MENU_ITEMS(ELABEL, eindex)
# endif
# if ENABLED(PID_AUTOTUNE_MENU)
# define PID_MENU_ITEMS(ELABEL, eindex) \
_PID_MENU_ITEMS ( ELABEL , eindex ) ; \
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK ( int3 , MSG_PID_AUTOTUNE ELABEL , & autotune_temp [ eindex ] , 150 , heater_maxtemp [ eindex ] - 15 , lcd_autotune_callback_E # # eindex )
# else
# define PID_MENU_ITEMS(ELABEL, eindex) _PID_MENU_ITEMS(ELABEL, eindex)
# endif
# if ENABLED(PID_PARAMS_PER_EXTRUDER) && EXTRUDERS > 1
PID_MENU_ITEMS ( MSG_E1 , 0 ) ;
PID_MENU_ITEMS ( MSG_E2 , 1 ) ;
# if EXTRUDERS > 2
PID_MENU_ITEMS ( MSG_E3 , 2 ) ;
# if EXTRUDERS > 3
PID_MENU_ITEMS ( MSG_E4 , 3 ) ;
# endif //EXTRUDERS > 3
# endif //EXTRUDERS > 2
# else //!PID_PARAMS_PER_EXTRUDER || EXTRUDERS == 1
PID_MENU_ITEMS ( " " , 0 ) ;
# endif //!PID_PARAMS_PER_EXTRUDER || EXTRUDERS == 1
# endif //PIDTEMP
//
// Preheat PLA conf
//
MENU_ITEM ( submenu , MSG_PREHEAT_PLA_SETTINGS , lcd_control_temperature_preheat_pla_settings_menu ) ;
//
// Preheat ABS conf
//
MENU_ITEM ( submenu , MSG_PREHEAT_ABS_SETTINGS , lcd_control_temperature_preheat_abs_settings_menu ) ;
END_MENU ( ) ;
}
/**
*
* " Temperature " > " Preheat PLA conf " submenu
*
*/
static void lcd_control_temperature_preheat_pla_settings_menu ( ) {
START_MENU ( ) ;
MENU_ITEM ( back , MSG_TEMPERATURE ) ;
MENU_ITEM_EDIT ( int3 , MSG_FAN_SPEED , & plaPreheatFanSpeed , 0 , 255 ) ;
# if TEMP_SENSOR_0 != 0
MENU_ITEM_EDIT ( int3 , MSG_NOZZLE , & plaPreheatHotendTemp , HEATER_0_MINTEMP , HEATER_0_MAXTEMP - 15 ) ;
# endif
# if TEMP_SENSOR_BED != 0
MENU_ITEM_EDIT ( int3 , MSG_BED , & plaPreheatHPBTemp , BED_MINTEMP , BED_MAXTEMP - 15 ) ;
# endif
# if ENABLED(EEPROM_SETTINGS)
MENU_ITEM ( function , MSG_STORE_EPROM , Config_StoreSettings ) ;
# endif
END_MENU ( ) ;
}
/**
*
* " Temperature " > " Preheat ABS conf " submenu
*
*/
static void lcd_control_temperature_preheat_abs_settings_menu ( ) {
START_MENU ( ) ;
MENU_ITEM ( back , MSG_TEMPERATURE ) ;
MENU_ITEM_EDIT ( int3 , MSG_FAN_SPEED , & absPreheatFanSpeed , 0 , 255 ) ;
# if TEMP_SENSOR_0 != 0
MENU_ITEM_EDIT ( int3 , MSG_NOZZLE , & absPreheatHotendTemp , HEATER_0_MINTEMP , HEATER_0_MAXTEMP - 15 ) ;
# endif
# if TEMP_SENSOR_BED != 0
MENU_ITEM_EDIT ( int3 , MSG_BED , & absPreheatHPBTemp , BED_MINTEMP , BED_MAXTEMP - 15 ) ;
# endif
# if ENABLED(EEPROM_SETTINGS)
MENU_ITEM ( function , MSG_STORE_EPROM , Config_StoreSettings ) ;
# endif
END_MENU ( ) ;
}
static void _reset_acceleration_rates ( ) { planner . reset_acceleration_rates ( ) ; }
/**
*
* " Control " > " Motion " submenu
*
*/
static void lcd_control_motion_menu ( ) {
START_MENU ( ) ;
MENU_ITEM ( back , MSG_CONTROL ) ;
# if ENABLED(AUTO_BED_LEVELING_FEATURE)
MENU_ITEM_EDIT ( float32 , MSG_ZPROBE_ZOFFSET , & zprobe_zoffset , Z_PROBE_OFFSET_RANGE_MIN , Z_PROBE_OFFSET_RANGE_MAX ) ;
# endif
// Manual bed leveling, Bed Z:
# if ENABLED(MANUAL_BED_LEVELING)
MENU_ITEM_EDIT ( float43 , MSG_BED_Z , & mbl . z_offset , - 1 , 1 ) ;
# endif
MENU_ITEM_EDIT ( float5 , MSG_ACC , & planner . acceleration , 10 , 99000 ) ;
MENU_ITEM_EDIT ( float3 , MSG_VXY_JERK , & planner . max_xy_jerk , 1 , 990 ) ;
# if ENABLED(DELTA)
MENU_ITEM_EDIT ( float3 , MSG_VZ_JERK , & planner . max_z_jerk , 1 , 990 ) ;
# else
MENU_ITEM_EDIT ( float52 , MSG_VZ_JERK , & planner . max_z_jerk , 0.1 , 990 ) ;
# endif
MENU_ITEM_EDIT ( float3 , MSG_VE_JERK , & planner . max_e_jerk , 1 , 990 ) ;
MENU_ITEM_EDIT ( float3 , MSG_VMAX MSG_X , & planner . max_feedrate [ X_AXIS ] , 1 , 999 ) ;
MENU_ITEM_EDIT ( float3 , MSG_VMAX MSG_Y , & planner . max_feedrate [ Y_AXIS ] , 1 , 999 ) ;
MENU_ITEM_EDIT ( float3 , MSG_VMAX MSG_Z , & planner . max_feedrate [ Z_AXIS ] , 1 , 999 ) ;
MENU_ITEM_EDIT ( float3 , MSG_VMAX MSG_E , & planner . max_feedrate [ E_AXIS ] , 1 , 999 ) ;
MENU_ITEM_EDIT ( float3 , MSG_VMIN , & planner . min_feedrate , 0 , 999 ) ;
MENU_ITEM_EDIT ( float3 , MSG_VTRAV_MIN , & planner . min_travel_feedrate , 0 , 999 ) ;
MENU_ITEM_EDIT_CALLBACK ( long5 , MSG_AMAX MSG_X , & planner . max_acceleration_units_per_sq_second [ X_AXIS ] , 100 , 99000 , _reset_acceleration_rates ) ;
MENU_ITEM_EDIT_CALLBACK ( long5 , MSG_AMAX MSG_Y , & planner . max_acceleration_units_per_sq_second [ Y_AXIS ] , 100 , 99000 , _reset_acceleration_rates ) ;
MENU_ITEM_EDIT_CALLBACK ( long5 , MSG_AMAX MSG_Z , & planner . max_acceleration_units_per_sq_second [ Z_AXIS ] , 10 , 99000 , _reset_acceleration_rates ) ;
MENU_ITEM_EDIT_CALLBACK ( long5 , MSG_AMAX MSG_E , & planner . max_acceleration_units_per_sq_second [ E_AXIS ] , 100 , 99000 , _reset_acceleration_rates ) ;
MENU_ITEM_EDIT ( float5 , MSG_A_RETRACT , & planner . retract_acceleration , 100 , 99000 ) ;
MENU_ITEM_EDIT ( float5 , MSG_A_TRAVEL , & planner . travel_acceleration , 100 , 99000 ) ;
MENU_ITEM_EDIT ( float52 , MSG_XSTEPS , & planner . axis_steps_per_unit [ X_AXIS ] , 5 , 9999 ) ;
MENU_ITEM_EDIT ( float52 , MSG_YSTEPS , & planner . axis_steps_per_unit [ Y_AXIS ] , 5 , 9999 ) ;
# if ENABLED(DELTA)
MENU_ITEM_EDIT ( float52 , MSG_ZSTEPS , & planner . axis_steps_per_unit [ Z_AXIS ] , 5 , 9999 ) ;
# else
MENU_ITEM_EDIT ( float51 , MSG_ZSTEPS , & planner . axis_steps_per_unit [ Z_AXIS ] , 5 , 9999 ) ;
# endif
MENU_ITEM_EDIT ( float51 , MSG_ESTEPS , & planner . axis_steps_per_unit [ E_AXIS ] , 5 , 9999 ) ;
# if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
MENU_ITEM_EDIT ( bool , MSG_ENDSTOP_ABORT , & abort_on_endstop_hit ) ;
# endif
# if ENABLED(SCARA)
MENU_ITEM_EDIT ( float74 , MSG_XSCALE , & axis_scaling [ X_AXIS ] , 0.5 , 2 ) ;
MENU_ITEM_EDIT ( float74 , MSG_YSCALE , & axis_scaling [ Y_AXIS ] , 0.5 , 2 ) ;
# endif
END_MENU ( ) ;
}
/**
*
* " Control " > " Filament " submenu
*
*/
static void lcd_control_volumetric_menu ( ) {
START_MENU ( ) ;
MENU_ITEM ( back , MSG_CONTROL ) ;
MENU_ITEM_EDIT_CALLBACK ( bool , MSG_VOLUMETRIC_ENABLED , & volumetric_enabled , calculate_volumetric_multipliers ) ;
if ( volumetric_enabled ) {
# if EXTRUDERS == 1
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK ( float43 , MSG_FILAMENT_DIAM , & filament_size [ 0 ] , 1.5 , 3.25 , calculate_volumetric_multipliers ) ;
# else //EXTRUDERS > 1
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK ( float43 , MSG_FILAMENT_DIAM MSG_DIAM_E1 , & filament_size [ 0 ] , 1.5 , 3.25 , calculate_volumetric_multipliers ) ;
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK ( float43 , MSG_FILAMENT_DIAM MSG_DIAM_E2 , & filament_size [ 1 ] , 1.5 , 3.25 , calculate_volumetric_multipliers ) ;
# if EXTRUDERS > 2
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK ( float43 , MSG_FILAMENT_DIAM MSG_DIAM_E3 , & filament_size [ 2 ] , 1.5 , 3.25 , calculate_volumetric_multipliers ) ;
# if EXTRUDERS > 3
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK ( float43 , MSG_FILAMENT_DIAM MSG_DIAM_E4 , & filament_size [ 3 ] , 1.5 , 3.25 , calculate_volumetric_multipliers ) ;
# endif //EXTRUDERS > 3
# endif //EXTRUDERS > 2
# endif //EXTRUDERS > 1
}
END_MENU ( ) ;
}
/**
*
* " Control " > " Contrast " submenu
*
*/
# if ENABLED(HAS_LCD_CONTRAST)
static void lcd_set_contrast ( ) {
ENCODER_DIRECTION_NORMAL ( ) ;
if ( encoderPosition ) {
# if ENABLED(U8GLIB_LM6059_AF)
lcd_contrast + = encoderPosition ;
lcd_contrast & = 0xFF ;
# else
lcd_contrast - = encoderPosition ;
lcd_contrast & = 0x3F ;
# endif
encoderPosition = 0 ;
lcdDrawUpdate = LCDVIEW_REDRAW_NOW ;
u8g . setContrast ( lcd_contrast ) ;
}
if ( lcdDrawUpdate ) {
# if ENABLED(U8GLIB_LM6059_AF)
lcd_implementation_drawedit ( PSTR ( MSG_CONTRAST ) , itostr3 ( lcd_contrast ) ) ;
# else
lcd_implementation_drawedit ( PSTR ( MSG_CONTRAST ) , itostr2 ( lcd_contrast ) ) ;
# endif
}
if ( LCD_CLICKED ) lcd_goto_previous_menu ( true ) ;
}
# endif // HAS_LCD_CONTRAST
/**
*
* " Control " > " Retract " submenu
*
*/
# if ENABLED(FWRETRACT)
static void lcd_control_retract_menu ( ) {
START_MENU ( ) ;
MENU_ITEM ( back , MSG_CONTROL ) ;
MENU_ITEM_EDIT ( bool , MSG_AUTORETRACT , & autoretract_enabled ) ;
MENU_ITEM_EDIT ( float52 , MSG_CONTROL_RETRACT , & retract_length , 0 , 100 ) ;
# if EXTRUDERS > 1
MENU_ITEM_EDIT ( float52 , MSG_CONTROL_RETRACT_SWAP , & retract_length_swap , 0 , 100 ) ;
# endif
MENU_ITEM_EDIT ( float3 , MSG_CONTROL_RETRACTF , & retract_feedrate , 1 , 999 ) ;
MENU_ITEM_EDIT ( float52 , MSG_CONTROL_RETRACT_ZLIFT , & retract_zlift , 0 , 999 ) ;
MENU_ITEM_EDIT ( float52 , MSG_CONTROL_RETRACT_RECOVER , & retract_recover_length , 0 , 100 ) ;
# if EXTRUDERS > 1
MENU_ITEM_EDIT ( float52 , MSG_CONTROL_RETRACT_RECOVER_SWAP , & retract_recover_length_swap , 0 , 100 ) ;
# endif
MENU_ITEM_EDIT ( float3 , MSG_CONTROL_RETRACT_RECOVERF , & retract_recover_feedrate , 1 , 999 ) ;
END_MENU ( ) ;
}
# endif // FWRETRACT
# if ENABLED(SDSUPPORT)
# if !PIN_EXISTS(SD_DETECT)
static void lcd_sd_refresh ( ) {
card . initsd ( ) ;
currentMenuViewOffset = 0 ;
}
# endif
static void lcd_sd_updir ( ) {
card . updir ( ) ;
currentMenuViewOffset = 0 ;
}
/**
*
* " Print from SD " submenu
*
*/
void lcd_sdcard_menu ( ) {
ENCODER_DIRECTION_MENUS ( ) ;
if ( lcdDrawUpdate = = 0 & & LCD_CLICKED = = 0 ) return ; // nothing to do (so don't thrash the SD card)
uint16_t fileCnt = card . getnrfilenames ( ) ;
START_MENU ( ) ;
MENU_ITEM ( back , MSG_MAIN ) ;
card . getWorkDirName ( ) ;
if ( card . filename [ 0 ] = = ' / ' ) {
# if !PIN_EXISTS(SD_DETECT)
MENU_ITEM ( function , LCD_STR_REFRESH MSG_REFRESH , lcd_sd_refresh ) ;
# endif
}
else {
MENU_ITEM ( function , LCD_STR_FOLDER " .. " , lcd_sd_updir ) ;
}
for ( uint16_t i = 0 ; i < fileCnt ; i + + ) {
if ( _menuItemNr = = _lineNr ) {
card . getfilename (
# if ENABLED(SDCARD_RATHERRECENTFIRST)
fileCnt - 1 -
# endif
i
) ;
if ( card . filenameIsDir )
MENU_ITEM ( sddirectory , MSG_CARD_MENU , card . filename , card . longFilename ) ;
else
MENU_ITEM ( sdfile , MSG_CARD_MENU , card . filename , card . longFilename ) ;
}
else {
MENU_ITEM_DUMMY ( ) ;
}
}
END_MENU ( ) ;
}
# endif //SDSUPPORT
/**
*
* Functions for editing single values
*
* The " menu_edit_type " macro generates the functions needed to edit a numerical value .
*
* For example , menu_edit_type ( int , int3 , itostr3 , 1 ) expands into these functions :
*
* bool _menu_edit_int3 ( ) ;
* void menu_edit_int3 ( ) ; // edit int (interactively)
* void menu_edit_callback_int3 ( ) ; // edit int (interactively) with callback on completion
* static void _menu_action_setting_edit_int3 ( const char * pstr , int * ptr , int minValue , int maxValue ) ;
* static void menu_action_setting_edit_int3 ( const char * pstr , int * ptr , int minValue , int maxValue ) ;
* static void menu_action_setting_edit_callback_int3 ( const char * pstr , int * ptr , int minValue , int maxValue , menuFunc_t callback ) ; // edit int with callback
*
* You can then use one of the menu macros to present the edit interface :
* MENU_ITEM_EDIT ( int3 , MSG_SPEED , & feedrate_multiplier , 10 , 999 )
*
* This expands into a more primitive menu item :
* MENU_ITEM ( setting_edit_int3 , MSG_SPEED , PSTR ( MSG_SPEED ) , & feedrate_multiplier , 10 , 999 )
*
*
* Also : MENU_MULTIPLIER_ITEM_EDIT , MENU_ITEM_EDIT_CALLBACK , and MENU_MULTIPLIER_ITEM_EDIT_CALLBACK
*
* menu_action_setting_edit_int3 ( PSTR ( MSG_SPEED ) , & feedrate_multiplier , 10 , 999 )
*/
# define menu_edit_type(_type, _name, _strFunc, scale) \
bool _menu_edit_ # # _name ( ) { \
ENCODER_DIRECTION_NORMAL ( ) ; \
bool isClicked = LCD_CLICKED ; \
if ( ( int32_t ) encoderPosition < 0 ) encoderPosition = 0 ; \
if ( ( int32_t ) encoderPosition > maxEditValue ) encoderPosition = maxEditValue ; \
if ( lcdDrawUpdate ) \
lcd_implementation_drawedit ( editLabel , _strFunc ( ( ( _type ) ( ( int32_t ) encoderPosition + minEditValue ) ) / scale ) ) ; \
if ( isClicked ) { \
* ( ( _type * ) editValue ) = ( ( _type ) ( ( int32_t ) encoderPosition + minEditValue ) ) / scale ; \
lcd_goto_previous_menu ( true ) ; \
Allow Edit menu to call fn after edit; Fix PID Ki and Kd display in menus; Actually use changed PID and Max Accel values
Add new 'callback' edit-menu types that call a function after the edit is done. Use this to display and edit Ki and Kd correctly (removing the scaling first and reapplying it after). Also use it to reset maximum stepwise acceleration rates, after updating mm/s^2 rates via menus. (Previously, changes did nothing to affect planner unless saved back to EEPROM, and the machine reset).
Add calls to updatePID() so that PID loop uses updated values whether set by gcode (it already did this), or by restoring defaults, or loading from EEPROM (it didn't do those last two). Similarly, update the maximum step/s^2 accel rates when the mm/s^2 values are changed - whether by menu edits, restore defaults, or EEPROM read.
Refactor the acceleration rate update logic, and the PID scaling logic, into new functions that can be called from wherever, including the callbacks.
Add menu items to allow the z jerk and e jerk to be viewed/edited in the Control->Motion menu, as per xy jerk.
Conflicts:
Marlin/language.h
12 years ago
} \
return isClicked ; \
} \
void menu_edit_ # # _name ( ) { _menu_edit_ # # _name ( ) ; } \
void menu_edit_callback_ # # _name ( ) { if ( _menu_edit_ # # _name ( ) ) ( * callbackFunc ) ( ) ; } \
static void _menu_action_setting_edit_ # # _name ( const char * pstr , _type * ptr , _type minValue , _type maxValue ) { \
lcd_save_previous_menu ( ) ; \
\
lcdDrawUpdate = LCDVIEW_CLEAR_CALL_REDRAW ; \
\
editLabel = pstr ; \
editValue = ptr ; \
minEditValue = minValue * scale ; \
maxEditValue = maxValue * scale - minEditValue ; \
encoderPosition = ( * ptr ) * scale - minEditValue ; \
} \
static void menu_action_setting_edit_ # # _name ( const char * pstr , _type * ptr , _type minValue , _type maxValue ) { \
_menu_action_setting_edit_ # # _name ( pstr , ptr , minValue , maxValue ) ; \
currentMenu = menu_edit_ # # _name ; \
} \
static void menu_action_setting_edit_callback_ # # _name ( const char * pstr , _type * ptr , _type minValue , _type maxValue , menuFunc_t callback ) { \
_menu_action_setting_edit_ # # _name ( pstr , ptr , minValue , maxValue ) ; \
currentMenu = menu_edit_callback_ # # _name ; \
callbackFunc = callback ; \
}
menu_edit_type ( int , int3 , itostr3 , 1 ) ;
menu_edit_type ( float , float3 , ftostr3 , 1 ) ;
menu_edit_type ( float , float32 , ftostr32 , 100 ) ;
menu_edit_type ( float , float43 , ftostr43 , 1000 ) ;
menu_edit_type ( float , float5 , ftostr5 , 0.01 ) ;
menu_edit_type ( float , float51 , ftostr51 , 10 ) ;
menu_edit_type ( float , float52 , ftostr52 , 100 ) ;
menu_edit_type ( unsigned long , long5 , ftostr5 , 0.01 ) ;
/**
*
* Handlers for RepRap World Keypad input
*
*/
# if ENABLED(REPRAPWORLD_KEYPAD)
static void reprapworld_keypad_move_z_up ( ) {
encoderPosition = 1 ;
move_menu_scale = REPRAPWORLD_KEYPAD_MOVE_STEP ;
lcd_move_z ( ) ;
}
static void reprapworld_keypad_move_z_down ( ) {
encoderPosition = - 1 ;
move_menu_scale = REPRAPWORLD_KEYPAD_MOVE_STEP ;
lcd_move_z ( ) ;
}
static void reprapworld_keypad_move_x_left ( ) {
encoderPosition = - 1 ;
move_menu_scale = REPRAPWORLD_KEYPAD_MOVE_STEP ;
lcd_move_x ( ) ;
}
static void reprapworld_keypad_move_x_right ( ) {
encoderPosition = 1 ;
move_menu_scale = REPRAPWORLD_KEYPAD_MOVE_STEP ;
lcd_move_x ( ) ;
}
static void reprapworld_keypad_move_y_down ( ) {
encoderPosition = 1 ;
move_menu_scale = REPRAPWORLD_KEYPAD_MOVE_STEP ;
lcd_move_y ( ) ;
}
static void reprapworld_keypad_move_y_up ( ) {
encoderPosition = - 1 ;
move_menu_scale = REPRAPWORLD_KEYPAD_MOVE_STEP ;
lcd_move_y ( ) ;
}
static void reprapworld_keypad_move_home ( ) {
enqueue_and_echo_commands_P ( PSTR ( " G28 " ) ) ; // move all axes home
}
# endif // REPRAPWORLD_KEYPAD
/**
*
* Audio feedback for controller clicks
*
*/
# if ENABLED(LCD_USE_I2C_BUZZER)
void lcd_buzz ( long duration , uint16_t freq ) { // called from buzz() in Marlin_main.cpp where lcd is unknown
lcd . buzz ( duration , freq ) ;
}
# endif
void lcd_quick_feedback ( ) {
lcdDrawUpdate = LCDVIEW_CLEAR_CALL_REDRAW ;
next_button_update_ms = millis ( ) + 500 ;
# if ENABLED(LCD_USE_I2C_BUZZER)
# ifndef LCD_FEEDBACK_FREQUENCY_HZ
# define LCD_FEEDBACK_FREQUENCY_HZ 100
# endif
# ifndef LCD_FEEDBACK_FREQUENCY_DURATION_MS
# define LCD_FEEDBACK_FREQUENCY_DURATION_MS (1000 / 6)
# endif
lcd . buzz ( LCD_FEEDBACK_FREQUENCY_DURATION_MS , LCD_FEEDBACK_FREQUENCY_HZ ) ;
# elif PIN_EXISTS(BEEPER)
# ifndef LCD_FEEDBACK_FREQUENCY_HZ
# define LCD_FEEDBACK_FREQUENCY_HZ 5000
# endif
# ifndef LCD_FEEDBACK_FREQUENCY_DURATION_MS
# define LCD_FEEDBACK_FREQUENCY_DURATION_MS 2
# endif
buzz ( LCD_FEEDBACK_FREQUENCY_DURATION_MS , LCD_FEEDBACK_FREQUENCY_HZ ) ;
# else
# ifndef LCD_FEEDBACK_FREQUENCY_DURATION_MS
# define LCD_FEEDBACK_FREQUENCY_DURATION_MS 2
# endif
delay ( LCD_FEEDBACK_FREQUENCY_DURATION_MS ) ;
# endif
}
/**
*
* Menu actions
*
*/
static void menu_action_back ( ) { lcd_goto_previous_menu ( ) ; }
static void menu_action_submenu ( menuFunc_t func ) { lcd_save_previous_menu ( ) ; lcd_goto_menu ( func ) ; }
static void menu_action_gcode ( const char * pgcode ) { enqueue_and_echo_commands_P ( pgcode ) ; }
static void menu_action_function ( menuFunc_t func ) { ( * func ) ( ) ; }
# if ENABLED(SDSUPPORT)
static void menu_action_sdfile ( const char * filename , char * longFilename ) {
UNUSED ( longFilename ) ;
card . openAndPrintFile ( filename ) ;
lcd_return_to_status ( ) ;
}
static void menu_action_sddirectory ( const char * filename , char * longFilename ) {
UNUSED ( longFilename ) ;
card . chdir ( filename ) ;
encoderPosition = 0 ;
}
# endif //SDSUPPORT
static void menu_action_setting_edit_bool ( const char * pstr , bool * ptr ) { UNUSED ( pstr ) ; * ptr = ! ( * ptr ) ; }
static void menu_action_setting_edit_callback_bool ( const char * pstr , bool * ptr , menuFunc_t callback ) {
menu_action_setting_edit_bool ( pstr , ptr ) ;
( * callback ) ( ) ;
}
# endif //ULTIPANEL
/** LCD API **/
void lcd_init ( ) {
lcd_implementation_init ( ) ;
# if ENABLED(NEWPANEL)
# if BUTTON_EXISTS(EN1)
SET_INPUT ( BTN_EN1 ) ;
WRITE ( BTN_EN1 , HIGH ) ;
# endif
# if BUTTON_EXISTS(EN2)
SET_INPUT ( BTN_EN2 ) ;
WRITE ( BTN_EN2 , HIGH ) ;
# endif
# if BUTTON_EXISTS(ENC)
SET_INPUT ( BTN_ENC ) ;
WRITE ( BTN_ENC , HIGH ) ;
# endif
# if ENABLED(REPRAPWORLD_KEYPAD)
pinMode ( SHIFT_CLK , OUTPUT ) ;
pinMode ( SHIFT_LD , OUTPUT ) ;
pinMode ( SHIFT_OUT , INPUT ) ;
WRITE ( SHIFT_OUT , HIGH ) ;
WRITE ( SHIFT_LD , HIGH ) ;
# endif
# ifdef RIGIDBOT_PANEL
SET_INPUT ( BTN_UP ) ;
SET_INPUT ( BTN_DWN ) ;
SET_INPUT ( BTN_LFT ) ;
SET_INPUT ( BTN_RT ) ;
# endif
# else // Not NEWPANEL
# if ENABLED(SR_LCD_2W_NL) // Non latching 2 wire shift register
pinMode ( SR_DATA_PIN , OUTPUT ) ;
pinMode ( SR_CLK_PIN , OUTPUT ) ;
# elif defined(SHIFT_CLK)
pinMode ( SHIFT_CLK , OUTPUT ) ;
pinMode ( SHIFT_LD , OUTPUT ) ;
pinMode ( SHIFT_EN , OUTPUT ) ;
pinMode ( SHIFT_OUT , INPUT ) ;
WRITE ( SHIFT_OUT , HIGH ) ;
WRITE ( SHIFT_LD , HIGH ) ;
WRITE ( SHIFT_EN , LOW ) ;
# endif // SR_LCD_2W_NL
# endif //!NEWPANEL
# if ENABLED(SDSUPPORT) && PIN_EXISTS(SD_DETECT)
SET_INPUT ( SD_DETECT_PIN ) ;
WRITE ( SD_DETECT_PIN , HIGH ) ;
lcd_sd_status = 2 ; // UNKNOWN
# endif
# if ENABLED(LCD_HAS_SLOW_BUTTONS)
slow_buttons = 0 ;
# endif
lcd_buttons_update ( ) ;
# if ENABLED(ULTIPANEL)
encoderDiff = 0 ;
# endif
}
int lcd_strlen ( const char * s ) {
int i = 0 , j = 0 ;
while ( s [ i ] ) {
if ( ( s [ i ] & 0xc0 ) ! = 0x80 ) j + + ;
i + + ;
}
return j ;
}
int lcd_strlen_P ( const char * s ) {
int j = 0 ;
while ( pgm_read_byte ( s ) ) {
if ( ( pgm_read_byte ( s ) & 0xc0 ) ! = 0x80 ) j + + ;
s + + ;
}
return j ;
}
bool lcd_blink ( ) {
static uint8_t blink = 0 ;
static millis_t next_blink_ms = 0 ;
millis_t ms = millis ( ) ;
if ( ELAPSED ( ms , next_blink_ms ) ) {
blink ^ = 0xFF ;
next_blink_ms = ms + 1000 - LCD_UPDATE_INTERVAL / 2 ;
}
return blink ! = 0 ;
}
/**
* Update the LCD , read encoder buttons , etc .
* - Read button states
* - Check the SD Card slot state
* - Act on RepRap World keypad input
* - Update the encoder position
* - Apply acceleration to the encoder position
* - Set lcdDrawUpdate = LCDVIEW_CALL_REDRAW_NOW on controller events
* - Reset the Info Screen timeout if there ' s any input
* - Update status indicators , if any
*
* Run the current LCD menu handler callback function :
* - Call the handler only if lcdDrawUpdate ! = LCDVIEW_NONE
* - Before calling the handler , LCDVIEW_CALL_NO_REDRAW = > LCDVIEW_NONE
* - Call the menu handler . Menu handlers should do the following :
* - If a value changes , set lcdDrawUpdate to LCDVIEW_REDRAW_NOW and draw the value
* ( Encoder events automatically set lcdDrawUpdate for you . )
* - if ( lcdDrawUpdate ) { redraw }
* - Before exiting the handler set lcdDrawUpdate to :
* - LCDVIEW_CLEAR_CALL_REDRAW to clear screen and set LCDVIEW_CALL_REDRAW_NEXT .
* - LCDVIEW_REDRAW_NOW or LCDVIEW_NONE to keep drawingm but only in this loop .
* - LCDVIEW_REDRAW_NEXT to keep drawing and draw on the next loop also .
* - LCDVIEW_CALL_NO_REDRAW to keep drawing ( or start drawing ) with no redraw on the next loop .
* - NOTE : For graphical displays menu handlers may be called 2 or more times per loop ,
* so don ' t change lcdDrawUpdate without considering this .
*
* After the menu handler callback runs ( or not ) :
* - Clear the LCD if lcdDrawUpdate = = LCDVIEW_CLEAR_CALL_REDRAW
* - Update lcdDrawUpdate for the next loop ( i . e . , move one state down , usually )
*
* No worries . This function is only called from the main thread .
*/
void lcd_update ( ) {
# if ENABLED(ULTIPANEL)
static millis_t return_to_status_ms = 0 ;
# endif
lcd_buttons_update ( ) ;
# if ENABLED(SDSUPPORT) && PIN_EXISTS(SD_DETECT)
bool sd_status = IS_SD_INSERTED ;
if ( sd_status ! = lcd_sd_status & & lcd_detected ( ) ) {
lcdDrawUpdate = LCDVIEW_CLEAR_CALL_REDRAW ;
lcd_implementation_init ( // to maybe revive the LCD if static electricity killed it.
# if ENABLED(LCD_PROGRESS_BAR)
currentMenu = = lcd_status_screen
# endif
) ;
if ( sd_status ) {
card . initsd ( ) ;
if ( lcd_sd_status ! = 2 ) LCD_MESSAGEPGM ( MSG_SD_INSERTED ) ;
}
else {
card . release ( ) ;
if ( lcd_sd_status ! = 2 ) LCD_MESSAGEPGM ( MSG_SD_REMOVED ) ;
}
lcd_sd_status = sd_status ;
}
# endif //SDSUPPORT && SD_DETECT_PIN
millis_t ms = millis ( ) ;
if ( ELAPSED ( ms , next_lcd_update_ms ) ) {
next_lcd_update_ms = ms + LCD_UPDATE_INTERVAL ;
# if ENABLED(LCD_HAS_STATUS_INDICATORS)
lcd_implementation_update_indicators ( ) ;
# endif
# if ENABLED(LCD_HAS_SLOW_BUTTONS)
slow_buttons = lcd_implementation_read_slow_buttons ( ) ; // buttons which take too long to read in interrupt context
# endif
# if ENABLED(ULTIPANEL)
# if ENABLED(REPRAPWORLD_KEYPAD)
# if ENABLED(DELTA) || ENABLED(SCARA)
# define _KEYPAD_MOVE_ALLOWED (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS])
# else
# define _KEYPAD_MOVE_ALLOWED true
# endif
if ( REPRAPWORLD_KEYPAD_MOVE_HOME ) reprapworld_keypad_move_home ( ) ;
if ( _KEYPAD_MOVE_ALLOWED ) {
if ( REPRAPWORLD_KEYPAD_MOVE_Z_UP ) reprapworld_keypad_move_z_up ( ) ;
if ( REPRAPWORLD_KEYPAD_MOVE_Z_DOWN ) reprapworld_keypad_move_z_down ( ) ;
if ( REPRAPWORLD_KEYPAD_MOVE_X_LEFT ) reprapworld_keypad_move_x_left ( ) ;
if ( REPRAPWORLD_KEYPAD_MOVE_X_RIGHT ) reprapworld_keypad_move_x_right ( ) ;
if ( REPRAPWORLD_KEYPAD_MOVE_Y_DOWN ) reprapworld_keypad_move_y_down ( ) ;
if ( REPRAPWORLD_KEYPAD_MOVE_Y_UP ) reprapworld_keypad_move_y_up ( ) ;
}
# endif
bool encoderPastThreshold = ( abs ( encoderDiff ) > = ENCODER_PULSES_PER_STEP ) ;
if ( encoderPastThreshold | | LCD_CLICKED ) {
if ( encoderPastThreshold ) {
int32_t encoderMultiplier = 1 ;
# if ENABLED(ENCODER_RATE_MULTIPLIER)
if ( encoderRateMultiplierEnabled ) {
int32_t encoderMovementSteps = abs ( encoderDiff ) / ENCODER_PULSES_PER_STEP ;
if ( lastEncoderMovementMillis ! = 0 ) {
// Note that the rate is always calculated between to passes through the
// loop and that the abs of the encoderDiff value is tracked.
float encoderStepRate = ( float ) ( encoderMovementSteps ) / ( ( float ) ( ms - lastEncoderMovementMillis ) ) * 1000.0 ;
if ( encoderStepRate > = ENCODER_100X_STEPS_PER_SEC ) encoderMultiplier = 100 ;
else if ( encoderStepRate > = ENCODER_10X_STEPS_PER_SEC ) encoderMultiplier = 10 ;
# if ENABLED(ENCODER_RATE_MULTIPLIER_DEBUG)
SERIAL_ECHO_START ;
SERIAL_ECHO ( " Enc Step Rate: " ) ;
SERIAL_ECHO ( encoderStepRate ) ;
SERIAL_ECHO ( " Multiplier: " ) ;
SERIAL_ECHO ( encoderMultiplier ) ;
SERIAL_ECHO ( " ENCODER_10X_STEPS_PER_SEC: " ) ;
SERIAL_ECHO ( ENCODER_10X_STEPS_PER_SEC ) ;
SERIAL_ECHO ( " ENCODER_100X_STEPS_PER_SEC: " ) ;
SERIAL_ECHOLN ( ENCODER_100X_STEPS_PER_SEC ) ;
# endif //ENCODER_RATE_MULTIPLIER_DEBUG
}
lastEncoderMovementMillis = ms ;
} // encoderRateMultiplierEnabled
# endif //ENCODER_RATE_MULTIPLIER
encoderPosition + = ( encoderDiff * encoderMultiplier ) / ENCODER_PULSES_PER_STEP ;
encoderDiff = 0 ;
}
return_to_status_ms = ms + LCD_TIMEOUT_TO_STATUS ;
lcdDrawUpdate = LCDVIEW_REDRAW_NOW ;
}
# endif //ULTIPANEL
// Simply redraw the Info Screen 10 times a second
if ( currentMenu = = lcd_status_screen & & ! ( + + lcd_status_update_delay % 10 ) )
lcdDrawUpdate = LCDVIEW_REDRAW_NOW ;
if ( lcdDrawUpdate ) {
switch ( lcdDrawUpdate ) {
case LCDVIEW_CALL_NO_REDRAW :
lcdDrawUpdate = LCDVIEW_NONE ;
break ;
case LCDVIEW_CLEAR_CALL_REDRAW : // set by handlers, then altered after (rarely occurs here)
case LCDVIEW_CALL_REDRAW_NEXT : // set by handlers, then altered after (never occurs here?)
lcdDrawUpdate = LCDVIEW_REDRAW_NOW ;
case LCDVIEW_REDRAW_NOW : // set above, or by a handler through LCDVIEW_CALL_REDRAW_NEXT
case LCDVIEW_NONE :
break ;
}
# if ENABLED(DOGLCD) // Changes due to different driver architecture of the DOGM display
static int8_t dot_color = 0 ;
dot_color = 1 - dot_color ;
u8g . firstPage ( ) ;
do {
lcd_setFont ( FONT_MENU ) ;
u8g . setPrintPos ( 125 , 0 ) ;
u8g . setColorIndex ( dot_color ) ; // Set color for the alive dot
u8g . drawPixel ( 127 , 63 ) ; // draw alive dot
u8g . setColorIndex ( 1 ) ; // black on white
( * currentMenu ) ( ) ;
} while ( u8g . nextPage ( ) ) ;
# else
( * currentMenu ) ( ) ;
# endif
}
# if ENABLED(ULTIPANEL)
// Return to Status Screen after a timeout
if ( currentMenu = = lcd_status_screen | | defer_return_to_status )
return_to_status_ms = ms + LCD_TIMEOUT_TO_STATUS ;
else if ( ELAPSED ( ms , return_to_status_ms ) )
lcd_return_to_status ( ) ;
# endif // ULTIPANEL
switch ( lcdDrawUpdate ) {
case LCDVIEW_CLEAR_CALL_REDRAW :
lcd_implementation_clear ( ) ;
case LCDVIEW_CALL_REDRAW_NEXT :
lcdDrawUpdate = LCDVIEW_REDRAW_NOW ;
break ;
case LCDVIEW_REDRAW_NOW :
lcdDrawUpdate = LCDVIEW_NONE ;
break ;
case LCDVIEW_NONE :
break ;
}
}
}
void lcd_ignore_click ( bool b ) {
ignore_click = b ;
wait_for_unclick = false ;
}
void lcd_finishstatus ( bool persist = false ) {
# if !(ENABLED(LCD_PROGRESS_BAR) && (PROGRESS_MSG_EXPIRE > 0))
UNUSED ( persist ) ;
# endif
# if ENABLED(LCD_PROGRESS_BAR)
progress_bar_ms = millis ( ) ;
# if PROGRESS_MSG_EXPIRE > 0
expire_status_ms = persist ? 0 : progress_bar_ms + PROGRESS_MSG_EXPIRE ;
# endif
# endif
lcdDrawUpdate = LCDVIEW_CLEAR_CALL_REDRAW ;
# if ENABLED(FILAMENT_LCD_DISPLAY)
previous_lcd_status_ms = millis ( ) ; //get status message to show up for a while
# endif
}
# if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
void dontExpireStatus ( ) { expire_status_ms = 0 ; }
# endif
void set_utf_strlen ( char * s , uint8_t n ) {
uint8_t i = 0 , j = 0 ;
while ( s [ i ] & & ( j < n ) ) {
if ( ( s [ i ] & 0xc0u ) ! = 0x80u ) j + + ;
i + + ;
}
while ( j + + < n ) s [ i + + ] = ' ' ;
s [ i ] = 0 ;
}
bool lcd_hasstatus ( ) { return ( lcd_status_message [ 0 ] ! = ' \0 ' ) ; }
void lcd_setstatus ( const char * message , bool persist ) {
if ( lcd_status_message_level > 0 ) return ;
strncpy ( lcd_status_message , message , 3 * ( LCD_WIDTH ) ) ;
set_utf_strlen ( lcd_status_message , LCD_WIDTH ) ;
lcd_finishstatus ( persist ) ;
}
void lcd_setstatuspgm ( const char * message , uint8_t level ) {
if ( level > = lcd_status_message_level ) {
strncpy_P ( lcd_status_message , message , 3 * ( LCD_WIDTH ) ) ;
set_utf_strlen ( lcd_status_message , LCD_WIDTH ) ;
lcd_status_message_level = level ;
lcd_finishstatus ( level > 0 ) ;
}
}
void lcd_setalertstatuspgm ( const char * message ) {
lcd_setstatuspgm ( message , 1 ) ;
# if ENABLED(ULTIPANEL)
lcd_return_to_status ( ) ;
# endif
}
void lcd_reset_alert_level ( ) { lcd_status_message_level = 0 ; }
# if ENABLED(HAS_LCD_CONTRAST)
void lcd_setcontrast ( uint8_t value ) {
lcd_contrast = value & 0x3F ;
u8g . setContrast ( lcd_contrast ) ;
}
# endif
# if ENABLED(ULTIPANEL)
/**
* Setup Rotary Encoder Bit Values ( for two pin encoders to indicate movement )
* These values are independent of which pins are used for EN_A and EN_B indications
* The rotary encoder part is also independent to the chipset used for the LCD
*/
# if defined(EN_A) && defined(EN_B)
# define encrot0 0
# define encrot1 2
# define encrot2 3
# define encrot3 1
# endif
# define GET_BUTTON_STATES(DST) \
uint8_t new_ # # DST = 0 ; \
WRITE ( SHIFT_LD , LOW ) ; \
WRITE ( SHIFT_LD , HIGH ) ; \
for ( int8_t i = 0 ; i < 8 ; i + + ) { \
new_ # # DST > > = 1 ; \
if ( READ ( SHIFT_OUT ) ) SBI ( new_ # # DST , 7 ) ; \
WRITE ( SHIFT_CLK , HIGH ) ; \
WRITE ( SHIFT_CLK , LOW ) ; \
} \
DST = ~ new_ # # DST ; //invert it, because a pressed switch produces a logical 0
/**
* Read encoder buttons from the hardware registers
* Warning : This function is called from interrupt context !
*/
void lcd_buttons_update ( ) {
# if ENABLED(NEWPANEL)
uint8_t newbutton = 0 ;
# if BUTTON_EXISTS(EN1)
if ( BUTTON_PRESSED ( EN1 ) ) newbutton | = EN_A ;
# endif
# if BUTTON_EXISTS(EN2)
if ( BUTTON_PRESSED ( EN2 ) ) newbutton | = EN_B ;
# endif
# if ENABLED(RIGIDBOT_PANEL) || BUTTON_EXISTS(ENC)
millis_t now = millis ( ) ;
# endif
# if ENABLED(RIGIDBOT_PANEL)
if ( ELAPSED ( now , next_button_update_ms ) ) {
if ( BUTTON_PRESSED ( UP ) ) {
encoderDiff = - ( ENCODER_STEPS_PER_MENU_ITEM ) ;
next_button_update_ms = now + 300 ;
}
else if ( BUTTON_PRESSED ( DWN ) ) {
encoderDiff = ENCODER_STEPS_PER_MENU_ITEM ;
next_button_update_ms = now + 300 ;
}
else if ( BUTTON_PRESSED ( LFT ) ) {
encoderDiff = - ( ENCODER_PULSES_PER_STEP ) ;
next_button_update_ms = now + 300 ;
}
else if ( BUTTON_PRESSED ( RT ) ) {
encoderDiff = ENCODER_PULSES_PER_STEP ;
next_button_update_ms = now + 300 ;
}
}
# endif
# if BUTTON_EXISTS(ENC)
if ( ELAPSED ( now , next_button_update_ms ) & & BUTTON_PRESSED ( ENC ) ) newbutton | = EN_C ;
# endif
buttons = newbutton ;
# if ENABLED(LCD_HAS_SLOW_BUTTONS)
buttons | = slow_buttons ;
# endif
# if ENABLED(REPRAPWORLD_KEYPAD)
GET_BUTTON_STATES ( buttons_reprapworld_keypad ) ;
# endif
# else
GET_BUTTON_STATES ( buttons ) ;
# endif //!NEWPANEL
# if ENABLED(REVERSE_MENU_DIRECTION)
# define ENCODER_DIFF_CW (encoderDiff += encoderDirection)
# define ENCODER_DIFF_CCW (encoderDiff -= encoderDirection)
# else
# define ENCODER_DIFF_CW (encoderDiff++)
# define ENCODER_DIFF_CCW (encoderDiff--)
# endif
# define ENCODER_SPIN(_E1, _E2) switch (lastEncoderBits) { case _E1: ENCODER_DIFF_CW; break; case _E2: ENCODER_DIFF_CCW; }
//manage encoder rotation
uint8_t enc = 0 ;
if ( buttons & EN_A ) enc | = B01 ;
if ( buttons & EN_B ) enc | = B10 ;
if ( enc ! = lastEncoderBits ) {
switch ( enc ) {
case encrot0 : ENCODER_SPIN ( encrot3 , encrot1 ) ; break ;
case encrot1 : ENCODER_SPIN ( encrot0 , encrot2 ) ; break ;
case encrot2 : ENCODER_SPIN ( encrot1 , encrot3 ) ; break ;
case encrot3 : ENCODER_SPIN ( encrot2 , encrot0 ) ; break ;
}
}
lastEncoderBits = enc ;
}
bool lcd_detected ( void ) {
# if (ENABLED(LCD_I2C_TYPE_MCP23017) || ENABLED(LCD_I2C_TYPE_MCP23008)) && ENABLED(DETECT_DEVICE)
return lcd . LcdDetected ( ) = = 1 ;
# else
return true ;
# endif
}
bool lcd_clicked ( ) { return LCD_CLICKED ; }
# endif // ULTIPANEL
/*********************************/
/** Number to string conversion **/
/*********************************/
char conv [ 8 ] ;
// Convert float to rj string with 123 or -12 format
char * ftostr3 ( const float & x ) { return itostr3 ( ( int ) x ) ; }
// Convert float to rj string with _123, -123, _-12, or __-1 format
char * ftostr4sign ( const float & x ) { return itostr4sign ( ( int ) x ) ; }
// Convert unsigned int to string with 12 format
char * itostr2 ( const uint8_t & x ) {
//sprintf(conv,"%5.1f",x);
int xx = x ;
conv [ 0 ] = ( xx / 10 ) % 10 + ' 0 ' ;
conv [ 1 ] = xx % 10 + ' 0 ' ;
conv [ 2 ] = 0 ;
return conv ;
}
// Convert float to string with +123.4 / -123.4 format
char * ftostr31 ( const float & x ) {
int xx = abs ( x * 10 ) ;
conv [ 0 ] = ( x > = 0 ) ? ' + ' : ' - ' ;
conv [ 1 ] = ( xx / 1000 ) % 10 + ' 0 ' ;
conv [ 2 ] = ( xx / 100 ) % 10 + ' 0 ' ;
conv [ 3 ] = ( xx / 10 ) % 10 + ' 0 ' ;
conv [ 4 ] = ' . ' ;
conv [ 5 ] = xx % 10 + ' 0 ' ;
conv [ 6 ] = 0 ;
return conv ;
}
// Convert unsigned float to string with 123.4 format, dropping sign
char * ftostr31ns ( const float & x ) {
int xx = abs ( x * 10 ) ;
conv [ 0 ] = ( xx / 1000 ) % 10 + ' 0 ' ;
conv [ 1 ] = ( xx / 100 ) % 10 + ' 0 ' ;
conv [ 2 ] = ( xx / 10 ) % 10 + ' 0 ' ;
conv [ 3 ] = ' . ' ;
conv [ 4 ] = xx % 10 + ' 0 ' ;
conv [ 5 ] = 0 ;
return conv ;
}
// Convert signed float to string with 023.45 / -23.45 format
char * ftostr32 ( const float & x ) {
long xx = abs ( x * 100 ) ;
conv [ 0 ] = x > = 0 ? ( xx / 10000 ) % 10 + ' 0 ' : ' - ' ;
conv [ 1 ] = ( xx / 1000 ) % 10 + ' 0 ' ;
conv [ 2 ] = ( xx / 100 ) % 10 + ' 0 ' ;
conv [ 3 ] = ' . ' ;
conv [ 4 ] = ( xx / 10 ) % 10 + ' 0 ' ;
conv [ 5 ] = xx % 10 + ' 0 ' ;
conv [ 6 ] = 0 ;
return conv ;
}
// Convert signed float to string (6 digit) with -1.234 / _0.000 / +1.234 format
char * ftostr43 ( const float & x , char plus /*=' '*/ ) {
long xx = x * 1000 ;
if ( xx = = 0 )
conv [ 0 ] = ' ' ;
else if ( xx > 0 )
conv [ 0 ] = plus ;
else {
xx = - xx ;
conv [ 0 ] = ' - ' ;
}
conv [ 1 ] = ( xx / 1000 ) % 10 + ' 0 ' ;
conv [ 2 ] = ' . ' ;
conv [ 3 ] = ( xx / 100 ) % 10 + ' 0 ' ;
conv [ 4 ] = ( xx / 10 ) % 10 + ' 0 ' ;
conv [ 5 ] = ( xx ) % 10 + ' 0 ' ;
conv [ 6 ] = 0 ;
return conv ;
}
// Convert unsigned float to string with 1.23 format
char * ftostr12ns ( const float & x ) {
long xx = x * 100 ;
xx = abs ( xx ) ;
conv [ 0 ] = ( xx / 100 ) % 10 + ' 0 ' ;
conv [ 1 ] = ' . ' ;
conv [ 2 ] = ( xx / 10 ) % 10 + ' 0 ' ;
conv [ 3 ] = ( xx ) % 10 + ' 0 ' ;
conv [ 4 ] = 0 ;
return conv ;
}
// Convert signed float to space-padded string with -_23.4_ format
char * ftostr32sp ( const float & x ) {
long xx = x * 100 ;
uint8_t dig ;
if ( xx < 0 ) { // negative val = -_0
xx = - xx ;
conv [ 0 ] = ' - ' ;
dig = ( xx / 1000 ) % 10 ;
conv [ 1 ] = dig ? ' 0 ' + dig : ' ' ;
}
else { // positive val = __0
dig = ( xx / 10000 ) % 10 ;
if ( dig ) {
conv [ 0 ] = ' 0 ' + dig ;
conv [ 1 ] = ' 0 ' + ( xx / 1000 ) % 10 ;
}
else {
conv [ 0 ] = ' ' ;
dig = ( xx / 1000 ) % 10 ;
conv [ 1 ] = dig ? ' 0 ' + dig : ' ' ;
}
}
conv [ 2 ] = ' 0 ' + ( xx / 100 ) % 10 ; // lsd always
dig = xx % 10 ;
if ( dig ) { // 2 decimal places
conv [ 5 ] = ' 0 ' + dig ;
conv [ 4 ] = ' 0 ' + ( xx / 10 ) % 10 ;
conv [ 3 ] = ' . ' ;
}
else { // 1 or 0 decimal place
dig = ( xx / 10 ) % 10 ;
if ( dig ) {
conv [ 4 ] = ' 0 ' + dig ;
conv [ 3 ] = ' . ' ;
}
else {
conv [ 3 ] = conv [ 4 ] = ' ' ;
}
conv [ 5 ] = ' ' ;
}
conv [ 6 ] = ' \0 ' ;
return conv ;
}
// Convert signed int to lj string with +012 / -012 format
char * itostr3sign ( const int & x ) {
int xx ;
if ( x > = 0 ) {
conv [ 0 ] = ' + ' ;
xx = x ;
}
else {
conv [ 0 ] = ' - ' ;
xx = - x ;
}
conv [ 1 ] = ( xx / 100 ) % 10 + ' 0 ' ;
conv [ 2 ] = ( xx / 10 ) % 10 + ' 0 ' ;
conv [ 3 ] = xx % 10 + ' 0 ' ;
conv [ 4 ] = ' . ' ;
conv [ 5 ] = ' 0 ' ;
conv [ 6 ] = 0 ;
return conv ;
}
// Convert signed int to rj string with 123 or -12 format
char * itostr3 ( const int & x ) {
int xx = x ;
if ( xx < 0 ) {
conv [ 0 ] = ' - ' ;
xx = - xx ;
}
else
conv [ 0 ] = xx > = 100 ? ( xx / 100 ) % 10 + ' 0 ' : ' ' ;
conv [ 1 ] = xx > = 10 ? ( xx / 10 ) % 10 + ' 0 ' : ' ' ;
conv [ 2 ] = xx % 10 + ' 0 ' ;
conv [ 3 ] = 0 ;
return conv ;
}
// Convert unsigned int to lj string with 123 format
char * itostr3left ( const int & x ) {
if ( x > = 100 ) {
conv [ 0 ] = ( x / 100 ) % 10 + ' 0 ' ;
conv [ 1 ] = ( x / 10 ) % 10 + ' 0 ' ;
conv [ 2 ] = x % 10 + ' 0 ' ;
conv [ 3 ] = 0 ;
}
else if ( x > = 10 ) {
conv [ 0 ] = ( x / 10 ) % 10 + ' 0 ' ;
conv [ 1 ] = x % 10 + ' 0 ' ;
conv [ 2 ] = 0 ;
}
else {
conv [ 0 ] = x % 10 + ' 0 ' ;
conv [ 1 ] = 0 ;
}
return conv ;
}
// Convert unsigned int to rj string with 1234 format
char * itostr4 ( const int & x ) {
conv [ 0 ] = x > = 1000 ? ( x / 1000 ) % 10 + ' 0 ' : ' ' ;
conv [ 1 ] = x > = 100 ? ( x / 100 ) % 10 + ' 0 ' : ' ' ;
conv [ 2 ] = x > = 10 ? ( x / 10 ) % 10 + ' 0 ' : ' ' ;
conv [ 3 ] = x % 10 + ' 0 ' ;
conv [ 4 ] = 0 ;
return conv ;
}
// Convert signed int to rj string with _123, -123, _-12, or __-1 format
char * itostr4sign ( const int & x ) {
int xx = abs ( x ) ;
int sign = 0 ;
if ( xx > = 100 ) {
conv [ 1 ] = ( xx / 100 ) % 10 + ' 0 ' ;
conv [ 2 ] = ( xx / 10 ) % 10 + ' 0 ' ;
}
else if ( xx > = 10 ) {
conv [ 0 ] = ' ' ;
sign = 1 ;
conv [ 2 ] = ( xx / 10 ) % 10 + ' 0 ' ;
}
else {
conv [ 0 ] = ' ' ;
conv [ 1 ] = ' ' ;
sign = 2 ;
}
conv [ sign ] = x < 0 ? ' - ' : ' ' ;
conv [ 3 ] = xx % 10 + ' 0 ' ;
conv [ 4 ] = 0 ;
return conv ;
}
// Convert unsigned float to rj string with 12345 format
char * ftostr5 ( const float & x ) {
long xx = abs ( x ) ;
conv [ 0 ] = xx > = 10000 ? ( xx / 10000 ) % 10 + ' 0 ' : ' ' ;
conv [ 1 ] = xx > = 1000 ? ( xx / 1000 ) % 10 + ' 0 ' : ' ' ;
conv [ 2 ] = xx > = 100 ? ( xx / 100 ) % 10 + ' 0 ' : ' ' ;
conv [ 3 ] = xx > = 10 ? ( xx / 10 ) % 10 + ' 0 ' : ' ' ;
conv [ 4 ] = xx % 10 + ' 0 ' ;
conv [ 5 ] = 0 ;
return conv ;
}
// Convert signed float to string with +1234.5 format
char * ftostr51 ( const float & x ) {
long xx = abs ( x * 10 ) ;
conv [ 0 ] = ( x > = 0 ) ? ' + ' : ' - ' ;
conv [ 1 ] = ( xx / 10000 ) % 10 + ' 0 ' ;
conv [ 2 ] = ( xx / 1000 ) % 10 + ' 0 ' ;
conv [ 3 ] = ( xx / 100 ) % 10 + ' 0 ' ;
conv [ 4 ] = ( xx / 10 ) % 10 + ' 0 ' ;
conv [ 5 ] = ' . ' ;
conv [ 6 ] = xx % 10 + ' 0 ' ;
conv [ 7 ] = 0 ;
return conv ;
}
// Convert signed float to string with +123.45 format
char * ftostr52 ( const float & x ) {
conv [ 0 ] = ( x > = 0 ) ? ' + ' : ' - ' ;
long xx = abs ( x * 100 ) ;
conv [ 1 ] = ( xx / 10000 ) % 10 + ' 0 ' ;
conv [ 2 ] = ( xx / 1000 ) % 10 + ' 0 ' ;
conv [ 3 ] = ( xx / 100 ) % 10 + ' 0 ' ;
conv [ 4 ] = ' . ' ;
conv [ 5 ] = ( xx / 10 ) % 10 + ' 0 ' ;
conv [ 6 ] = xx % 10 + ' 0 ' ;
conv [ 7 ] = 0 ;
return conv ;
}
# endif // ULTRA_LCD