Browse Source

Add M605 to dynamically set delta configuration

Save above configs in eeprom
fix docs in createTemperatureLookupMarlin.py
add missing azteegX3pro digipot settings in delta example config
pull/1/head
Jim Morris 11 years ago
parent
commit
af9395ac2e
  1. 19
      Marlin/ConfigurationStore.cpp
  2. 4
      Marlin/Marlin.h
  3. 59
      Marlin/Marlin_main.cpp
  4. 9
      Marlin/createTemperatureLookupMarlin.py
  5. 13
      Marlin/example_configurations/delta/Configuration.h
  6. 6
      Marlin/example_configurations/delta/Configuration_adv.h

19
Marlin/ConfigurationStore.cpp

@ -37,7 +37,7 @@ void _EEPROM_readData(int &pos, uint8_t* value, uint8_t size)
// the default values are used whenever there is a change to the data, to prevent // the default values are used whenever there is a change to the data, to prevent
// wrong data being written to the variables. // wrong data being written to the variables.
// ALSO: always make sure the variables in the Store and retrieve sections are in the same order. // ALSO: always make sure the variables in the Store and retrieve sections are in the same order.
#define EEPROM_VERSION "V10" #define EEPROM_VERSION "V11"
#ifdef EEPROM_SETTINGS #ifdef EEPROM_SETTINGS
void Config_StoreSettings() void Config_StoreSettings()
@ -59,6 +59,9 @@ void Config_StoreSettings()
EEPROM_WRITE_VAR(i,add_homeing); EEPROM_WRITE_VAR(i,add_homeing);
#ifdef DELTA #ifdef DELTA
EEPROM_WRITE_VAR(i,endstop_adj); EEPROM_WRITE_VAR(i,endstop_adj);
EEPROM_WRITE_VAR(i,delta_radius);
EEPROM_WRITE_VAR(i,delta_diagonal_rod);
EEPROM_WRITE_VAR(i,delta_segments_per_second);
#endif #endif
#ifndef ULTIPANEL #ifndef ULTIPANEL
int plaPreheatHotendTemp = PLA_PREHEAT_HOTEND_TEMP, plaPreheatHPBTemp = PLA_PREHEAT_HPB_TEMP, plaPreheatFanSpeed = PLA_PREHEAT_FAN_SPEED; int plaPreheatHotendTemp = PLA_PREHEAT_HOTEND_TEMP, plaPreheatHPBTemp = PLA_PREHEAT_HPB_TEMP, plaPreheatFanSpeed = PLA_PREHEAT_FAN_SPEED;
@ -157,6 +160,13 @@ void Config_PrintSettings()
SERIAL_ECHOPAIR(" Y" ,endstop_adj[1] ); SERIAL_ECHOPAIR(" Y" ,endstop_adj[1] );
SERIAL_ECHOPAIR(" Z" ,endstop_adj[2] ); SERIAL_ECHOPAIR(" Z" ,endstop_adj[2] );
SERIAL_ECHOLN(""); SERIAL_ECHOLN("");
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM("Delta settings: L=delta_diagonal_rod, R=delta_radius, S=delta_segments_per_second");
SERIAL_ECHO_START;
SERIAL_ECHOPAIR(" M665 L",delta_diagonal_rod );
SERIAL_ECHOPAIR(" R" ,delta_radius );
SERIAL_ECHOPAIR(" S" ,delta_segments_per_second );
SERIAL_ECHOLN("");
#endif #endif
#ifdef PIDTEMP #ifdef PIDTEMP
SERIAL_ECHO_START; SERIAL_ECHO_START;
@ -200,6 +210,9 @@ void Config_RetrieveSettings()
EEPROM_READ_VAR(i,add_homeing); EEPROM_READ_VAR(i,add_homeing);
#ifdef DELTA #ifdef DELTA
EEPROM_READ_VAR(i,endstop_adj); EEPROM_READ_VAR(i,endstop_adj);
EEPROM_READ_VAR(i,delta_radius);
EEPROM_READ_VAR(i,delta_diagonal_rod);
EEPROM_READ_VAR(i,delta_segments_per_second);
#endif #endif
#ifndef ULTIPANEL #ifndef ULTIPANEL
int plaPreheatHotendTemp, plaPreheatHPBTemp, plaPreheatFanSpeed; int plaPreheatHotendTemp, plaPreheatHPBTemp, plaPreheatFanSpeed;
@ -265,6 +278,10 @@ void Config_ResetDefault()
add_homeing[0] = add_homeing[1] = add_homeing[2] = 0; add_homeing[0] = add_homeing[1] = add_homeing[2] = 0;
#ifdef DELTA #ifdef DELTA
endstop_adj[0] = endstop_adj[1] = endstop_adj[2] = 0; endstop_adj[0] = endstop_adj[1] = endstop_adj[2] = 0;
delta_radius= DELTA_RADIUS;
delta_diagonal_rod= DELTA_DIAGONAL_ROD;
delta_segments_per_second= DELTA_SEGMENTS_PER_SECOND;
recalc_delta_settings(delta_radius, delta_diagonal_rod);
#endif #endif
#ifdef ULTIPANEL #ifdef ULTIPANEL
plaPreheatHotendTemp = PLA_PREHEAT_HOTEND_TEMP; plaPreheatHotendTemp = PLA_PREHEAT_HOTEND_TEMP;

4
Marlin/Marlin.h

@ -209,6 +209,10 @@ extern float current_position[NUM_AXIS] ;
extern float add_homeing[3]; extern float add_homeing[3];
#ifdef DELTA #ifdef DELTA
extern float endstop_adj[3]; extern float endstop_adj[3];
extern float delta_radius;
extern float delta_diagonal_rod;
extern float delta_segments_per_second;
void recalc_delta_settings(float radius, float diagonal_rod);
#endif #endif
extern float min_pos[3]; extern float min_pos[3];
extern float max_pos[3]; extern float max_pos[3];

59
Marlin/Marlin_main.cpp

@ -161,6 +161,7 @@
// M503 - print the current settings (from memory not from eeprom) // M503 - print the current settings (from memory not from eeprom)
// M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
// M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal] // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
// M665 - set delta configurations
// M666 - set delta endstop adjustemnt // M666 - set delta endstop adjustemnt
// M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ] // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
// M907 - Set digital trimpot motor current using axis codes. // M907 - Set digital trimpot motor current using axis codes.
@ -247,9 +248,21 @@ int EtoPPressure=0;
#ifdef DELTA #ifdef DELTA
float delta[3] = {0.0, 0.0, 0.0}; float delta[3] = {0.0, 0.0, 0.0};
#define SIN_60 0.8660254037844386
#define COS_60 0.5
// these are the default values, can be overriden with M665
float delta_radius= DELTA_RADIUS;
float delta_tower1_x= -SIN_60*delta_radius; // front left tower
float delta_tower1_y= -COS_60*delta_radius;
float delta_tower2_x= SIN_60*delta_radius; // front right tower
float delta_tower2_y= -COS_60*delta_radius;
float delta_tower3_x= 0.0; // back middle tower
float delta_tower3_y= delta_radius;
float delta_diagonal_rod= DELTA_DIAGONAL_ROD;
float delta_diagonal_rod_2= sq(delta_diagonal_rod);
float delta_segments_per_second= DELTA_SEGMENTS_PER_SECOND;
#endif #endif
//=========================================================================== //===========================================================================
//=============================private variables============================= //=============================private variables=============================
//=========================================================================== //===========================================================================
@ -2267,6 +2280,19 @@ void process_commands()
} }
break; break;
#ifdef DELTA #ifdef DELTA
case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
if(code_seen('L')) {
delta_diagonal_rod= code_value();
}
if(code_seen('R')) {
delta_radius= code_value();
}
if(code_seen('S')) {
delta_segments_per_second= code_value();
}
recalc_delta_settings(delta_radius, delta_diagonal_rod);
break;
case 666: // M666 set delta endstop adjustemnt case 666: // M666 set delta endstop adjustemnt
for(int8_t i=0; i < 3; i++) for(int8_t i=0; i < 3; i++)
{ {
@ -3101,19 +3127,30 @@ void clamp_to_software_endstops(float target[3])
} }
#ifdef DELTA #ifdef DELTA
void recalc_delta_settings(float radius, float diagonal_rod)
{
delta_tower1_x= -SIN_60*radius; // front left tower
delta_tower1_y= -COS_60*radius;
delta_tower2_x= SIN_60*radius; // front right tower
delta_tower2_y= -COS_60*radius;
delta_tower3_x= 0.0; // back middle tower
delta_tower3_y= radius;
delta_diagonal_rod_2= sq(diagonal_rod);
}
void calculate_delta(float cartesian[3]) void calculate_delta(float cartesian[3])
{ {
delta[X_AXIS] = sqrt(DELTA_DIAGONAL_ROD_2 delta[X_AXIS] = sqrt(delta_diagonal_rod_2
- sq(DELTA_TOWER1_X-cartesian[X_AXIS]) - sq(delta_tower1_x-cartesian[X_AXIS])
- sq(DELTA_TOWER1_Y-cartesian[Y_AXIS]) - sq(delta_tower1_y-cartesian[Y_AXIS])
) + cartesian[Z_AXIS]; ) + cartesian[Z_AXIS];
delta[Y_AXIS] = sqrt(DELTA_DIAGONAL_ROD_2 delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
- sq(DELTA_TOWER2_X-cartesian[X_AXIS]) - sq(delta_tower2_x-cartesian[X_AXIS])
- sq(DELTA_TOWER2_Y-cartesian[Y_AXIS]) - sq(delta_tower2_y-cartesian[Y_AXIS])
) + cartesian[Z_AXIS]; ) + cartesian[Z_AXIS];
delta[Z_AXIS] = sqrt(DELTA_DIAGONAL_ROD_2 delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
- sq(DELTA_TOWER3_X-cartesian[X_AXIS]) - sq(delta_tower3_x-cartesian[X_AXIS])
- sq(DELTA_TOWER3_Y-cartesian[Y_AXIS]) - sq(delta_tower3_y-cartesian[Y_AXIS])
) + cartesian[Z_AXIS]; ) + cartesian[Z_AXIS];
/* /*
SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]); SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
@ -3143,7 +3180,7 @@ void prepare_move()
if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); } if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
if (cartesian_mm < 0.000001) { return; } if (cartesian_mm < 0.000001) { return; }
float seconds = 6000 * cartesian_mm / feedrate / feedmultiply; float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
int steps = max(1, int(DELTA_SEGMENTS_PER_SECOND * seconds)); int steps = max(1, int(delta_segments_per_second * seconds));
// SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm); // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
// SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds); // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
// SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps); // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);

9
Marlin/createTemperatureLookupMarlin.py

@ -16,9 +16,9 @@ Usage: python createTemperatureLookup.py [options]
Options: Options:
-h, --help show this help -h, --help show this help
--rp=... pull-up resistor --rp=... pull-up resistor
--t0=ttt:rrr low temperature temperature:resistance point (around 25C) --t1=ttt:rrr low temperature temperature:resistance point (around 25C)
--t1=ttt:rrr middle temperature temperature:resistance point (around 150C) --t2=ttt:rrr middle temperature temperature:resistance point (around 150C)
--t2=ttt:rrr high temperature temperature:resistance point (around 250C) --t3=ttt:rrr high temperature temperature:resistance point (around 250C)
--num-temps=... the number of temperature points to calculate (default: 20) --num-temps=... the number of temperature points to calculate (default: 20)
""" """
@ -98,7 +98,8 @@ def main(argv):
try: try:
opts, args = getopt.getopt(argv, "h", ["help", "rp=", "t1=", "t2=", "t3=", "num-temps="]) opts, args = getopt.getopt(argv, "h", ["help", "rp=", "t1=", "t2=", "t3=", "num-temps="])
except getopt.GetoptError: except getopt.GetoptError as err:
print str(err)
usage() usage()
sys.exit(2) sys.exit(2)

13
Marlin/example_configurations/delta/Configuration.h

@ -51,6 +51,7 @@
// 65 = Azteeg X1 // 65 = Azteeg X1
// 66 = Melzi with ATmega1284 (MaKr3d version) // 66 = Melzi with ATmega1284 (MaKr3d version)
// 67 = Azteeg X3 // 67 = Azteeg X3
// 68 = Azteeg X3 Pro
// 7 = Ultimaker // 7 = Ultimaker
// 71 = Ultimaker (Older electronics. Pre 1.5.4. This is rare) // 71 = Ultimaker (Older electronics. Pre 1.5.4. This is rare)
// 77 = 3Drag Controller // 77 = 3Drag Controller
@ -119,18 +120,6 @@
// Effective horizontal distance bridged by diagonal push rods. // Effective horizontal distance bridged by diagonal push rods.
#define DELTA_RADIUS (DELTA_SMOOTH_ROD_OFFSET-DELTA_EFFECTOR_OFFSET-DELTA_CARRIAGE_OFFSET) #define DELTA_RADIUS (DELTA_SMOOTH_ROD_OFFSET-DELTA_EFFECTOR_OFFSET-DELTA_CARRIAGE_OFFSET)
#define DELTA_DIAGONAL_ROD_2 sq(DELTA_DIAGONAL_ROD)
// Effective X/Y positions of the three vertical towers.
#define SIN_60 0.8660254037844386
#define COS_60 0.5
#define DELTA_TOWER1_X -SIN_60*DELTA_RADIUS // front left tower
#define DELTA_TOWER1_Y -COS_60*DELTA_RADIUS
#define DELTA_TOWER2_X SIN_60*DELTA_RADIUS // front right tower
#define DELTA_TOWER2_Y -COS_60*DELTA_RADIUS
#define DELTA_TOWER3_X 0.0 // back middle tower
#define DELTA_TOWER3_Y DELTA_RADIUS
//=========================================================================== //===========================================================================
//=============================Thermal Settings ============================ //=============================Thermal Settings ============================
//=========================================================================== //===========================================================================

6
Marlin/example_configurations/delta/Configuration_adv.h

@ -270,6 +270,12 @@
// Motor Current setting (Only functional when motor driver current ref pins are connected to a digital trimpot on supported boards) // Motor Current setting (Only functional when motor driver current ref pins are connected to a digital trimpot on supported boards)
#define DIGIPOT_MOTOR_CURRENT {135,135,135,135,135} // Values 0-255 (RAMBO 135 = ~0.75A, 185 = ~1A) #define DIGIPOT_MOTOR_CURRENT {135,135,135,135,135} // Values 0-255 (RAMBO 135 = ~0.75A, 185 = ~1A)
// uncomment to enable an I2C based DIGIPOT like on the Azteeg X3 Pro
//#define DIGIPOT_I2C
// Number of channels available for I2C digipot, For Azteeg X3 Pro we have 8
#define DIGIPOT_I2C_NUM_CHANNELS 8
// actual motor currents in Amps, need as many here as DIGIPOT_I2C_NUM_CHANNELS
#define DIGIPOT_I2C_MOTOR_CURRENTS {1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0}
//=========================================================================== //===========================================================================
//=============================Additional Features=========================== //=============================Additional Features===========================

Loading…
Cancel
Save