|
|
@ -158,7 +158,7 @@ |
|
|
|
* only done between probe points. You will need to press and hold the switch until the |
|
|
|
* Phase 1 command can detect it.) |
|
|
|
* |
|
|
|
* P2 Phase 2 Probe areas of the Mesh that can not be automatically handled. Phase 2 respects an H |
|
|
|
* P2 Phase 2 Probe areas of the Mesh that can't be automatically handled. Phase 2 respects an H |
|
|
|
* parameter to control the height between Mesh points. The default height for movement |
|
|
|
* between Mesh points is 5mm. A smaller number can be used to make this part of the |
|
|
|
* calibration less time consuming. You will be running the nozzle down until it just barely |
|
|
@ -303,25 +303,17 @@ |
|
|
|
volatile int8_t ubl_encoderDiff = 0; // Volatile because it's changed by Temperature ISR button update
|
|
|
|
|
|
|
|
// The simple parameter flags and values are 'static' so parameter parsing can be in a support routine.
|
|
|
|
static int g29_verbose_level = 0, phase_value = -1, repetition_cnt = 1, |
|
|
|
storage_slot = 0, map_type = 0, test_pattern = 0, unlevel_value = -1; |
|
|
|
static bool repeat_flag = UBL_OK, c_flag = false, x_flag = UBL_OK, y_flag = UBL_OK, statistics_flag = UBL_OK, business_card_mode = false; |
|
|
|
static float x_pos = 0.0, y_pos = 0.0, height_value = 5.0, measured_z, card_thickness = 0.0, constant = 0.0; |
|
|
|
static int g29_verbose_level, phase_value = -1, repetition_cnt, |
|
|
|
storage_slot = 0, map_type; //unlevel_value = -1;
|
|
|
|
static bool repeat_flag, c_flag, x_flag, y_flag; |
|
|
|
static float x_pos, y_pos, measured_z, card_thickness = 0.0, ubl_constant = 0.0; |
|
|
|
|
|
|
|
#if ENABLED(ULTRA_LCD) |
|
|
|
void lcd_setstatus(const char* message, bool persist); |
|
|
|
#endif |
|
|
|
|
|
|
|
void gcode_G29() { |
|
|
|
float Z1, Z2, Z3; |
|
|
|
|
|
|
|
g29_verbose_level = 0; // These may change, but let's get some reasonable values into them.
|
|
|
|
repeat_flag = UBL_OK; |
|
|
|
repetition_cnt = 1; |
|
|
|
c_flag = false; |
|
|
|
|
|
|
|
SERIAL_PROTOCOLLNPAIR("ubl_eeprom_start=", ubl_eeprom_start); |
|
|
|
|
|
|
|
if (ubl_eeprom_start < 0) { |
|
|
|
SERIAL_PROTOCOLLNPGM("?You need to enable your EEPROM and initialize it"); |
|
|
|
SERIAL_PROTOCOLLNPGM("with M502, M500, M501 in that order.\n"); |
|
|
@ -350,53 +342,46 @@ |
|
|
|
|
|
|
|
if (code_seen('Q')) { |
|
|
|
|
|
|
|
if (code_has_value()) test_pattern = code_value_int(); |
|
|
|
|
|
|
|
if (test_pattern < 0 || test_pattern > 4) { |
|
|
|
SERIAL_PROTOCOLLNPGM("Invalid test_pattern value. (0-4)\n"); |
|
|
|
const int test_pattern = code_has_value() ? code_value_int() : -1; |
|
|
|
if (test_pattern < 0 || test_pattern > 2) { |
|
|
|
SERIAL_PROTOCOLLNPGM("Invalid test_pattern value. (0-2)\n"); |
|
|
|
return; |
|
|
|
} |
|
|
|
SERIAL_PROTOCOLLNPGM("Loading test_pattern values.\n"); |
|
|
|
switch (test_pattern) { |
|
|
|
case 0: |
|
|
|
for (uint8_t x = 0; x < UBL_MESH_NUM_X_POINTS; x++) { // Create a bowl shape. This is
|
|
|
|
for (uint8_t y = 0; y < UBL_MESH_NUM_Y_POINTS; y++) { // similar to what a user would see with
|
|
|
|
Z1 = 0.5 * (UBL_MESH_NUM_X_POINTS) - x; // a poorly calibrated Delta.
|
|
|
|
Z2 = 0.5 * (UBL_MESH_NUM_Y_POINTS) - y; |
|
|
|
z_values[x][y] += 2.0 * HYPOT(Z1, Z2); |
|
|
|
for (uint8_t x = 0; x < UBL_MESH_NUM_X_POINTS; x++) { // Create a bowl shape - similar to
|
|
|
|
for (uint8_t y = 0; y < UBL_MESH_NUM_Y_POINTS; y++) { // a poorly calibrated Delta.
|
|
|
|
const float p1 = 0.5 * (UBL_MESH_NUM_X_POINTS) - x, |
|
|
|
p2 = 0.5 * (UBL_MESH_NUM_Y_POINTS) - y; |
|
|
|
z_values[x][y] += 2.0 * HYPOT(p1, p2); |
|
|
|
} |
|
|
|
} |
|
|
|
break; |
|
|
|
break; |
|
|
|
case 1: |
|
|
|
for (uint8_t x = 0; x < UBL_MESH_NUM_X_POINTS; x++) { // Create a diagonal line several Mesh
|
|
|
|
z_values[x][x] += 9.999; // cells thick that is raised
|
|
|
|
if (x < UBL_MESH_NUM_Y_POINTS - 1) |
|
|
|
z_values[x][x + 1] += 9.999; // We want the altered line several mesh points thick
|
|
|
|
if (x > 0) |
|
|
|
z_values[x][x - 1] += 9.999; // We want the altered line several mesh points thick
|
|
|
|
for (uint8_t x = 0; x < UBL_MESH_NUM_X_POINTS; x++) { // Create a diagonal line several Mesh cells thick that is raised
|
|
|
|
z_values[x][x] += 9.999; |
|
|
|
z_values[x][x + (x < UBL_MESH_NUM_Y_POINTS - 1) ? 1 : -1] += 9.999; // We want the altered line several mesh points thick
|
|
|
|
} |
|
|
|
break; |
|
|
|
case 2: |
|
|
|
// Allow the user to specify the height because 10mm is
|
|
|
|
// a little bit extreme in some cases.
|
|
|
|
// Allow the user to specify the height because 10mm is a little extreme in some cases.
|
|
|
|
for (uint8_t x = (UBL_MESH_NUM_X_POINTS) / 3; x < 2 * (UBL_MESH_NUM_X_POINTS) / 3; x++) // Create a rectangular raised area in
|
|
|
|
for (uint8_t y = (UBL_MESH_NUM_Y_POINTS) / 3; y < 2 * (UBL_MESH_NUM_Y_POINTS) / 3; y++) // the center of the bed
|
|
|
|
z_values[x][y] += code_seen('C') ? constant : 9.99; |
|
|
|
break; |
|
|
|
case 3: |
|
|
|
z_values[x][y] += code_seen('C') ? ubl_constant : 9.99; |
|
|
|
break; |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
/*
|
|
|
|
/*
|
|
|
|
if (code_seen('U')) { |
|
|
|
unlevel_value = code_value_int(); |
|
|
|
// if (unlevel_value < 0 || unlevel_value > 7) {
|
|
|
|
// SERIAL_PROTOCOLLNPGM("Invalid Unlevel value. (0-4)\n");
|
|
|
|
// return;
|
|
|
|
// }
|
|
|
|
//if (unlevel_value < 0 || unlevel_value > 7) {
|
|
|
|
// SERIAL_PROTOCOLLNPGM("Invalid Unlevel value. (0-4)\n");
|
|
|
|
// return;
|
|
|
|
//}
|
|
|
|
} |
|
|
|
*/ |
|
|
|
//*/
|
|
|
|
|
|
|
|
if (code_seen('P')) { |
|
|
|
phase_value = code_value_int(); |
|
|
@ -430,9 +415,9 @@ |
|
|
|
code_seen('O') || code_seen('M'), code_seen('E'), code_seen('U')); |
|
|
|
break; |
|
|
|
//
|
|
|
|
// Manually Probe Mesh in areas that can not be reached by the probe
|
|
|
|
// Manually Probe Mesh in areas that can't be reached by the probe
|
|
|
|
//
|
|
|
|
case 2: |
|
|
|
case 2: { |
|
|
|
SERIAL_PROTOCOLLNPGM("Manually probing unreachable mesh locations.\n"); |
|
|
|
do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES); |
|
|
|
if (!x_flag && !y_flag) { // use a good default location for the path
|
|
|
@ -451,32 +436,34 @@ |
|
|
|
y_pos = current_position[Y_AXIS]; |
|
|
|
} |
|
|
|
|
|
|
|
height_value = code_seen('H') && code_has_value() ? code_value_float() : Z_CLEARANCE_BETWEEN_PROBES; |
|
|
|
const float height = code_seen('H') && code_has_value() ? code_value_float() : Z_CLEARANCE_BETWEEN_PROBES; |
|
|
|
|
|
|
|
if ((business_card_mode = code_seen('B'))) { |
|
|
|
card_thickness = code_has_value() ? code_value_float() : measure_business_card_thickness(height_value); |
|
|
|
if (code_seen('B')) { |
|
|
|
card_thickness = code_has_value() ? code_value_float() : measure_business_card_thickness(height); |
|
|
|
|
|
|
|
if (fabs(card_thickness) > 1.5) { |
|
|
|
SERIAL_PROTOCOLLNPGM("?Error in Business Card measurment.\n"); |
|
|
|
SERIAL_PROTOCOLLNPGM("?Error in Business Card measurement.\n"); |
|
|
|
return; |
|
|
|
} |
|
|
|
} |
|
|
|
manually_probe_remaining_mesh(x_pos, y_pos, height_value, card_thickness, code_seen('O') || code_seen('M')); |
|
|
|
break; |
|
|
|
manually_probe_remaining_mesh(x_pos, y_pos, height, card_thickness, code_seen('O') || code_seen('M')); |
|
|
|
|
|
|
|
} break; |
|
|
|
|
|
|
|
//
|
|
|
|
// Populate invalid Mesh areas with a constant
|
|
|
|
//
|
|
|
|
case 3: |
|
|
|
height_value = 0.0; // Assume 0.0 until proven otherwise
|
|
|
|
if (code_seen('C')) height_value = constant; |
|
|
|
case 3: { |
|
|
|
const float height = code_seen('C') ? ubl_constant : 0.0; |
|
|
|
// If no repetition is specified, do the whole Mesh
|
|
|
|
if (!repeat_flag) repetition_cnt = 9999; |
|
|
|
while (repetition_cnt--) { |
|
|
|
const mesh_index_pair location = find_closest_mesh_point_of_type(INVALID, x_pos, y_pos, 0, NULL, false); // The '0' says we want to use the nozzle's position
|
|
|
|
if (location.x_index < 0) break; // No more invalid Mesh Points to populate
|
|
|
|
z_values[location.x_index][location.y_index] = height_value; |
|
|
|
z_values[location.x_index][location.y_index] = height; |
|
|
|
} |
|
|
|
break; |
|
|
|
} break; |
|
|
|
|
|
|
|
//
|
|
|
|
// Fine Tune (Or Edit) the Mesh
|
|
|
|
//
|
|
|
@ -491,36 +478,56 @@ |
|
|
|
break; |
|
|
|
|
|
|
|
case 10: |
|
|
|
// Debug code... Pay no attention to this stuff
|
|
|
|
// it can be removed soon.
|
|
|
|
// [DEBUG] Pay no attention to this stuff. It can be removed soon.
|
|
|
|
SERIAL_ECHO_START; |
|
|
|
SERIAL_ECHOLNPGM("Checking G29 has control of LCD Panel:"); |
|
|
|
wait_for_user = true; |
|
|
|
KEEPALIVE_STATE(PAUSED_FOR_USER); |
|
|
|
ubl_has_control_of_lcd_panel++; |
|
|
|
while (!ubl_lcd_clicked()) { |
|
|
|
safe_delay(250); |
|
|
|
SERIAL_ECHO((int)ubl_encoderDiff); |
|
|
|
ubl_encoderDiff = 0; |
|
|
|
SERIAL_EOL; |
|
|
|
if (ubl_encoderDiff) { |
|
|
|
SERIAL_ECHOLN((int)ubl_encoderDiff); |
|
|
|
ubl_encoderDiff = 0; |
|
|
|
} |
|
|
|
} |
|
|
|
SERIAL_ECHOLNPGM("G29 giving back control of LCD Panel."); |
|
|
|
ubl_has_control_of_lcd_panel = false; |
|
|
|
KEEPALIVE_STATE(IN_HANDLER); |
|
|
|
break; |
|
|
|
|
|
|
|
case 11: |
|
|
|
// [DEBUG] wait_for_user code. Pay no attention to this stuff. It can be removed soon.
|
|
|
|
SERIAL_ECHO_START; |
|
|
|
SERIAL_ECHOLNPGM("Checking G29 has control of LCD Panel:"); |
|
|
|
KEEPALIVE_STATE(PAUSED_FOR_USER); |
|
|
|
wait_for_user = true; |
|
|
|
while (wait_for_user) { |
|
|
|
safe_delay(250); |
|
|
|
if (ubl_encoderDiff) { |
|
|
|
SERIAL_ECHOLN((int)ubl_encoderDiff); |
|
|
|
ubl_encoderDiff = 0; |
|
|
|
} |
|
|
|
} |
|
|
|
SERIAL_ECHOLNPGM("G29 giving back control of LCD Panel."); |
|
|
|
KEEPALIVE_STATE(IN_HANDLER); |
|
|
|
break; |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
if (code_seen('T')) { |
|
|
|
Z1 = probe_pt(ubl_3_point_1_X, ubl_3_point_1_Y, false /*Stow Flag*/, g29_verbose_level) + zprobe_zoffset; |
|
|
|
Z2 = probe_pt(ubl_3_point_2_X, ubl_3_point_2_Y, false /*Stow Flag*/, g29_verbose_level) + zprobe_zoffset; |
|
|
|
Z3 = probe_pt(ubl_3_point_3_X, ubl_3_point_3_Y, true /*Stow Flag*/, g29_verbose_level) + zprobe_zoffset; |
|
|
|
float z1 = probe_pt(ubl_3_point_1_X, ubl_3_point_1_Y, false /*Stow Flag*/, g29_verbose_level) + zprobe_zoffset, |
|
|
|
z2 = probe_pt(ubl_3_point_2_X, ubl_3_point_2_Y, false /*Stow Flag*/, g29_verbose_level) + zprobe_zoffset, |
|
|
|
z3 = probe_pt(ubl_3_point_3_X, ubl_3_point_3_Y, true /*Stow Flag*/, g29_verbose_level) + zprobe_zoffset; |
|
|
|
|
|
|
|
// We need to adjust Z1, Z2, Z3 by the Mesh Height at these points. Just because they are non-zero doesn't mean
|
|
|
|
// We need to adjust z1, z2, z3 by the Mesh Height at these points. Just because they are non-zero doesn't mean
|
|
|
|
// the Mesh is tilted! (We need to compensate each probe point by what the Mesh says that location's height is)
|
|
|
|
|
|
|
|
Z1 -= ubl.get_z_correction(ubl_3_point_1_X, ubl_3_point_1_Y); |
|
|
|
Z2 -= ubl.get_z_correction(ubl_3_point_2_X, ubl_3_point_2_Y); |
|
|
|
Z3 -= ubl.get_z_correction(ubl_3_point_3_X, ubl_3_point_3_Y); |
|
|
|
z1 -= ubl.get_z_correction(ubl_3_point_1_X, ubl_3_point_1_Y); |
|
|
|
z2 -= ubl.get_z_correction(ubl_3_point_2_X, ubl_3_point_2_Y); |
|
|
|
z3 -= ubl.get_z_correction(ubl_3_point_3_X, ubl_3_point_3_Y); |
|
|
|
|
|
|
|
do_blocking_move_to_xy((X_MAX_POS - (X_MIN_POS)) / 2.0, (Y_MAX_POS - (Y_MIN_POS)) / 2.0); |
|
|
|
tilt_mesh_based_on_3pts(Z1, Z2, Z3); |
|
|
|
tilt_mesh_based_on_3pts(z1, z2, z3); |
|
|
|
} |
|
|
|
|
|
|
|
//
|
|
|
@ -610,13 +617,16 @@ |
|
|
|
save_ubl_active_state_and_disable(); |
|
|
|
//measured_z = probe_pt(x_pos + X_PROBE_OFFSET_FROM_EXTRUDER, y_pos + Y_PROBE_OFFSET_FROM_EXTRUDER, ProbeDeployAndStow, g29_verbose_level);
|
|
|
|
|
|
|
|
ubl_has_control_of_lcd_panel = true;// Grab the LCD Hardware
|
|
|
|
ubl_has_control_of_lcd_panel++; // Grab the LCD Hardware
|
|
|
|
measured_z = 1.5; |
|
|
|
do_blocking_move_to_z(measured_z); // Get close to the bed, but leave some space so we don't damage anything
|
|
|
|
// The user is not going to be locking in a new Z-Offset very often so
|
|
|
|
// it won't be that painful to spin the Encoder Wheel for 1.5mm
|
|
|
|
lcd_implementation_clear(); |
|
|
|
lcd_z_offset_edit_setup(measured_z); |
|
|
|
|
|
|
|
KEEPALIVE_STATE(PAUSED_FOR_USER); |
|
|
|
|
|
|
|
do { |
|
|
|
measured_z = lcd_z_offset_edit(); |
|
|
|
idle(); |
|
|
@ -628,6 +638,8 @@ |
|
|
|
// or here. So, until we are done looking for a long Encoder Wheel Press,
|
|
|
|
// we need to take control of the panel
|
|
|
|
|
|
|
|
KEEPALIVE_STATE(IN_HANDLER); |
|
|
|
|
|
|
|
lcd_return_to_status(); |
|
|
|
|
|
|
|
const millis_t nxt = millis() + 1500UL; |
|
|
@ -637,7 +649,6 @@ |
|
|
|
SERIAL_PROTOCOLLNPGM("\nZ-Offset Adjustment Stopped."); |
|
|
|
do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE); |
|
|
|
lcd_setstatus("Z-Offset Stopped", true); |
|
|
|
ubl_has_control_of_lcd_panel = false; |
|
|
|
restore_ubl_active_state_and_leave(); |
|
|
|
goto LEAVE; |
|
|
|
} |
|
|
@ -702,14 +713,14 @@ |
|
|
|
for (x = 0; x < UBL_MESH_NUM_X_POINTS; x++) |
|
|
|
for (y = 0; y < UBL_MESH_NUM_Y_POINTS; y++) |
|
|
|
if (!isnan(z_values[x][y])) |
|
|
|
z_values[x][y] -= mean + constant; |
|
|
|
z_values[x][y] -= mean + ubl_constant; |
|
|
|
} |
|
|
|
|
|
|
|
void shift_mesh_height() { |
|
|
|
for (uint8_t x = 0; x < UBL_MESH_NUM_X_POINTS; x++) |
|
|
|
for (uint8_t y = 0; y < UBL_MESH_NUM_Y_POINTS; y++) |
|
|
|
if (!isnan(z_values[x][y])) |
|
|
|
z_values[x][y] += constant; |
|
|
|
z_values[x][y] += ubl_constant; |
|
|
|
} |
|
|
|
|
|
|
|
/**
|
|
|
@ -728,9 +739,7 @@ |
|
|
|
SERIAL_PROTOCOLLNPGM("\nMesh only partially populated.\n"); |
|
|
|
lcd_quick_feedback(); |
|
|
|
STOW_PROBE(); |
|
|
|
while (ubl_lcd_clicked() ) { |
|
|
|
idle(); |
|
|
|
} |
|
|
|
while (ubl_lcd_clicked()) idle(); |
|
|
|
ubl_has_control_of_lcd_panel = false; |
|
|
|
restore_ubl_active_state_and_leave(); |
|
|
|
safe_delay(50); // Debounce the Encoder wheel
|
|
|
@ -739,14 +748,18 @@ |
|
|
|
|
|
|
|
location = find_closest_mesh_point_of_type(INVALID, lx, ly, 1, NULL, do_furthest ); // the '1' says we want the location to be relative to the probe
|
|
|
|
if (location.x_index >= 0 && location.y_index >= 0) { |
|
|
|
const float xProbe = ubl.map_x_index_to_bed_location(location.x_index), |
|
|
|
yProbe = ubl.map_y_index_to_bed_location(location.y_index); |
|
|
|
if (xProbe < MIN_PROBE_X || xProbe > MAX_PROBE_X || yProbe < MIN_PROBE_Y || yProbe > MAX_PROBE_Y) { |
|
|
|
SERIAL_PROTOCOLLNPGM("?Error: Attempt to probe off the bed."); |
|
|
|
|
|
|
|
const float rawx = ubl.map_x_index_to_bed_location(location.x_index), |
|
|
|
rawy = ubl.map_y_index_to_bed_location(location.y_index); |
|
|
|
|
|
|
|
// TODO: Change to use `position_is_reachable` (for SCARA-compatibility)
|
|
|
|
if (rawx < (MIN_PROBE_X) || rawx > (MAX_PROBE_X) || rawy < (MIN_PROBE_Y) || rawy > (MAX_PROBE_Y)) { |
|
|
|
SERIAL_ERROR_START; |
|
|
|
SERIAL_ERRORLNPGM("Attempt to probe off the bed."); |
|
|
|
ubl_has_control_of_lcd_panel = false; |
|
|
|
goto LEAVE; |
|
|
|
} |
|
|
|
const float measured_z = probe_pt(xProbe, yProbe, stow_probe, g29_verbose_level); |
|
|
|
const float measured_z = probe_pt(LOGICAL_X_POSITION(rawx), LOGICAL_Y_POSITION(rawy), stow_probe, g29_verbose_level); |
|
|
|
z_values[location.x_index][location.y_index] = measured_z + zprobe_zoffset; |
|
|
|
} |
|
|
|
|
|
|
@ -831,6 +844,7 @@ |
|
|
|
} |
|
|
|
|
|
|
|
float use_encoder_wheel_to_measure_point() { |
|
|
|
KEEPALIVE_STATE(PAUSED_FOR_USER); |
|
|
|
while (!ubl_lcd_clicked()) { // we need the loop to move the nozzle based on the encoder wheel here!
|
|
|
|
idle(); |
|
|
|
if (ubl_encoderDiff) { |
|
|
@ -838,34 +852,35 @@ |
|
|
|
ubl_encoderDiff = 0; |
|
|
|
} |
|
|
|
} |
|
|
|
KEEPALIVE_STATE(IN_HANDLER); |
|
|
|
return current_position[Z_AXIS]; |
|
|
|
} |
|
|
|
|
|
|
|
float measure_business_card_thickness(const float &height_value) { |
|
|
|
float measure_business_card_thickness(const float &in_height) { |
|
|
|
|
|
|
|
ubl_has_control_of_lcd_panel++; |
|
|
|
save_ubl_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe
|
|
|
|
|
|
|
|
SERIAL_PROTOCOLLNPGM("Place Shim Under Nozzle and Perform Measurement."); |
|
|
|
do_blocking_move_to_z(height_value); |
|
|
|
do_blocking_move_to_z(in_height); |
|
|
|
do_blocking_move_to_xy((float(X_MAX_POS) - float(X_MIN_POS)) / 2.0, (float(Y_MAX_POS) - float(Y_MIN_POS)) / 2.0); |
|
|
|
//, min( planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS])/2.0);
|
|
|
|
|
|
|
|
const float Z1 = use_encoder_wheel_to_measure_point(); |
|
|
|
const float z1 = use_encoder_wheel_to_measure_point(); |
|
|
|
do_blocking_move_to_z(current_position[Z_AXIS] + SIZE_OF_LITTLE_RAISE); |
|
|
|
ubl_has_control_of_lcd_panel = false; |
|
|
|
|
|
|
|
SERIAL_PROTOCOLLNPGM("Remove Shim and Measure Bed Height."); |
|
|
|
const float Z2 = use_encoder_wheel_to_measure_point(); |
|
|
|
const float z2 = use_encoder_wheel_to_measure_point(); |
|
|
|
do_blocking_move_to_z(current_position[Z_AXIS] + SIZE_OF_LITTLE_RAISE); |
|
|
|
|
|
|
|
if (g29_verbose_level > 1) { |
|
|
|
SERIAL_PROTOCOLPGM("Business Card is: "); |
|
|
|
SERIAL_PROTOCOL_F(abs(Z1 - Z2), 6); |
|
|
|
SERIAL_PROTOCOL_F(abs(z1 - z2), 6); |
|
|
|
SERIAL_PROTOCOLLNPGM("mm thick."); |
|
|
|
} |
|
|
|
restore_ubl_active_state_and_leave(); |
|
|
|
return abs(Z1 - Z2); |
|
|
|
return abs(z1 - z2); |
|
|
|
} |
|
|
|
|
|
|
|
void manually_probe_remaining_mesh(const float &lx, const float &ly, const float &z_clearance, const float &card_thickness, const bool do_ubl_mesh_map) { |
|
|
@ -881,21 +896,23 @@ |
|
|
|
if (do_ubl_mesh_map) ubl.display_map(map_type); |
|
|
|
|
|
|
|
location = find_closest_mesh_point_of_type(INVALID, lx, ly, 0, NULL, false); // The '0' says we want to use the nozzle's position
|
|
|
|
// It doesn't matter if the probe can not reach the
|
|
|
|
// NAN location. This is a manual probe.
|
|
|
|
// It doesn't matter if the probe can't reach the NAN location. This is a manual probe.
|
|
|
|
if (location.x_index < 0 && location.y_index < 0) continue; |
|
|
|
|
|
|
|
const float xProbe = ubl.map_x_index_to_bed_location(location.x_index), |
|
|
|
yProbe = ubl.map_y_index_to_bed_location(location.y_index); |
|
|
|
const float rawx = ubl.map_x_index_to_bed_location(location.x_index), |
|
|
|
rawy = ubl.map_y_index_to_bed_location(location.y_index); |
|
|
|
|
|
|
|
// Modify to use if (position_is_reachable(pos[XYZ]))
|
|
|
|
if (xProbe < (X_MIN_POS) || xProbe > (X_MAX_POS) || yProbe < (Y_MIN_POS) || yProbe > (Y_MAX_POS)) { |
|
|
|
SERIAL_PROTOCOLLNPGM("?Error: Attempt to probe off the bed."); |
|
|
|
// TODO: Change to use `position_is_reachable` (for SCARA-compatibility)
|
|
|
|
if (rawx < (X_MIN_POS) || rawx > (X_MAX_POS) || rawy < (Y_MIN_POS) || rawy > (Y_MAX_POS)) { |
|
|
|
SERIAL_ERROR_START; |
|
|
|
SERIAL_ERRORLNPGM("Attempt to probe off the bed."); |
|
|
|
ubl_has_control_of_lcd_panel = false; |
|
|
|
goto LEAVE; |
|
|
|
} |
|
|
|
|
|
|
|
const float dx = xProbe - last_x, |
|
|
|
const float xProbe = LOGICAL_X_POSITION(rawx), |
|
|
|
yProbe = LOGICAL_Y_POSITION(rawy), |
|
|
|
dx = xProbe - last_x, |
|
|
|
dy = yProbe - last_y; |
|
|
|
|
|
|
|
if (HYPOT(dx, dy) < BIG_RAISE_NOT_NEEDED) |
|
|
@ -908,8 +925,10 @@ |
|
|
|
last_x = xProbe; |
|
|
|
last_y = yProbe; |
|
|
|
|
|
|
|
KEEPALIVE_STATE(PAUSED_FOR_USER); |
|
|
|
ubl_has_control_of_lcd_panel = true; |
|
|
|
while (!ubl_lcd_clicked) { // we need the loop to move the nozzle based on the encoder wheel here!
|
|
|
|
|
|
|
|
while (!ubl_lcd_clicked()) { // we need the loop to move the nozzle based on the encoder wheel here!
|
|
|
|
idle(); |
|
|
|
if (ubl_encoderDiff) { |
|
|
|
do_blocking_move_to_z(current_position[Z_AXIS] + float(ubl_encoderDiff) / 100.0); |
|
|
@ -926,6 +945,7 @@ |
|
|
|
lcd_quick_feedback(); |
|
|
|
while (ubl_lcd_clicked()) idle(); |
|
|
|
ubl_has_control_of_lcd_panel = false; |
|
|
|
KEEPALIVE_STATE(IN_HANDLER); |
|
|
|
restore_ubl_active_state_and_leave(); |
|
|
|
return; |
|
|
|
} |
|
|
@ -933,7 +953,7 @@ |
|
|
|
|
|
|
|
z_values[location.x_index][location.y_index] = current_position[Z_AXIS] - card_thickness; |
|
|
|
if (g29_verbose_level > 2) { |
|
|
|
SERIAL_PROTOCOL("Mesh Point Measured at: "); |
|
|
|
SERIAL_PROTOCOLPGM("Mesh Point Measured at: "); |
|
|
|
SERIAL_PROTOCOL_F(z_values[location.x_index][location.y_index], 6); |
|
|
|
SERIAL_EOL; |
|
|
|
} |
|
|
@ -943,52 +963,40 @@ |
|
|
|
|
|
|
|
LEAVE: |
|
|
|
restore_ubl_active_state_and_leave(); |
|
|
|
KEEPALIVE_STATE(IN_HANDLER); |
|
|
|
do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE); |
|
|
|
do_blocking_move_to_xy(lx, ly); |
|
|
|
} |
|
|
|
|
|
|
|
bool g29_parameter_parsing() { |
|
|
|
|
|
|
|
#if ENABLED(ULTRA_LCD) |
|
|
|
lcd_setstatus("Doing G29 UBL !", true); |
|
|
|
lcd_quick_feedback(); |
|
|
|
#endif |
|
|
|
|
|
|
|
x_pos = current_position[X_AXIS]; |
|
|
|
y_pos = current_position[Y_AXIS]; |
|
|
|
x_flag = y_flag = repeat_flag = false; |
|
|
|
map_type = 0; |
|
|
|
constant = 0.0; |
|
|
|
repetition_cnt = 1; |
|
|
|
|
|
|
|
if ((x_flag = code_seen('X'))) { |
|
|
|
x_pos = code_value_float(); |
|
|
|
if (x_pos < X_MIN_POS || x_pos > X_MAX_POS) { |
|
|
|
SERIAL_PROTOCOLLNPGM("Invalid X location specified.\n"); |
|
|
|
return UBL_ERR; |
|
|
|
} |
|
|
|
g29_verbose_level = code_seen('V') ? code_value_int() : 0; |
|
|
|
if (g29_verbose_level < 0 || g29_verbose_level > 4) { |
|
|
|
SERIAL_PROTOCOLLNPGM("Invalid Verbose Level specified. (0-4)\n"); |
|
|
|
return UBL_ERR; |
|
|
|
} |
|
|
|
|
|
|
|
if ((y_flag = code_seen('Y'))) { |
|
|
|
y_pos = code_value_float(); |
|
|
|
if (y_pos < Y_MIN_POS || y_pos > Y_MAX_POS) { |
|
|
|
SERIAL_PROTOCOLLNPGM("Invalid Y location specified.\n"); |
|
|
|
return UBL_ERR; |
|
|
|
} |
|
|
|
x_flag = code_seen('X') && code_has_value(); |
|
|
|
x_pos = x_flag ? code_value_float() : current_position[X_AXIS]; |
|
|
|
if (x_pos < LOGICAL_X_POSITION(X_MIN_POS) || x_pos > LOGICAL_X_POSITION(X_MAX_POS)) { |
|
|
|
SERIAL_PROTOCOLLNPGM("Invalid X location specified.\n"); |
|
|
|
return UBL_ERR; |
|
|
|
} |
|
|
|
|
|
|
|
if (x_flag != y_flag) { |
|
|
|
SERIAL_PROTOCOLLNPGM("Both X & Y locations must be specified.\n"); |
|
|
|
y_flag = code_seen('Y') && code_has_value(); |
|
|
|
y_pos = y_flag ? code_value_float() : current_position[Y_AXIS]; |
|
|
|
if (y_pos < LOGICAL_Y_POSITION(Y_MIN_POS) || y_pos > LOGICAL_Y_POSITION(Y_MAX_POS)) { |
|
|
|
SERIAL_PROTOCOLLNPGM("Invalid Y location specified.\n"); |
|
|
|
return UBL_ERR; |
|
|
|
} |
|
|
|
|
|
|
|
g29_verbose_level = 0; |
|
|
|
if (code_seen('V')) { |
|
|
|
g29_verbose_level = code_value_int(); |
|
|
|
if (g29_verbose_level < 0 || g29_verbose_level > 4) { |
|
|
|
SERIAL_PROTOCOLLNPGM("Invalid Verbose Level specified. (0-4)\n"); |
|
|
|
return UBL_ERR; |
|
|
|
} |
|
|
|
if (x_flag != y_flag) { |
|
|
|
SERIAL_PROTOCOLLNPGM("Both X & Y locations must be specified.\n"); |
|
|
|
return UBL_ERR; |
|
|
|
} |
|
|
|
|
|
|
|
if (code_seen('A')) { // Activate the Unified Bed Leveling System
|
|
|
@ -997,8 +1005,8 @@ |
|
|
|
ubl.store_state(); |
|
|
|
} |
|
|
|
|
|
|
|
if ((c_flag = code_seen('C') && code_has_value())) |
|
|
|
constant = code_value_float(); |
|
|
|
c_flag = code_seen('C') && code_has_value(); |
|
|
|
ubl_constant = c_flag ? code_value_float() : 0.0; |
|
|
|
|
|
|
|
if (code_seen('D')) { // Disable the Unified Bed Leveling System
|
|
|
|
ubl.state.active = 0; |
|
|
@ -1018,29 +1026,28 @@ |
|
|
|
} |
|
|
|
#endif |
|
|
|
|
|
|
|
if ((repeat_flag = code_seen('R'))) { |
|
|
|
repetition_cnt = code_has_value() ? code_value_int() : 9999; |
|
|
|
if (repetition_cnt < 1) { |
|
|
|
SERIAL_PROTOCOLLNPGM("Invalid Repetition count.\n"); |
|
|
|
return UBL_ERR; |
|
|
|
} |
|
|
|
repeat_flag = code_seen('R'); |
|
|
|
repetition_cnt = repeat_flag ? (code_has_value() ? code_value_int() : 9999) : 1; |
|
|
|
if (repetition_cnt < 1) { |
|
|
|
SERIAL_PROTOCOLLNPGM("Invalid Repetition count.\n"); |
|
|
|
return UBL_ERR; |
|
|
|
} |
|
|
|
|
|
|
|
if (code_seen('O')) { // Check if a map type was specified
|
|
|
|
map_type = code_value_int() ? code_has_value() : 0; |
|
|
|
if ( map_type<0 || map_type>1) { |
|
|
|
SERIAL_PROTOCOLLNPGM("Invalid map type.\n"); |
|
|
|
return UBL_ERR; |
|
|
|
} |
|
|
|
map_type = code_seen('O') && code_has_value() ? code_value_int() : 0; |
|
|
|
if (map_type < 0 || map_type > 1) { |
|
|
|
SERIAL_PROTOCOLLNPGM("Invalid map type.\n"); |
|
|
|
return UBL_ERR; |
|
|
|
} |
|
|
|
|
|
|
|
/*
|
|
|
|
if (code_seen('M')) { // Check if a map type was specified
|
|
|
|
map_type = code_value_int() ? code_has_value() : 0; |
|
|
|
if ( map_type<0 || map_type>1) { |
|
|
|
map_type = code_has_value() ? code_value_int() : 0; |
|
|
|
if (map_type < 0 || map_type > 1) { |
|
|
|
SERIAL_PROTOCOLLNPGM("Invalid map type.\n"); |
|
|
|
return UBL_ERR; |
|
|
|
} |
|
|
|
} |
|
|
|
//*/
|
|
|
|
|
|
|
|
return UBL_OK; |
|
|
|
} |
|
|
@ -1054,20 +1061,15 @@ |
|
|
|
|
|
|
|
SERIAL_PROTOCOL(str); |
|
|
|
SERIAL_PROTOCOL_F(f, 8); |
|
|
|
SERIAL_PROTOCOL(" "); |
|
|
|
SERIAL_PROTOCOLPGM(" "); |
|
|
|
ptr = (char*)&f; |
|
|
|
for (uint8_t i = 0; i < 4; i++) { |
|
|
|
SERIAL_PROTOCOL(" "); |
|
|
|
prt_hex_byte(*ptr++); |
|
|
|
} |
|
|
|
SERIAL_PROTOCOL(" isnan()="); |
|
|
|
SERIAL_PROTOCOL(isnan(f)); |
|
|
|
SERIAL_PROTOCOL(" isinf()="); |
|
|
|
SERIAL_PROTOCOL(isinf(f)); |
|
|
|
for (uint8_t i = 0; i < 4; i++) |
|
|
|
SERIAL_PROTOCOLPAIR(" ", hex_byte(*ptr++)); |
|
|
|
SERIAL_PROTOCOLPAIR(" isnan()=", isnan(f)); |
|
|
|
SERIAL_PROTOCOLPAIR(" isinf()=", isinf(f)); |
|
|
|
|
|
|
|
constexpr float g = INFINITY; |
|
|
|
if (f == -g) |
|
|
|
SERIAL_PROTOCOL(" Minus Infinity detected."); |
|
|
|
if (f == -INFINITY) |
|
|
|
SERIAL_PROTOCOLPGM(" Minus Infinity detected."); |
|
|
|
|
|
|
|
SERIAL_EOL; |
|
|
|
} |
|
|
@ -1104,7 +1106,6 @@ |
|
|
|
*/ |
|
|
|
void g29_what_command() { |
|
|
|
const uint16_t k = E2END - ubl_eeprom_start; |
|
|
|
statistics_flag++; |
|
|
|
|
|
|
|
SERIAL_PROTOCOLPGM("Unified Bed Leveling System Version 1.00 "); |
|
|
|
if (ubl.state.active) |
|
|
@ -1117,8 +1118,7 @@ |
|
|
|
if (ubl.state.eeprom_storage_slot == -1) |
|
|
|
SERIAL_PROTOCOLPGM("No Mesh Loaded."); |
|
|
|
else { |
|
|
|
SERIAL_PROTOCOLPGM("Mesh: "); |
|
|
|
prt_hex_word(ubl.state.eeprom_storage_slot); |
|
|
|
SERIAL_PROTOCOLPAIR("Mesh ", ubl.state.eeprom_storage_slot); |
|
|
|
SERIAL_PROTOCOLPGM(" Loaded."); |
|
|
|
} |
|
|
|
SERIAL_EOL; |
|
|
@ -1136,7 +1136,7 @@ |
|
|
|
|
|
|
|
SERIAL_PROTOCOLPGM("X-Axis Mesh Points at: "); |
|
|
|
for (uint8_t i = 0; i < UBL_MESH_NUM_X_POINTS; i++) { |
|
|
|
SERIAL_PROTOCOL_F( ubl.map_x_index_to_bed_location(i), 1); |
|
|
|
SERIAL_PROTOCOL_F(LOGICAL_X_POSITION(ubl.map_x_index_to_bed_location(i)), 1); |
|
|
|
SERIAL_PROTOCOLPGM(" "); |
|
|
|
safe_delay(50); |
|
|
|
} |
|
|
@ -1144,7 +1144,7 @@ |
|
|
|
|
|
|
|
SERIAL_PROTOCOLPGM("Y-Axis Mesh Points at: "); |
|
|
|
for (uint8_t i = 0; i < UBL_MESH_NUM_Y_POINTS; i++) { |
|
|
|
SERIAL_PROTOCOL_F( ubl.map_y_index_to_bed_location(i), 1); |
|
|
|
SERIAL_PROTOCOL_F(LOGICAL_Y_POSITION(ubl.map_y_index_to_bed_location(i)), 1); |
|
|
|
SERIAL_PROTOCOLPGM(" "); |
|
|
|
safe_delay(50); |
|
|
|
} |
|
|
@ -1162,13 +1162,9 @@ |
|
|
|
SERIAL_PROTOCOLLNPAIR("ubl_state_recursion_chk :", ubl_state_recursion_chk); |
|
|
|
SERIAL_EOL; |
|
|
|
safe_delay(50); |
|
|
|
SERIAL_PROTOCOLPGM("Free EEPROM space starts at: 0x"); |
|
|
|
prt_hex_word(ubl_eeprom_start); |
|
|
|
SERIAL_EOL; |
|
|
|
SERIAL_PROTOCOLLNPAIR("Free EEPROM space starts at: 0x", hex_word(ubl_eeprom_start)); |
|
|
|
|
|
|
|
SERIAL_PROTOCOLPGM("end of EEPROM : "); |
|
|
|
prt_hex_word(E2END); |
|
|
|
SERIAL_EOL; |
|
|
|
SERIAL_PROTOCOLLNPAIR("end of EEPROM : ", hex_word(E2END)); |
|
|
|
safe_delay(50); |
|
|
|
|
|
|
|
SERIAL_PROTOCOLLNPAIR("sizeof(ubl) : ", (int)sizeof(ubl)); |
|
|
@ -1177,18 +1173,14 @@ |
|
|
|
SERIAL_EOL; |
|
|
|
safe_delay(50); |
|
|
|
|
|
|
|
SERIAL_PROTOCOLPGM("EEPROM free for UBL: 0x"); |
|
|
|
prt_hex_word(k); |
|
|
|
SERIAL_EOL; |
|
|
|
SERIAL_PROTOCOLLNPAIR("EEPROM free for UBL: 0x", hex_word(k)); |
|
|
|
safe_delay(50); |
|
|
|
|
|
|
|
SERIAL_PROTOCOLPGM("EEPROM can hold 0x"); |
|
|
|
prt_hex_word(k / sizeof(z_values)); |
|
|
|
SERIAL_PROTOCOLPAIR("EEPROM can hold ", k / sizeof(z_values)); |
|
|
|
SERIAL_PROTOCOLLNPGM(" meshes.\n"); |
|
|
|
safe_delay(50); |
|
|
|
|
|
|
|
SERIAL_PROTOCOLPGM("sizeof(ubl.state) :"); |
|
|
|
prt_hex_word(sizeof(ubl.state)); |
|
|
|
SERIAL_PROTOCOLPAIR("sizeof(ubl.state) : ", (int)sizeof(ubl.state)); |
|
|
|
|
|
|
|
SERIAL_PROTOCOLPAIR("\nUBL_MESH_NUM_X_POINTS ", UBL_MESH_NUM_X_POINTS); |
|
|
|
SERIAL_PROTOCOLPAIR("\nUBL_MESH_NUM_Y_POINTS ", UBL_MESH_NUM_Y_POINTS); |
|
|
@ -1222,12 +1214,12 @@ |
|
|
|
SERIAL_ECHOLNPGM("EEPROM Dump:"); |
|
|
|
for (uint16_t i = 0; i < E2END + 1; i += 16) { |
|
|
|
if (!(i & 0x3)) idle(); |
|
|
|
prt_hex_word(i); |
|
|
|
print_hex_word(i); |
|
|
|
SERIAL_ECHOPGM(": "); |
|
|
|
for (uint16_t j = 0; j < 16; j++) { |
|
|
|
kkkk = i + j; |
|
|
|
eeprom_read_block(&cccc, (void *)kkkk, 1); |
|
|
|
prt_hex_byte(cccc); |
|
|
|
print_hex_byte(cccc); |
|
|
|
SERIAL_ECHO(' '); |
|
|
|
} |
|
|
|
SERIAL_EOL; |
|
|
@ -1259,9 +1251,8 @@ |
|
|
|
eeprom_read_block((void *)&tmp_z_values, (void *)j, sizeof(tmp_z_values)); |
|
|
|
|
|
|
|
SERIAL_ECHOPAIR("Subtracting Mesh ", storage_slot); |
|
|
|
SERIAL_PROTOCOLPGM(" loaded from EEPROM address "); // Soon, we can remove the extra clutter of printing
|
|
|
|
prt_hex_word(j); // the address in the EEPROM where the Mesh is stored.
|
|
|
|
SERIAL_EOL; |
|
|
|
SERIAL_PROTOCOLLNPAIR(" loaded from EEPROM address ", hex_word(j)); // Soon, we can remove the extra clutter of printing
|
|
|
|
// the address in the EEPROM where the Mesh is stored.
|
|
|
|
|
|
|
|
for (uint8_t x = 0; x < UBL_MESH_NUM_X_POINTS; x++) |
|
|
|
for (uint8_t y = 0; y < UBL_MESH_NUM_Y_POINTS; y++) |
|
|
@ -1269,7 +1260,6 @@ |
|
|
|
} |
|
|
|
|
|
|
|
mesh_index_pair find_closest_mesh_point_of_type(const MeshPointType type, const float &lx, const float &ly, const bool probe_as_reference, unsigned int bits[16], bool far_flag) { |
|
|
|
int i, j, k, l; |
|
|
|
float distance, closest = far_flag ? -99999.99 : 99999.99; |
|
|
|
mesh_index_pair return_val; |
|
|
|
|
|
|
@ -1282,8 +1272,8 @@ |
|
|
|
const float px = lx - (probe_as_reference ? X_PROBE_OFFSET_FROM_EXTRUDER : 0), |
|
|
|
py = ly - (probe_as_reference ? Y_PROBE_OFFSET_FROM_EXTRUDER : 0); |
|
|
|
|
|
|
|
for (i = 0; i < UBL_MESH_NUM_X_POINTS; i++) { |
|
|
|
for (j = 0; j < UBL_MESH_NUM_Y_POINTS; j++) { |
|
|
|
for (uint8_t i = 0; i < UBL_MESH_NUM_X_POINTS; i++) { |
|
|
|
for (uint8_t j = 0; j < UBL_MESH_NUM_Y_POINTS; j++) { |
|
|
|
|
|
|
|
if ( (type == INVALID && isnan(z_values[i][j])) // Check to see if this location holds the right thing
|
|
|
|
|| (type == REAL && !isnan(z_values[i][j])) |
|
|
@ -1292,42 +1282,45 @@ |
|
|
|
|
|
|
|
// We only get here if we found a Mesh Point of the specified type
|
|
|
|
|
|
|
|
const float mx = LOGICAL_X_POSITION(ubl.map_x_index_to_bed_location(i)), // Check if we can probe this mesh location
|
|
|
|
my = LOGICAL_Y_POSITION(ubl.map_y_index_to_bed_location(j)); |
|
|
|
const float rawx = ubl.map_x_index_to_bed_location(i), // Check if we can probe this mesh location
|
|
|
|
rawy = ubl.map_y_index_to_bed_location(j); |
|
|
|
|
|
|
|
// If we are using the probe as the reference there are some locations we can't get to.
|
|
|
|
// We prune these out of the list and ignore them until the next Phase where we do the
|
|
|
|
// manual nozzle probing.
|
|
|
|
// If using the probe as the reference there are some unreachable locations.
|
|
|
|
// Prune them from the list and ignore them till the next Phase (manual nozzle probing).
|
|
|
|
|
|
|
|
if (probe_as_reference && |
|
|
|
(mx < (MIN_PROBE_X) || mx > (MAX_PROBE_X) || my < (MIN_PROBE_Y) || my > (MAX_PROBE_Y)) |
|
|
|
(rawx < (MIN_PROBE_X) || rawx > (MAX_PROBE_X) || rawy < (MIN_PROBE_Y) || rawy > (MAX_PROBE_Y)) |
|
|
|
) continue; |
|
|
|
|
|
|
|
// We can get to it. Let's see if it is the closest location to the nozzle.
|
|
|
|
// Unreachable. Check if it's the closest location to the nozzle.
|
|
|
|
// Add in a weighting factor that considers the current location of the nozzle.
|
|
|
|
|
|
|
|
const float mx = LOGICAL_X_POSITION(rawx), // Check if we can probe this mesh location
|
|
|
|
my = LOGICAL_Y_POSITION(rawy); |
|
|
|
|
|
|
|
distance = HYPOT(px - mx, py - my) + HYPOT(current_x - mx, current_y - my) * 0.1; |
|
|
|
|
|
|
|
if (far_flag) { // If doing the far_flag action, we want to be as far as possible
|
|
|
|
for (k = 0; k < UBL_MESH_NUM_X_POINTS; k++) { // from the starting point and from any other probed points. We
|
|
|
|
for (l = 0; l < UBL_MESH_NUM_Y_POINTS; l++) { // want the next point spread out and filling in any blank spaces
|
|
|
|
if ( !isnan(z_values[k][l])) { // in the mesh. So we add in some of the distance to every probed
|
|
|
|
distance += (i-k)*(i-k)*MESH_X_DIST*.05; // point we can find.
|
|
|
|
distance += (j-l)*(j-l)*MESH_Y_DIST*.05; |
|
|
|
} |
|
|
|
if (far_flag) { // If doing the far_flag action, we want to be as far as possible
|
|
|
|
for (uint8_t k = 0; k < UBL_MESH_NUM_X_POINTS; k++) { // from the starting point and from any other probed points. We
|
|
|
|
for (uint8_t l = 0; l < UBL_MESH_NUM_Y_POINTS; l++) { // want the next point spread out and filling in any blank spaces
|
|
|
|
if (!isnan(z_values[k][l])) { // in the mesh. So we add in some of the distance to every probed
|
|
|
|
distance += sq(i - k) * (MESH_X_DIST) * .05 // point we can find.
|
|
|
|
+ sq(j - l) * (MESH_Y_DIST) * .05; |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
if ( (!far_flag&&(distance < closest)) || (far_flag&&(distance > closest)) ) { // if far_flag, look for furthest away point
|
|
|
|
closest = distance; // We found a closer location with
|
|
|
|
if (far_flag == (distance > closest) && distance != closest) { // if far_flag, look for farthest point
|
|
|
|
closest = distance; // We found a closer/farther location with
|
|
|
|
return_val.x_index = i; // the specified type of mesh value.
|
|
|
|
return_val.y_index = j; |
|
|
|
return_val.distance = closest; |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
} // for j
|
|
|
|
} // for i
|
|
|
|
|
|
|
|
return return_val; |
|
|
|
} |
|
|
|
|
|
|
@ -1356,27 +1349,30 @@ |
|
|
|
bit_clear(not_done, location.x_index, location.y_index); // Mark this location as 'adjusted' so we will find a
|
|
|
|
// different location the next time through the loop
|
|
|
|
|
|
|
|
const float xProbe = ubl.map_x_index_to_bed_location(location.x_index), |
|
|
|
yProbe = ubl.map_y_index_to_bed_location(location.y_index); |
|
|
|
if (xProbe < X_MIN_POS || xProbe > X_MAX_POS || yProbe < Y_MIN_POS || yProbe > Y_MAX_POS) { // In theory, we don't need this check.
|
|
|
|
SERIAL_PROTOCOLLNPGM("?Error: Attempt to edit off the bed."); // This really can't happen, but for now,
|
|
|
|
ubl_has_control_of_lcd_panel = false; // Let's do the check.
|
|
|
|
const float rawx = ubl.map_x_index_to_bed_location(location.x_index), |
|
|
|
rawy = ubl.map_y_index_to_bed_location(location.y_index); |
|
|
|
|
|
|
|
// TODO: Change to use `position_is_reachable` (for SCARA-compatibility)
|
|
|
|
if (rawx < (X_MIN_POS) || rawx > (X_MAX_POS) || rawy < (Y_MIN_POS) || rawy > (Y_MAX_POS)) { // In theory, we don't need this check.
|
|
|
|
SERIAL_ERROR_START; |
|
|
|
SERIAL_ERRORLNPGM("Attempt to edit off the bed."); // This really can't happen, but do the check for now
|
|
|
|
ubl_has_control_of_lcd_panel = false; |
|
|
|
goto FINE_TUNE_EXIT; |
|
|
|
} |
|
|
|
|
|
|
|
do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE); // Move the nozzle to where we are going to edit
|
|
|
|
do_blocking_move_to_xy(xProbe, yProbe); |
|
|
|
do_blocking_move_to_xy(LOGICAL_X_POSITION(rawx), LOGICAL_Y_POSITION(rawy)); |
|
|
|
float new_z = z_values[location.x_index][location.y_index]; |
|
|
|
|
|
|
|
round_off = (int32_t)(new_z * 1000.0); // we chop off the last digits just to be clean. We are rounding to the
|
|
|
|
new_z = float(round_off) / 1000.0; |
|
|
|
|
|
|
|
KEEPALIVE_STATE(PAUSED_FOR_USER); |
|
|
|
ubl_has_control_of_lcd_panel = true; |
|
|
|
|
|
|
|
lcd_implementation_clear(); |
|
|
|
lcd_mesh_edit_setup(new_z); |
|
|
|
|
|
|
|
wait_for_user = true; |
|
|
|
do { |
|
|
|
new_z = lcd_mesh_edit(); |
|
|
|
idle(); |
|
|
@ -1393,13 +1389,12 @@ |
|
|
|
idle(); |
|
|
|
if (ELAPSED(millis(), nxt)) { |
|
|
|
lcd_return_to_status(); |
|
|
|
// SERIAL_PROTOCOLLNPGM("\nFine Tuning of Mesh Stopped.");
|
|
|
|
//SERIAL_PROTOCOLLNPGM("\nFine Tuning of Mesh Stopped.");
|
|
|
|
do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE); |
|
|
|
lcd_setstatus("Mesh Editing Stopped", true); |
|
|
|
|
|
|
|
while (ubl_lcd_clicked()) idle(); |
|
|
|
|
|
|
|
ubl_has_control_of_lcd_panel = false; |
|
|
|
goto FINE_TUNE_EXIT; |
|
|
|
} |
|
|
|
} |
|
|
@ -1415,6 +1410,7 @@ |
|
|
|
FINE_TUNE_EXIT: |
|
|
|
|
|
|
|
ubl_has_control_of_lcd_panel = false; |
|
|
|
KEEPALIVE_STATE(IN_HANDLER); |
|
|
|
|
|
|
|
if (do_ubl_mesh_map) ubl.display_map(map_type); |
|
|
|
restore_ubl_active_state_and_leave(); |
|
|
|