/**
* Marlin 3 D Printer Firmware
* Copyright ( C ) 2016 MarlinFirmware [ https : //github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl .
* Copyright ( C ) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software : you can redistribute it and / or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation , either version 3 of the License , or
* ( at your option ) any later version .
*
* This program is distributed in the hope that it will be useful ,
* but WITHOUT ANY WARRANTY ; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the
* GNU General Public License for more details .
*
* You should have received a copy of the GNU General Public License
* along with this program . If not , see < http : //www.gnu.org/licenses/>.
*
*/
# ifndef MARLIN_H
# define MARLIN_H
# include <math.h>
# include <stdio.h>
# include <stdlib.h>
# include <string.h>
# include <inttypes.h>
# include <util/delay.h>
# include <avr/pgmspace.h>
# include <avr/eeprom.h>
# include <avr/interrupt.h>
# include "MarlinConfig.h"
# include "enum.h"
# include "types.h"
# include "fastio.h"
# include "utility.h"
# include "serial.h"
# if ENABLED(PRINTCOUNTER)
# include "printcounter.h"
# else
# include "stopwatch.h"
# endif
void idle (
# if ENABLED(ADVANCED_PAUSE_FEATURE)
bool no_stepper_sleep = false // pass true to keep steppers from disabling on timeout
# endif
) ;
void manage_inactivity ( bool ignore_stepper_queue = false ) ;
# if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
extern bool extruder_duplication_enabled ;
# endif
# if HAS_X2_ENABLE
# define enable_X() do{ X_ENABLE_WRITE( X_ENABLE_ON); X2_ENABLE_WRITE( X_ENABLE_ON); }while(0)
# define disable_X() do{ X_ENABLE_WRITE(!X_ENABLE_ON); X2_ENABLE_WRITE(!X_ENABLE_ON); axis_known_position[X_AXIS] = false; }while(0)
# elif HAS_X_ENABLE
# define enable_X() X_ENABLE_WRITE( X_ENABLE_ON)
# define disable_X() do{ X_ENABLE_WRITE(!X_ENABLE_ON); axis_known_position[X_AXIS] = false; }while(0)
# else
# define enable_X() NOOP
# define disable_X() NOOP
# endif
# if HAS_Y2_ENABLE
# define enable_Y() do{ Y_ENABLE_WRITE( Y_ENABLE_ON); Y2_ENABLE_WRITE(Y_ENABLE_ON); }while(0)
# define disable_Y() do{ Y_ENABLE_WRITE(!Y_ENABLE_ON); Y2_ENABLE_WRITE(!Y_ENABLE_ON); axis_known_position[Y_AXIS] = false; }while(0)
# elif HAS_Y_ENABLE
# define enable_Y() Y_ENABLE_WRITE( Y_ENABLE_ON)
# define disable_Y() do{ Y_ENABLE_WRITE(!Y_ENABLE_ON); axis_known_position[Y_AXIS] = false; }while(0)
# else
# define enable_Y() NOOP
# define disable_Y() NOOP
# endif
# if HAS_Z2_ENABLE
# define enable_Z() do{ Z_ENABLE_WRITE( Z_ENABLE_ON); Z2_ENABLE_WRITE(Z_ENABLE_ON); }while(0)
# define disable_Z() do{ Z_ENABLE_WRITE(!Z_ENABLE_ON); Z2_ENABLE_WRITE(!Z_ENABLE_ON); axis_known_position[Z_AXIS] = false; }while(0)
# elif HAS_Z_ENABLE
# define enable_Z() Z_ENABLE_WRITE( Z_ENABLE_ON)
# define disable_Z() do{ Z_ENABLE_WRITE(!Z_ENABLE_ON); axis_known_position[Z_AXIS] = false; }while(0)
# else
# define enable_Z() NOOP
# define disable_Z() NOOP
# endif
# if ENABLED(MIXING_EXTRUDER)
/**
* Mixing steppers synchronize their enable ( and direction ) together
*/
# if MIXING_STEPPERS > 3
# define enable_E0() { E0_ENABLE_WRITE( E_ENABLE_ON); E1_ENABLE_WRITE( E_ENABLE_ON); E2_ENABLE_WRITE( E_ENABLE_ON); E3_ENABLE_WRITE( E_ENABLE_ON); }
# define disable_E0() { E0_ENABLE_WRITE(!E_ENABLE_ON); E1_ENABLE_WRITE(!E_ENABLE_ON); E2_ENABLE_WRITE(!E_ENABLE_ON); E3_ENABLE_WRITE(!E_ENABLE_ON); }
# elif MIXING_STEPPERS > 2
# define enable_E0() { E0_ENABLE_WRITE( E_ENABLE_ON); E1_ENABLE_WRITE( E_ENABLE_ON); E2_ENABLE_WRITE( E_ENABLE_ON); }
# define disable_E0() { E0_ENABLE_WRITE(!E_ENABLE_ON); E1_ENABLE_WRITE(!E_ENABLE_ON); E2_ENABLE_WRITE(!E_ENABLE_ON); }
# else
# define enable_E0() { E0_ENABLE_WRITE( E_ENABLE_ON); E1_ENABLE_WRITE( E_ENABLE_ON); }
# define disable_E0() { E0_ENABLE_WRITE(!E_ENABLE_ON); E1_ENABLE_WRITE(!E_ENABLE_ON); }
# endif
# define enable_E1() NOOP
# define disable_E1() NOOP
# define enable_E2() NOOP
# define disable_E2() NOOP
# define enable_E3() NOOP
# define disable_E3() NOOP
# define enable_E4() NOOP
# define disable_E4() NOOP
# else // !MIXING_EXTRUDER
# if HAS_E0_ENABLE
# define enable_E0() E0_ENABLE_WRITE( E_ENABLE_ON)
# define disable_E0() E0_ENABLE_WRITE(!E_ENABLE_ON)
# else
# define enable_E0() NOOP
# define disable_E0() NOOP
# endif
# if E_STEPPERS > 1 && HAS_E1_ENABLE
# define enable_E1() E1_ENABLE_WRITE( E_ENABLE_ON)
# define disable_E1() E1_ENABLE_WRITE(!E_ENABLE_ON)
# else
# define enable_E1() NOOP
# define disable_E1() NOOP
# endif
# if E_STEPPERS > 2 && HAS_E2_ENABLE
# define enable_E2() E2_ENABLE_WRITE( E_ENABLE_ON)
# define disable_E2() E2_ENABLE_WRITE(!E_ENABLE_ON)
# else
# define enable_E2() NOOP
# define disable_E2() NOOP
# endif
# if E_STEPPERS > 3 && HAS_E3_ENABLE
# define enable_E3() E3_ENABLE_WRITE( E_ENABLE_ON)
# define disable_E3() E3_ENABLE_WRITE(!E_ENABLE_ON)
# else
# define enable_E3() NOOP
# define disable_E3() NOOP
# endif
# if E_STEPPERS > 4 && HAS_E4_ENABLE
# define enable_E4() E4_ENABLE_WRITE( E_ENABLE_ON)
# define disable_E4() E4_ENABLE_WRITE(!E_ENABLE_ON)
# else
# define enable_E4() NOOP
# define disable_E4() NOOP
# endif
# endif // !MIXING_EXTRUDER
# if ENABLED(G38_PROBE_TARGET)
extern bool G38_move , // flag to tell the interrupt handler that a G38 command is being run
G38_endstop_hit ; // flag from the interrupt handler to indicate if the endstop went active
# endif
/**
* The axis order in all axis related arrays is X , Y , Z , E
*/
# define _AXIS(AXIS) AXIS ##_AXIS
void enable_all_steppers ( ) ;
void disable_e_steppers ( ) ;
void disable_all_steppers ( ) ;
void FlushSerialRequestResend ( ) ;
void ok_to_send ( ) ;
void kill ( const char * ) ;
void quickstop_stepper ( ) ;
# if ENABLED(FILAMENT_RUNOUT_SENSOR)
void handle_filament_runout ( ) ;
# endif
extern uint8_t marlin_debug_flags ;
# define DEBUGGING(F) (marlin_debug_flags & (DEBUG_## F))
extern bool Running ;
inline bool IsRunning ( ) { return Running ; }
inline bool IsStopped ( ) { return ! Running ; }
bool enqueue_and_echo_command ( const char * cmd , bool say_ok = false ) ; // Add a single command to the end of the buffer. Return false on failure.
void enqueue_and_echo_commands_P ( const char * const cmd ) ; // Set one or more commands to be prioritized over the next Serial/SD command.
void clear_command_queue ( ) ;
extern millis_t previous_cmd_ms ;
inline void refresh_cmd_timeout ( ) { previous_cmd_ms = millis ( ) ; }
# if ENABLED(FAST_PWM_FAN)
void setPwmFrequency ( uint8_t pin , int val ) ;
# endif
/**
* Feedrate scaling and conversion
*/
extern int feedrate_percentage ;
# define MMM_TO_MMS(MM_M) ((MM_M) / 60.0)
# define MMS_TO_MMM(MM_S) ((MM_S)*60.0)
# define MMS_SCALED(MM_S) ((MM_S)*feedrate_percentage*0.01)
extern bool axis_relative_modes [ ] ;
extern bool volumetric_enabled ;
extern int flow_percentage [ EXTRUDERS ] ; // Extrusion factor for each extruder
extern float filament_size [ EXTRUDERS ] ; // cross-sectional area of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder.
extern float volumetric_multiplier [ EXTRUDERS ] ; // reciprocal of cross-sectional area of filament (in square millimeters), stored this way to reduce computational burden in planner
extern bool axis_known_position [ XYZ ] ; // axis[n].is_known
extern bool axis_homed [ XYZ ] ; // axis[n].is_homed
extern volatile bool wait_for_heatup ;
# if HAS_RESUME_CONTINUE
extern volatile bool wait_for_user ;
# endif
extern float current_position [ NUM_AXIS ] ;
// Workspace offsets
# if HAS_WORKSPACE_OFFSET
# if HAS_HOME_OFFSET
extern float home_offset [ XYZ ] ;
# endif
# if HAS_POSITION_SHIFT
extern float position_shift [ XYZ ] ;
# endif
# endif
# if HAS_HOME_OFFSET && HAS_POSITION_SHIFT
extern float workspace_offset [ XYZ ] ;
# define WORKSPACE_OFFSET(AXIS) workspace_offset[AXIS]
# elif HAS_HOME_OFFSET
# define WORKSPACE_OFFSET(AXIS) home_offset[AXIS]
# elif HAS_POSITION_SHIFT
# define WORKSPACE_OFFSET(AXIS) position_shift[AXIS]
# else
# define WORKSPACE_OFFSET(AXIS) 0
# endif
# define LOGICAL_POSITION(POS, AXIS) ((POS) + WORKSPACE_OFFSET(AXIS))
# define RAW_POSITION(POS, AXIS) ((POS) - WORKSPACE_OFFSET(AXIS))
# if HAS_POSITION_SHIFT || DISABLED(DELTA)
# define LOGICAL_X_POSITION(POS) LOGICAL_POSITION(POS, X_AXIS)
# define LOGICAL_Y_POSITION(POS) LOGICAL_POSITION(POS, Y_AXIS)
# define RAW_X_POSITION(POS) RAW_POSITION(POS, X_AXIS)
# define RAW_Y_POSITION(POS) RAW_POSITION(POS, Y_AXIS)
# else
# define LOGICAL_X_POSITION(POS) (POS)
# define LOGICAL_Y_POSITION(POS) (POS)
# define RAW_X_POSITION(POS) (POS)
# define RAW_Y_POSITION(POS) (POS)
# endif
# define LOGICAL_Z_POSITION(POS) LOGICAL_POSITION(POS, Z_AXIS)
# define RAW_Z_POSITION(POS) RAW_POSITION(POS, Z_AXIS)
# define RAW_CURRENT_POSITION(A) RAW_##A##_POSITION(current_position[A##_AXIS])
// Hotend Offsets
# if HOTENDS > 1
extern float hotend_offset [ XYZ ] [ HOTENDS ] ;
# endif
// Software Endstops
extern float soft_endstop_min [ XYZ ] , soft_endstop_max [ XYZ ] ;
# if HAS_SOFTWARE_ENDSTOPS
extern bool soft_endstops_enabled ;
void clamp_to_software_endstops ( float target [ XYZ ] ) ;
# else
# define soft_endstops_enabled false
# define clamp_to_software_endstops(x) NOOP
# endif
# if HAS_WORKSPACE_OFFSET || ENABLED(DUAL_X_CARRIAGE)
void update_software_endstops ( const AxisEnum axis ) ;
# endif
# if IS_KINEMATIC
extern float delta [ ABC ] ;
void inverse_kinematics ( const float logical [ XYZ ] ) ;
# endif
# if ENABLED(DELTA)
extern float endstop_adj [ ABC ] ,
delta_radius ,
delta_diagonal_rod ,
delta_calibration_radius ,
delta_segments_per_second ,
delta_tower_angle_trim [ 2 ] ,
delta_clip_start_height ;
void recalc_delta_settings ( float radius , float diagonal_rod ) ;
# elif IS_SCARA
void forward_kinematics_SCARA ( const float & a , const float & b ) ;
# endif
# if ENABLED(AUTO_BED_LEVELING_BILINEAR)
extern int bilinear_grid_spacing [ 2 ] , bilinear_start [ 2 ] ;
extern float bilinear_grid_factor [ 2 ] ,
z_values [ GRID_MAX_POINTS_X ] [ GRID_MAX_POINTS_Y ] ;
float bilinear_z_offset ( const float logical [ XYZ ] ) ;
# endif
# if ENABLED(AUTO_BED_LEVELING_UBL)
typedef struct { double A , B , D ; } linear_fit ;
linear_fit * lsf_linear_fit ( double x [ ] , double y [ ] , double z [ ] , const int ) ;
# endif
# if HAS_LEVELING
bool leveling_is_valid ( ) ;
bool leveling_is_active ( ) ;
void set_bed_leveling_enabled ( const bool enable = true ) ;
void reset_bed_level ( ) ;
# endif
# if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
void set_z_fade_height ( const float zfh ) ;
# endif
# if ENABLED(Z_DUAL_ENDSTOPS)
extern float z_endstop_adj ;
# endif
# if HAS_BED_PROBE
extern float zprobe_zoffset ;
void refresh_zprobe_zoffset ( const bool no_babystep = false ) ;
# define DEPLOY_PROBE() set_probe_deployed(true)
# define STOW_PROBE() set_probe_deployed(false)
# else
# define DEPLOY_PROBE()
# define STOW_PROBE()
# endif
# if ENABLED(HOST_KEEPALIVE_FEATURE)
extern MarlinBusyState busy_state ;
# define KEEPALIVE_STATE(n) do{ busy_state = n; }while(0)
# else
# define KEEPALIVE_STATE(n) NOOP
# endif
# if FAN_COUNT > 0
extern int16_t fanSpeeds [ FAN_COUNT ] ;
# if ENABLED(PROBING_FANS_OFF)
extern bool fans_paused ;
extern int16_t paused_fanSpeeds [ FAN_COUNT ] ;
# endif
# endif
# if ENABLED(BARICUDA)
extern int baricuda_valve_pressure ;
extern int baricuda_e_to_p_pressure ;
# endif
# if ENABLED(FILAMENT_WIDTH_SENSOR)
extern bool filament_sensor ; // Flag that filament sensor readings should control extrusion
extern float filament_width_nominal , // Theoretical filament diameter i.e., 3.00 or 1.75
filament_width_meas ; // Measured filament diameter
extern int8_t measurement_delay [ ] ; // Ring buffer to delay measurement
extern int filwidth_delay_index [ 2 ] ; // Ring buffer indexes. Used by planner, temperature, and main code
extern int meas_delay_cm ; // Delay distance
# endif
# if ENABLED(ADVANCED_PAUSE_FEATURE)
extern AdvancedPauseMenuResponse advanced_pause_menu_response ;
# endif
# if ENABLED(PID_EXTRUSION_SCALING)
extern int lpq_len ;
# endif
# if ENABLED(FWRETRACT)
extern bool autoretract_enabled ;
extern bool retracted [ EXTRUDERS ] ; // extruder[n].retracted
extern float retract_length , retract_length_swap , retract_feedrate_mm_s , retract_zlift ;
extern float retract_recover_length , retract_recover_length_swap , retract_recover_feedrate_mm_s ;
# endif
// Print job timer
# if ENABLED(PRINTCOUNTER)
extern PrintCounter print_job_timer ;
# else
extern Stopwatch print_job_timer ;
# endif
// Handling multiple extruders pins
extern uint8_t active_extruder ;
# if HAS_TEMP_HOTEND || HAS_TEMP_BED
void print_heaterstates ( ) ;
# endif
# if ENABLED(MIXING_EXTRUDER)
extern float mixing_factor [ MIXING_STEPPERS ] ;
# endif
void calculate_volumetric_multipliers ( ) ;
/**
* Blocking movement and shorthand functions
*/
void do_blocking_move_to ( const float & x , const float & y , const float & z , const float & fr_mm_s = 0.0 ) ;
void do_blocking_move_to_x ( const float & x , const float & fr_mm_s = 0.0 ) ;
void do_blocking_move_to_z ( const float & z , const float & fr_mm_s = 0.0 ) ;
void do_blocking_move_to_xy ( const float & x , const float & y , const float & fr_mm_s = 0.0 ) ;
# if ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED) || HAS_PROBING_PROCEDURE || HOTENDS > 1 || ENABLED(NOZZLE_CLEAN_FEATURE) || ENABLED(NOZZLE_PARK_FEATURE)
bool axis_unhomed_error ( const bool x = true , const bool y = true , const bool z = true ) ;
# endif
/**
* position_is_reachable family of functions
*/
# if IS_KINEMATIC // (DELTA or SCARA)
# if IS_SCARA
extern const float L1 , L2 ;
# endif
inline bool position_is_reachable_raw_xy ( const float & rx , const float & ry ) {
# if ENABLED(DELTA)
return HYPOT2 ( rx , ry ) < = sq ( DELTA_PRINTABLE_RADIUS ) ;
# elif IS_SCARA
# if MIDDLE_DEAD_ZONE_R > 0
const float R2 = HYPOT2 ( rx - SCARA_OFFSET_X , ry - SCARA_OFFSET_Y ) ;
return R2 > = sq ( float ( MIDDLE_DEAD_ZONE_R ) ) & & R2 < = sq ( L1 + L2 ) ;
# else
return HYPOT2 ( rx - SCARA_OFFSET_X , ry - SCARA_OFFSET_Y ) < = sq ( L1 + L2 ) ;
# endif
# else // CARTESIAN
// To be migrated from MakerArm branch in future
# endif
}
inline bool position_is_reachable_by_probe_raw_xy ( const float & rx , const float & ry ) {
// Both the nozzle and the probe must be able to reach the point.
// This won't work on SCARA since the probe offset rotates with the arm.
return position_is_reachable_raw_xy ( rx , ry )
& & position_is_reachable_raw_xy ( rx - X_PROBE_OFFSET_FROM_EXTRUDER , ry - Y_PROBE_OFFSET_FROM_EXTRUDER ) ;
}
# else // CARTESIAN
inline bool position_is_reachable_raw_xy ( const float & rx , const float & ry ) {
// Add 0.001 margin to deal with float imprecision
return WITHIN ( rx , X_MIN_POS - 0.001 , X_MAX_POS + 0.001 )
& & WITHIN ( ry , Y_MIN_POS - 0.001 , Y_MAX_POS + 0.001 ) ;
}
inline bool position_is_reachable_by_probe_raw_xy ( const float & rx , const float & ry ) {
// Add 0.001 margin to deal with float imprecision
return WITHIN ( rx , MIN_PROBE_X - 0.001 , MAX_PROBE_X + 0.001 )
& & WITHIN ( ry , MIN_PROBE_Y - 0.001 , MAX_PROBE_Y + 0.001 ) ;
}
# endif // CARTESIAN
FORCE_INLINE bool position_is_reachable_by_probe_xy ( const float & lx , const float & ly ) {
return position_is_reachable_by_probe_raw_xy ( RAW_X_POSITION ( lx ) , RAW_Y_POSITION ( ly ) ) ;
}
FORCE_INLINE bool position_is_reachable_xy ( const float & lx , const float & ly ) {
return position_is_reachable_raw_xy ( RAW_X_POSITION ( lx ) , RAW_Y_POSITION ( ly ) ) ;
}
# endif // MARLIN_H