|
@ -1545,84 +1545,54 @@ |
|
|
SERIAL_ECHOLNPGM("Done Editing Mesh"); |
|
|
SERIAL_ECHOLNPGM("Done Editing Mesh"); |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
//
|
|
|
/**
|
|
|
// The routine provides the 'Smart Fill' capability. It scans from the
|
|
|
* 'Smart Fill': Scan from the outward edges of the mesh towards the center. |
|
|
// outward edges of the mesh towards the center. If it finds an invalid
|
|
|
* If an invalid location is found, use the next two points (if valid) to |
|
|
// location, it uses the next two points (assumming they are valid) to
|
|
|
* calculate a 'reasonable' value for the unprobed mesh point. |
|
|
// calculate a 'reasonable' value for the unprobed mesh point.
|
|
|
*/ |
|
|
//
|
|
|
|
|
|
void smart_fill_mesh() { |
|
|
bool smart_fill_one(const uint8_t x, const uint8_t y, const int8_t xdir, const int8_t ydir) { |
|
|
float f, diff; |
|
|
const int8_t x1 = x + xdir, x2 = x1 + xdir, |
|
|
for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++) { // Bottom of the mesh looking up
|
|
|
y1 = y + ydir, y2 = y1 + ydir; |
|
|
for (uint8_t y = 0; y < GRID_MAX_POINTS_Y-2; y++) { |
|
|
// A NAN next to a pair of real values?
|
|
|
if (isnan(ubl.z_values[x][y])) { |
|
|
if (isnan(ubl.z_values[x][y]) && !isnan(ubl.z_values[x1][y1]) && !isnan(ubl.z_values[x2][y2])) { |
|
|
if (isnan(ubl.z_values[x][y+1])) // we only deal with the first NAN next to a block of
|
|
|
if (ubl.z_values[x1][y1] < ubl.z_values[x2][y2]) // Angled downward?
|
|
|
continue; // good numbers. we want 2 good numbers to extrapolate off of.
|
|
|
ubl.z_values[x][y] = ubl.z_values[x1][y1]; // Use nearest (maybe a little too high.)
|
|
|
if (isnan(ubl.z_values[x][y+2])) |
|
|
|
|
|
continue; |
|
|
|
|
|
if (ubl.z_values[x][y+1] < ubl.z_values[x][y+2]) // The bed is angled down near this edge. So to be safe, we
|
|
|
|
|
|
ubl.z_values[x][y] = ubl.z_values[x][y+1]; // use the closest value, which is probably a little too high
|
|
|
|
|
|
else { |
|
|
|
|
|
diff = ubl.z_values[x][y+1] - ubl.z_values[x][y+2]; // The bed is angled up near this edge. So we will use the closest
|
|
|
|
|
|
ubl.z_values[x][y] = ubl.z_values[x][y+1] + diff; // height and add in the difference between that and the next point
|
|
|
|
|
|
} |
|
|
|
|
|
break; |
|
|
|
|
|
} |
|
|
|
|
|
} |
|
|
|
|
|
} |
|
|
|
|
|
for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++) { // Top of the mesh looking down
|
|
|
|
|
|
for (uint8_t y=GRID_MAX_POINTS_Y-1; y>=1; y--) { |
|
|
|
|
|
if (isnan(ubl.z_values[x][y])) { |
|
|
|
|
|
if (isnan(ubl.z_values[x][y-1])) // we only deal with the first NAN next to a block of
|
|
|
|
|
|
continue; // good numbers. we want 2 good numbers to extrapolate off of.
|
|
|
|
|
|
if (isnan(ubl.z_values[x][y-2])) |
|
|
|
|
|
continue; |
|
|
|
|
|
if (ubl.z_values[x][y-1] < ubl.z_values[x][y-2]) // The bed is angled down near this edge. So to be safe, we
|
|
|
|
|
|
ubl.z_values[x][y] = ubl.z_values[x][y-1]; // use the closest value, which is probably a little too high
|
|
|
|
|
|
else { |
|
|
|
|
|
diff = ubl.z_values[x][y-1] - ubl.z_values[x][y-2]; // The bed is angled up near this edge. So we will use the closest
|
|
|
|
|
|
ubl.z_values[x][y] = ubl.z_values[x][y-1] + diff; // height and add in the difference between that and the next point
|
|
|
|
|
|
} |
|
|
|
|
|
break; |
|
|
|
|
|
} |
|
|
|
|
|
} |
|
|
|
|
|
} |
|
|
|
|
|
for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++) { |
|
|
|
|
|
for (uint8_t x = 0; x < GRID_MAX_POINTS_X-2; x++) { // Left side of the mesh looking right
|
|
|
|
|
|
if (isnan(ubl.z_values[x][y])) { |
|
|
|
|
|
if (isnan(ubl.z_values[x+1][y])) // we only deal with the first NAN next to a block of
|
|
|
|
|
|
continue; // good numbers. we want 2 good numbers to extrapolate off of.
|
|
|
|
|
|
if (isnan(ubl.z_values[x+2][y])) |
|
|
|
|
|
continue; |
|
|
|
|
|
if (ubl.z_values[x+1][y] < ubl.z_values[x+2][y]) // The bed is angled down near this edge. So to be safe, we
|
|
|
|
|
|
ubl.z_values[x][y] = ubl.z_values[x][y+1]; // use the closest value, which is probably a little too high
|
|
|
|
|
|
else { |
|
|
else { |
|
|
diff = ubl.z_values[x+1][y] - ubl.z_values[x+2][y]; // The bed is angled up near this edge. So we will use the closest
|
|
|
const float diff = ubl.z_values[x1][y1] - ubl.z_values[x2][y2]; // Angled upward
|
|
|
ubl.z_values[x][y] = ubl.z_values[x+1][y] + diff; // height and add in the difference between that and the next point
|
|
|
ubl.z_values[x][y] = ubl.z_values[x1][y1] + diff; // Use closest plus difference
|
|
|
} |
|
|
} |
|
|
break; |
|
|
return true; |
|
|
} |
|
|
} |
|
|
|
|
|
return false; |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
typedef struct { uint8_t sx, ex, sy, ey; bool yfirst; } smart_fill_info; |
|
|
|
|
|
|
|
|
|
|
|
void smart_fill_loop(const smart_fill_info &f) { |
|
|
|
|
|
if (f.yfirst) { |
|
|
|
|
|
const int8_t dir = f.ex > f.sx ? 1 : -1; |
|
|
|
|
|
for (uint8_t y = f.sy; y != f.ey; ++y) |
|
|
|
|
|
for (uint8_t x = f.sx; x != f.ex; x += dir) |
|
|
|
|
|
if (smart_fill_one(x, y, dir, 0)) break; |
|
|
} |
|
|
} |
|
|
for (uint8_t y=0; y < GRID_MAX_POINTS_Y; y++) { |
|
|
|
|
|
for (uint8_t x=GRID_MAX_POINTS_X-1; x>=1; x--) { // Right side of the mesh looking left
|
|
|
|
|
|
if (isnan(ubl.z_values[x][y])) { |
|
|
|
|
|
if (isnan(ubl.z_values[x-1][y])) // we only deal with the first NAN next to a block of
|
|
|
|
|
|
continue; // good numbers. we want 2 good numbers to extrapolate off of.
|
|
|
|
|
|
if (isnan(ubl.z_values[x-2][y])) |
|
|
|
|
|
continue; |
|
|
|
|
|
if (ubl.z_values[x-1][y] < ubl.z_values[x-2][y]) // The bed is angled down near this edge. So to be safe, we
|
|
|
|
|
|
ubl.z_values[x][y] = ubl.z_values[x-1][y]; // use the closest value, which is probably a little too high
|
|
|
|
|
|
else { |
|
|
else { |
|
|
diff = ubl.z_values[x-1][y] - ubl.z_values[x-2][y]; // The bed is angled up near this edge. So we will use the closest
|
|
|
const int8_t dir = f.ey > f.sy ? 1 : -1; |
|
|
ubl.z_values[x][y] = ubl.z_values[x-1][y] + diff; // height and add in the difference between that and the next point
|
|
|
for (uint8_t x = f.sx; x != f.ex; ++x) |
|
|
} |
|
|
for (uint8_t y = f.sy; y != f.ey; y += dir) |
|
|
break; |
|
|
if (smart_fill_one(x, y, 0, dir)) break; |
|
|
} |
|
|
|
|
|
} |
|
|
|
|
|
} |
|
|
} |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
void smart_fill_mesh() { |
|
|
|
|
|
const smart_fill_info info[] = { |
|
|
|
|
|
{ 0, GRID_MAX_POINTS_X, 0, GRID_MAX_POINTS_Y - 2, false }, // Bottom of the mesh looking up
|
|
|
|
|
|
{ 0, GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y - 1, 0, false }, // Top of the mesh looking down
|
|
|
|
|
|
{ 0, GRID_MAX_POINTS_X - 2, 0, GRID_MAX_POINTS_Y, true }, // Left side of the mesh looking right
|
|
|
|
|
|
{ GRID_MAX_POINTS_X - 1, 0, 0, GRID_MAX_POINTS_Y, true } // Right side of the mesh looking left
|
|
|
|
|
|
}; |
|
|
|
|
|
for (uint8_t i = 0; i < COUNT(info); ++i) smart_fill_loop(info[i]); |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
void unified_bed_leveling::tilt_mesh_based_on_probed_grid(const bool do_ubl_mesh_map) { |
|
|
void unified_bed_leveling::tilt_mesh_based_on_probed_grid(const bool do_ubl_mesh_map) { |
|
|
constexpr int16_t x_min = max(MIN_PROBE_X, UBL_MESH_MIN_X), |
|
|
constexpr int16_t x_min = max(MIN_PROBE_X, UBL_MESH_MIN_X), |
|
|