|
|
@ -352,7 +352,6 @@ |
|
|
|
} |
|
|
|
|
|
|
|
if (code_seen('Q')) { |
|
|
|
|
|
|
|
const int test_pattern = code_has_value() ? code_value_int() : -1; |
|
|
|
if (!WITHIN(test_pattern, 0, 2)) { |
|
|
|
SERIAL_PROTOCOLLNPGM("Invalid test_pattern value. (0-2)\n"); |
|
|
@ -433,13 +432,14 @@ |
|
|
|
//
|
|
|
|
SERIAL_PROTOCOLLNPGM("Manually probing unreachable mesh locations.\n"); |
|
|
|
do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES); |
|
|
|
if (!x_flag && !y_flag) { // use a good default location for the path
|
|
|
|
// The flipped > and < operators on these two comparisons is
|
|
|
|
// intentional. It should cause the probed points to follow a
|
|
|
|
// nice path on Cartesian printers. It may make sense to
|
|
|
|
// have Delta printers default to the center of the bed.
|
|
|
|
// For now, until that is decided, it can be forced with the X
|
|
|
|
// and Y parameters.
|
|
|
|
if (!x_flag && !y_flag) { |
|
|
|
/**
|
|
|
|
* Use a good default location for the path. |
|
|
|
* The flipped > and < operators in these comparisons is intentional. |
|
|
|
* It should cause the probed points to follow a nice path on Cartesian printers. |
|
|
|
* It may make sense to have Delta printers default to the center of the bed. |
|
|
|
* Until that is decided, this can be forced with the X and Y parameters. |
|
|
|
*/ |
|
|
|
x_pos = X_PROBE_OFFSET_FROM_EXTRUDER > 0 ? UBL_MESH_MAX_X : UBL_MESH_MIN_X; |
|
|
|
y_pos = Y_PROBE_OFFSET_FROM_EXTRUDER < 0 ? UBL_MESH_MAX_Y : UBL_MESH_MIN_Y; |
|
|
|
} |
|
|
@ -461,27 +461,28 @@ |
|
|
|
} |
|
|
|
manually_probe_remaining_mesh(x_pos, y_pos, height, card_thickness, code_seen('O') || code_seen('M')); |
|
|
|
SERIAL_PROTOCOLLNPGM("G29 P2 finished"); |
|
|
|
} |
|
|
|
break; |
|
|
|
|
|
|
|
} break; |
|
|
|
|
|
|
|
case 3: { |
|
|
|
//
|
|
|
|
// Populate invalid Mesh areas. Two choices are available to the user. The user can
|
|
|
|
// specify the constant to be used with a C # paramter. Or the user can allow the G29 P3 command to
|
|
|
|
// apply a 'reasonable' constant to the invalid mesh point. Some caution and scrutiny should be used
|
|
|
|
// on either of these paths!
|
|
|
|
//
|
|
|
|
/**
|
|
|
|
* Populate invalid mesh areas. Proceed with caution. |
|
|
|
* Two choices are available: |
|
|
|
* - Specify a constant with the 'C' parameter. |
|
|
|
* - Allow 'G29 P3' to choose a 'reasonable' constant. |
|
|
|
*/ |
|
|
|
if (c_flag) { |
|
|
|
while (repetition_cnt--) { |
|
|
|
while (repetition_cnt--) { |
|
|
|
const mesh_index_pair location = find_closest_mesh_point_of_type(INVALID, x_pos, y_pos, USE_NOZZLE_AS_REFERENCE, NULL, false); |
|
|
|
if (location.x_index < 0) break; // No more invalid Mesh Points to populate
|
|
|
|
ubl.z_values[location.x_index][location.y_index] = ubl_constant; |
|
|
|
if (location.x_index < 0) break; // No more invalid Mesh Points to populate
|
|
|
|
ubl.z_values[location.x_index][location.y_index] = ubl_constant; |
|
|
|
} |
|
|
|
break; |
|
|
|
} else // The user wants to do a 'Smart' fill where we use the surrounding known
|
|
|
|
smart_fill_mesh(); // values to provide a good guess of what the unprobed mesh point should be
|
|
|
|
break; |
|
|
|
} |
|
|
|
else |
|
|
|
smart_fill_mesh(); // Do a 'Smart' fill using nearby known values
|
|
|
|
|
|
|
|
} break; |
|
|
|
|
|
|
|
case 4: |
|
|
|
//
|
|
|
@ -535,9 +536,9 @@ |
|
|
|
|
|
|
|
if (code_seen('T')) { |
|
|
|
|
|
|
|
float z1 = probe_pt( LOGICAL_X_POSITION(UBL_PROBE_PT_1_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_1_Y), false, g29_verbose_level), |
|
|
|
z2 = probe_pt( LOGICAL_X_POSITION(UBL_PROBE_PT_2_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_2_Y), false, g29_verbose_level), |
|
|
|
z3 = probe_pt( LOGICAL_X_POSITION(UBL_PROBE_PT_3_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_3_Y), true, g29_verbose_level); |
|
|
|
float z1 = probe_pt(LOGICAL_X_POSITION(UBL_PROBE_PT_1_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_1_Y), false, g29_verbose_level), |
|
|
|
z2 = probe_pt(LOGICAL_X_POSITION(UBL_PROBE_PT_2_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_2_Y), false, g29_verbose_level), |
|
|
|
z3 = probe_pt(LOGICAL_X_POSITION(UBL_PROBE_PT_3_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_3_Y), true, g29_verbose_level); |
|
|
|
|
|
|
|
// We need to adjust z1, z2, z3 by the Mesh Height at these points. Just because they are non-zero doesn't mean
|
|
|
|
// the Mesh is tilted! (We need to compensate each probe point by what the Mesh says that location's height is)
|
|
|
@ -606,8 +607,8 @@ |
|
|
|
SERIAL_ECHOPAIR(" J ", y); |
|
|
|
SERIAL_ECHOPGM(" Z "); |
|
|
|
SERIAL_ECHO_F(ubl.z_values[x][y], 6); |
|
|
|
SERIAL_ECHOPAIR(" ; X ", LOGICAL_X_POSITION(pgm_read_float(&(ubl.mesh_index_to_xpos[x])))); |
|
|
|
SERIAL_ECHOPAIR(", Y ", LOGICAL_Y_POSITION(pgm_read_float(&(ubl.mesh_index_to_ypos[y])))); |
|
|
|
SERIAL_ECHOPAIR(" ; X ", LOGICAL_X_POSITION(pgm_read_float(&ubl.mesh_index_to_xpos[x]))); |
|
|
|
SERIAL_ECHOPAIR(", Y ", LOGICAL_Y_POSITION(pgm_read_float(&ubl.mesh_index_to_ypos[y]))); |
|
|
|
SERIAL_EOL; |
|
|
|
} |
|
|
|
return; |
|
|
@ -653,9 +654,9 @@ |
|
|
|
} while (!ubl_lcd_clicked()); |
|
|
|
|
|
|
|
ubl.has_control_of_lcd_panel = true; // There is a race condition for the Encoder Wheel getting clicked.
|
|
|
|
// It could get detected in lcd_mesh_edit (actually _lcd_mesh_fine_tune)
|
|
|
|
// or here. So, until we are done looking for a long Encoder Wheel Press,
|
|
|
|
// we need to take control of the panel
|
|
|
|
// It could get detected in lcd_mesh_edit (actually _lcd_mesh_fine_tune)
|
|
|
|
// or here. So, until we are done looking for a long Encoder Wheel Press,
|
|
|
|
// we need to take control of the panel
|
|
|
|
|
|
|
|
KEEPALIVE_STATE(IN_HANDLER); |
|
|
|
|
|
|
@ -692,44 +693,39 @@ |
|
|
|
} |
|
|
|
|
|
|
|
void unified_bed_leveling::find_mean_mesh_height() { |
|
|
|
uint8_t x, y; |
|
|
|
int n; |
|
|
|
float sum, sum_of_diff_squared, sigma, difference, mean; |
|
|
|
|
|
|
|
sum = sum_of_diff_squared = 0.0; |
|
|
|
n = 0; |
|
|
|
for (x = 0; x < GRID_MAX_POINTS_X; x++) |
|
|
|
for (y = 0; y < GRID_MAX_POINTS_Y; y++) |
|
|
|
float sum = 0.0; |
|
|
|
int n = 0; |
|
|
|
for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++) |
|
|
|
for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++) |
|
|
|
if (!isnan(ubl.z_values[x][y])) { |
|
|
|
sum += ubl.z_values[x][y]; |
|
|
|
n++; |
|
|
|
} |
|
|
|
|
|
|
|
mean = sum / n; |
|
|
|
const float mean = sum / n; |
|
|
|
|
|
|
|
//
|
|
|
|
// Now do the sumation of the squares of difference from mean
|
|
|
|
//
|
|
|
|
for (x = 0; x < GRID_MAX_POINTS_X; x++) |
|
|
|
for (y = 0; y < GRID_MAX_POINTS_Y; y++) |
|
|
|
if (!isnan(ubl.z_values[x][y])) { |
|
|
|
difference = (ubl.z_values[x][y] - mean); |
|
|
|
sum_of_diff_squared += difference * difference; |
|
|
|
} |
|
|
|
float sum_of_diff_squared = 0.0; |
|
|
|
for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++) |
|
|
|
for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++) |
|
|
|
if (!isnan(ubl.z_values[x][y])) |
|
|
|
sum_of_diff_squared += sq(ubl.z_values[x][y] - mean); |
|
|
|
|
|
|
|
SERIAL_ECHOLNPAIR("# of samples: ", n); |
|
|
|
SERIAL_ECHOPGM("Mean Mesh Height: "); |
|
|
|
SERIAL_ECHO_F(mean, 6); |
|
|
|
SERIAL_EOL; |
|
|
|
|
|
|
|
sigma = sqrt(sum_of_diff_squared / (n + 1)); |
|
|
|
const float sigma = sqrt(sum_of_diff_squared / (n + 1)); |
|
|
|
SERIAL_ECHOPGM("Standard Deviation: "); |
|
|
|
SERIAL_ECHO_F(sigma, 6); |
|
|
|
SERIAL_EOL; |
|
|
|
|
|
|
|
if (c_flag) |
|
|
|
for (x = 0; x < GRID_MAX_POINTS_X; x++) |
|
|
|
for (y = 0; y < GRID_MAX_POINTS_Y; y++) |
|
|
|
for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++) |
|
|
|
for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++) |
|
|
|
if (!isnan(ubl.z_values[x][y])) |
|
|
|
ubl.z_values[x][y] -= mean + ubl_constant; |
|
|
|
} |
|
|
@ -767,8 +763,8 @@ |
|
|
|
location = find_closest_mesh_point_of_type(INVALID, lx, ly, USE_PROBE_AS_REFERENCE, NULL, do_furthest); |
|
|
|
if (location.x_index >= 0 && location.y_index >= 0) { |
|
|
|
|
|
|
|
const float rawx = pgm_read_float(&(ubl.mesh_index_to_xpos[location.x_index])), |
|
|
|
rawy = pgm_read_float(&(ubl.mesh_index_to_ypos[location.y_index])); |
|
|
|
const float rawx = pgm_read_float(&ubl.mesh_index_to_xpos[location.x_index]), |
|
|
|
rawy = pgm_read_float(&ubl.mesh_index_to_ypos[location.y_index]); |
|
|
|
|
|
|
|
// TODO: Change to use `position_is_reachable` (for SCARA-compatibility)
|
|
|
|
if (!WITHIN(rawx, MIN_PROBE_X, MAX_PROBE_X) || !WITHIN(rawy, MIN_PROBE_Y, MAX_PROBE_Y)) { |
|
|
@ -797,7 +793,6 @@ |
|
|
|
} |
|
|
|
|
|
|
|
void unified_bed_leveling::tilt_mesh_based_on_3pts(const float &z1, const float &z2, const float &z3) { |
|
|
|
float d, t, inv_z; |
|
|
|
int i, j; |
|
|
|
|
|
|
|
matrix_3x3 rotation; |
|
|
@ -818,96 +813,94 @@ |
|
|
|
* However, we don't know its direction. We need it to point up. So if |
|
|
|
* Z is negative, we need to invert the sign of all components of the vector |
|
|
|
*/ |
|
|
|
if ( normal.z < 0.0 ) { |
|
|
|
if (normal.z < 0.0) { |
|
|
|
normal.x = -normal.x; |
|
|
|
normal.y = -normal.y; |
|
|
|
normal.z = -normal.z; |
|
|
|
} |
|
|
|
|
|
|
|
rotation = matrix_3x3::create_look_at( vector_3( normal.x, normal.y, 1)); |
|
|
|
rotation = matrix_3x3::create_look_at(vector_3(normal.x, normal.y, 1)); |
|
|
|
|
|
|
|
if (g29_verbose_level>2) { |
|
|
|
if (g29_verbose_level > 2) { |
|
|
|
SERIAL_ECHOPGM("bed plane normal = ["); |
|
|
|
SERIAL_PROTOCOL_F( normal.x, 7); |
|
|
|
SERIAL_ECHOPGM(","); |
|
|
|
SERIAL_PROTOCOL_F( normal.y, 7); |
|
|
|
SERIAL_ECHOPGM(","); |
|
|
|
SERIAL_PROTOCOL_F( normal.z, 7); |
|
|
|
SERIAL_ECHOPGM("]\n"); |
|
|
|
rotation.debug("rotation matrix:"); |
|
|
|
SERIAL_PROTOCOL_F(normal.x, 7); |
|
|
|
SERIAL_PROTOCOLCHAR(','); |
|
|
|
SERIAL_PROTOCOL_F(normal.y, 7); |
|
|
|
SERIAL_PROTOCOLCHAR(','); |
|
|
|
SERIAL_PROTOCOL_F(normal.z, 7); |
|
|
|
SERIAL_ECHOLNPGM("]"); |
|
|
|
rotation.debug(PSTR("rotation matrix:")); |
|
|
|
} |
|
|
|
|
|
|
|
//
|
|
|
|
// All of 3 of these points should give us the same d constant
|
|
|
|
//
|
|
|
|
|
|
|
|
t = normal.x * UBL_PROBE_PT_1_X + normal.y * UBL_PROBE_PT_1_Y; |
|
|
|
d = t + normal.z * z1; |
|
|
|
float t = normal.x * (UBL_PROBE_PT_1_X) + normal.y * (UBL_PROBE_PT_1_Y), |
|
|
|
d = t + normal.z * z1; |
|
|
|
|
|
|
|
if (g29_verbose_level>2) { |
|
|
|
SERIAL_ECHOPGM("D constant: "); |
|
|
|
SERIAL_PROTOCOL_F( d, 7); |
|
|
|
SERIAL_ECHOPGM(" \n"); |
|
|
|
SERIAL_PROTOCOL_F(d, 7); |
|
|
|
SERIAL_ECHOLNPGM(" "); |
|
|
|
} |
|
|
|
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE) |
|
|
|
if (DEBUGGING(LEVELING)) { |
|
|
|
SERIAL_ECHOPGM("d from 1st point: "); |
|
|
|
SERIAL_ECHO_F(d, 6); |
|
|
|
SERIAL_EOL; |
|
|
|
t = normal.x * UBL_PROBE_PT_2_X + normal.y * UBL_PROBE_PT_2_Y; |
|
|
|
d = t + normal.z * z2; |
|
|
|
SERIAL_ECHOPGM("d from 2nd point: "); |
|
|
|
SERIAL_ECHO_F(d, 6); |
|
|
|
SERIAL_EOL; |
|
|
|
t = normal.x * UBL_PROBE_PT_3_X + normal.y * UBL_PROBE_PT_3_Y; |
|
|
|
d = t + normal.z * z3; |
|
|
|
SERIAL_ECHOPGM("d from 3rd point: "); |
|
|
|
SERIAL_ECHO_F(d, 6); |
|
|
|
SERIAL_EOL; |
|
|
|
SERIAL_ECHOPGM("d from 1st point: "); |
|
|
|
SERIAL_ECHO_F(d, 6); |
|
|
|
SERIAL_EOL; |
|
|
|
t = normal.x * (UBL_PROBE_PT_2_X) + normal.y * (UBL_PROBE_PT_2_Y); |
|
|
|
d = t + normal.z * z2; |
|
|
|
SERIAL_ECHOPGM("d from 2nd point: "); |
|
|
|
SERIAL_ECHO_F(d, 6); |
|
|
|
SERIAL_EOL; |
|
|
|
t = normal.x * (UBL_PROBE_PT_3_X) + normal.y * (UBL_PROBE_PT_3_Y); |
|
|
|
d = t + normal.z * z3; |
|
|
|
SERIAL_ECHOPGM("d from 3rd point: "); |
|
|
|
SERIAL_ECHO_F(d, 6); |
|
|
|
SERIAL_EOL; |
|
|
|
} |
|
|
|
#endif |
|
|
|
|
|
|
|
for (i = 0; i < GRID_MAX_POINTS_X; i++) { |
|
|
|
for (j = 0; j < GRID_MAX_POINTS_Y; j++) { |
|
|
|
float x_tmp, y_tmp, z_tmp; |
|
|
|
x_tmp = pgm_read_float(ubl.mesh_index_to_xpos[i]); |
|
|
|
y_tmp = pgm_read_float(ubl.mesh_index_to_ypos[j]); |
|
|
|
z_tmp = ubl.z_values[i][j]; |
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE) |
|
|
|
if (DEBUGGING(LEVELING)) { |
|
|
|
SERIAL_ECHOPGM("before rotation = ["); |
|
|
|
SERIAL_PROTOCOL_F( x_tmp, 7); |
|
|
|
SERIAL_ECHOPGM(","); |
|
|
|
SERIAL_PROTOCOL_F( y_tmp, 7); |
|
|
|
SERIAL_ECHOPGM(","); |
|
|
|
SERIAL_PROTOCOL_F( z_tmp, 7); |
|
|
|
SERIAL_ECHOPGM("] ---> "); |
|
|
|
safe_delay(20); |
|
|
|
for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) { |
|
|
|
for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) { |
|
|
|
float x_tmp = pgm_read_float(&ubl.mesh_index_to_xpos[i]), |
|
|
|
y_tmp = pgm_read_float(&ubl.mesh_index_to_ypos[j]), |
|
|
|
z_tmp = ubl.z_values[i][j]; |
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE) |
|
|
|
if (DEBUGGING(LEVELING)) { |
|
|
|
SERIAL_ECHOPGM("before rotation = ["); |
|
|
|
SERIAL_PROTOCOL_F(x_tmp, 7); |
|
|
|
SERIAL_PROTOCOLCHAR(','); |
|
|
|
SERIAL_PROTOCOL_F(y_tmp, 7); |
|
|
|
SERIAL_PROTOCOLCHAR(','); |
|
|
|
SERIAL_PROTOCOL_F(z_tmp, 7); |
|
|
|
SERIAL_ECHOPGM("] ---> "); |
|
|
|
safe_delay(20); |
|
|
|
} |
|
|
|
#endif |
|
|
|
apply_rotation_xyz(rotation, x_tmp, y_tmp, z_tmp); |
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE) |
|
|
|
if (DEBUGGING(LEVELING)) { |
|
|
|
SERIAL_ECHOPGM("after rotation = ["); |
|
|
|
SERIAL_PROTOCOL_F(x_tmp, 7); |
|
|
|
SERIAL_PROTOCOLCHAR(','); |
|
|
|
SERIAL_PROTOCOL_F(y_tmp, 7); |
|
|
|
SERIAL_PROTOCOLCHAR(','); |
|
|
|
SERIAL_PROTOCOL_F(z_tmp, 7); |
|
|
|
SERIAL_ECHOLNPGM("]"); |
|
|
|
safe_delay(55); |
|
|
|
} |
|
|
|
#endif |
|
|
|
ubl.z_values[i][j] += z_tmp - d; |
|
|
|
} |
|
|
|
#endif |
|
|
|
apply_rotation_xyz(rotation, x_tmp, y_tmp, z_tmp); |
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE) |
|
|
|
if (DEBUGGING(LEVELING)) { |
|
|
|
SERIAL_ECHOPGM("after rotation = ["); |
|
|
|
SERIAL_PROTOCOL_F( x_tmp, 7); |
|
|
|
SERIAL_ECHOPGM(","); |
|
|
|
SERIAL_PROTOCOL_F( y_tmp, 7); |
|
|
|
SERIAL_ECHOPGM(","); |
|
|
|
SERIAL_PROTOCOL_F( z_tmp, 7); |
|
|
|
SERIAL_ECHOPGM("]\n"); |
|
|
|
safe_delay(55); |
|
|
|
} |
|
|
|
#endif |
|
|
|
ubl.z_values[i][j] += z_tmp - d; |
|
|
|
} |
|
|
|
} |
|
|
|
return; |
|
|
|
} |
|
|
|
|
|
|
|
float use_encoder_wheel_to_measure_point() { |
|
|
|
|
|
|
|
while (ubl_lcd_clicked()) delay(50);; // wait for user to release encoder wheel
|
|
|
|
while (ubl_lcd_clicked()) delay(50); // wait for user to release encoder wheel
|
|
|
|
delay(50); // debounce
|
|
|
|
|
|
|
|
KEEPALIVE_STATE(PAUSED_FOR_USER); |
|
|
@ -922,24 +915,29 @@ |
|
|
|
return current_position[Z_AXIS]; |
|
|
|
} |
|
|
|
|
|
|
|
float measure_business_card_thickness(const float &in_height) { |
|
|
|
static void say_and_take_a_measurement() { |
|
|
|
SERIAL_PROTOCOLLNPGM(" and take a measurement."); |
|
|
|
} |
|
|
|
|
|
|
|
float measure_business_card_thickness(const float &in_height) { |
|
|
|
ubl.has_control_of_lcd_panel = true; |
|
|
|
ubl.save_ubl_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe
|
|
|
|
ubl.save_ubl_active_state_and_disable(); // Disable bed level correction for probing
|
|
|
|
|
|
|
|
do_blocking_move_to_z(in_height); |
|
|
|
do_blocking_move_to_xy((float(UBL_MESH_MAX_X) - float(UBL_MESH_MIN_X)) / 2.0, (float(UBL_MESH_MAX_Y) - float(UBL_MESH_MIN_Y)) / 2.0); |
|
|
|
//, min(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS])/2.0);
|
|
|
|
do_blocking_move_to_xy(0.5 * (UBL_MESH_MAX_X - (UBL_MESH_MIN_X)), 0.5 * (UBL_MESH_MAX_Y - (UBL_MESH_MIN_Y))); |
|
|
|
//, min(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS]) / 2.0);
|
|
|
|
|
|
|
|
stepper.synchronize(); |
|
|
|
SERIAL_PROTOCOLLNPGM("Place Shim Under Nozzle and Perform Measurement."); |
|
|
|
|
|
|
|
SERIAL_PROTOCOLPGM("Place shim under nozzle"); |
|
|
|
say_and_take_a_measurement(); |
|
|
|
|
|
|
|
const float z1 = use_encoder_wheel_to_measure_point(); |
|
|
|
do_blocking_move_to_z(current_position[Z_AXIS] + SIZE_OF_LITTLE_RAISE); |
|
|
|
|
|
|
|
stepper.synchronize(); |
|
|
|
SERIAL_PROTOCOLLNPGM("Remove Shim and Measure Bed Height."); |
|
|
|
|
|
|
|
SERIAL_PROTOCOLPGM("Remove shim"); |
|
|
|
say_and_take_a_measurement(); |
|
|
|
|
|
|
|
const float z2 = use_encoder_wheel_to_measure_point(); |
|
|
|
do_blocking_move_to_z(current_position[Z_AXIS] + SIZE_OF_LITTLE_RAISE); |
|
|
|
|
|
|
@ -968,8 +966,8 @@ |
|
|
|
// It doesn't matter if the probe can't reach the NAN location. This is a manual probe.
|
|
|
|
if (location.x_index < 0 && location.y_index < 0) continue; |
|
|
|
|
|
|
|
const float rawx = pgm_read_float(&(ubl.mesh_index_to_xpos[location.x_index])), |
|
|
|
rawy = pgm_read_float(&(ubl.mesh_index_to_ypos[location.y_index])); |
|
|
|
const float rawx = pgm_read_float(&ubl.mesh_index_to_xpos[location.x_index]), |
|
|
|
rawy = pgm_read_float(&ubl.mesh_index_to_ypos[location.y_index]); |
|
|
|
|
|
|
|
// TODO: Change to use `position_is_reachable` (for SCARA-compatibility)
|
|
|
|
if (!WITHIN(rawx, UBL_MESH_MIN_X, UBL_MESH_MAX_X) || !WITHIN(rawy, UBL_MESH_MIN_Y, UBL_MESH_MAX_Y)) { |
|
|
@ -999,11 +997,9 @@ |
|
|
|
|
|
|
|
if (do_ubl_mesh_map) ubl.display_map(map_type); // show user where we're probing
|
|
|
|
|
|
|
|
|
|
|
|
while (ubl_lcd_clicked()) delay(50);; // wait for user to release encoder wheel
|
|
|
|
delay(50); // debounce
|
|
|
|
|
|
|
|
while (!ubl_lcd_clicked()) { // we need the loop to move the nozzle based on the encoder wheel here!
|
|
|
|
while (ubl_lcd_clicked()) delay(50); // wait for user to release encoder wheel
|
|
|
|
delay(50); // debounce
|
|
|
|
while (!ubl_lcd_clicked()) { // we need the loop to move the nozzle based on the encoder wheel here!
|
|
|
|
idle(); |
|
|
|
if (ubl.encoder_diff) { |
|
|
|
do_blocking_move_to_z(current_position[Z_AXIS] + float(ubl.encoder_diff) / 100.0); |
|
|
@ -1011,7 +1007,6 @@ |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
const millis_t nxt = millis() + 1500L; |
|
|
|
while (ubl_lcd_clicked()) { // debounce and watch for abort
|
|
|
|
idle(); |
|
|
@ -1044,33 +1039,43 @@ |
|
|
|
do_blocking_move_to_xy(lx, ly); |
|
|
|
} |
|
|
|
|
|
|
|
static void say_ubl_name() { |
|
|
|
SERIAL_PROTOCOLPGM("Unified Bed Leveling "); |
|
|
|
} |
|
|
|
|
|
|
|
static void report_ubl_state() { |
|
|
|
say_ubl_name(); |
|
|
|
SERIAL_PROTOCOLPGM("System "); |
|
|
|
if (!ubl.state.active) SERIAL_PROTOCOLPGM("de"); |
|
|
|
SERIAL_PROTOCOLLNPGM("activated.\n"); |
|
|
|
} |
|
|
|
|
|
|
|
bool g29_parameter_parsing() { |
|
|
|
bool err_flag = false; |
|
|
|
|
|
|
|
LCD_MESSAGEPGM("Doing G29 UBL!"); |
|
|
|
LCD_MESSAGEPGM("Doing G29 UBL!"); |
|
|
|
lcd_quick_feedback(); |
|
|
|
|
|
|
|
ubl_constant = 0.0; |
|
|
|
repetition_cnt = 0; |
|
|
|
lcd_quick_feedback(); |
|
|
|
|
|
|
|
x_flag = code_seen('X') && code_has_value(); |
|
|
|
x_pos = x_flag ? code_value_float() : current_position[X_AXIS]; |
|
|
|
|
|
|
|
y_flag = code_seen('Y') && code_has_value(); |
|
|
|
y_pos = y_flag ? code_value_float() : current_position[Y_AXIS]; |
|
|
|
|
|
|
|
|
|
|
|
repeat_flag = code_seen('R'); |
|
|
|
if (repeat_flag) { |
|
|
|
repetition_cnt = code_has_value() ? code_value_int() : (GRID_MAX_POINTS_X) * (GRID_MAX_POINTS_Y); |
|
|
|
if (repetition_cnt < 1) { |
|
|
|
SERIAL_PROTOCOLLNPGM("Invalid Repetition count.\n"); |
|
|
|
SERIAL_PROTOCOLLNPGM("?(R)epetition count invalid (1+).\n"); |
|
|
|
return UBL_ERR; |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
g29_verbose_level = code_seen('V') ? code_value_int() : 0; |
|
|
|
if (!WITHIN(g29_verbose_level, 0, 4)) { |
|
|
|
SERIAL_PROTOCOLLNPGM("Invalid Verbose Level specified. (0-4)\n"); |
|
|
|
SERIAL_PROTOCOLLNPGM("?(V)erbose Level is implausible (0-4)\n"); |
|
|
|
err_flag = true; |
|
|
|
} |
|
|
|
|
|
|
@ -1099,32 +1104,35 @@ |
|
|
|
|
|
|
|
if (err_flag) return UBL_ERR; |
|
|
|
|
|
|
|
if (code_seen('A')) { // Activate the Unified Bed Leveling System
|
|
|
|
// Activate or deactivate UBL
|
|
|
|
if (code_seen('A')) { |
|
|
|
if (code_seen('D')) { |
|
|
|
SERIAL_PROTOCOLLNPGM("?Can't activate and deactivate at the same time.\n"); |
|
|
|
return UBL_ERR; |
|
|
|
} |
|
|
|
ubl.state.active = 1; |
|
|
|
SERIAL_PROTOCOLLNPGM("Unified Bed Leveling System activated.\n"); |
|
|
|
report_ubl_state(); |
|
|
|
} |
|
|
|
|
|
|
|
c_flag = code_seen('C'); |
|
|
|
if (c_flag) |
|
|
|
ubl_constant = code_value_float(); |
|
|
|
|
|
|
|
if (code_seen('D')) { // Disable the Unified Bed Leveling System
|
|
|
|
else if (code_seen('D')) { |
|
|
|
ubl.state.active = 0; |
|
|
|
SERIAL_PROTOCOLLNPGM("Unified Bed Leveling System de-activated.\n"); |
|
|
|
report_ubl_state(); |
|
|
|
} |
|
|
|
|
|
|
|
// Set global 'C' flag and its value
|
|
|
|
if ((c_flag = code_seen('C'))) |
|
|
|
ubl_constant = code_value_float(); |
|
|
|
|
|
|
|
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) |
|
|
|
if (code_seen('F') && code_has_value()) { |
|
|
|
const float fh = code_value_float(); |
|
|
|
if (!WITHIN(fh, 0.0, 100.0)) { |
|
|
|
SERIAL_PROTOCOLLNPGM("?Bed Level Correction Fade Height Not Plausible.\n"); |
|
|
|
SERIAL_PROTOCOLLNPGM("?(F)ade height for Bed Level Correction not plausible.\n"); |
|
|
|
return UBL_ERR; |
|
|
|
} |
|
|
|
set_z_fade_height(fh); |
|
|
|
} |
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
|
|
map_type = code_seen('O') && code_has_value() ? code_value_int() : 0; |
|
|
|
if (!WITHIN(map_type, 0, 1)) { |
|
|
|
SERIAL_PROTOCOLLNPGM("Invalid map type.\n"); |
|
|
@ -1146,7 +1154,7 @@ |
|
|
|
* This function goes away after G29 debug is complete. But for right now, it is a handy |
|
|
|
* routine to dump binary data structures. |
|
|
|
*/ |
|
|
|
/*
|
|
|
|
/*
|
|
|
|
void dump(char * const str, const float &f) { |
|
|
|
char *ptr; |
|
|
|
|
|
|
@ -1164,7 +1172,7 @@ |
|
|
|
|
|
|
|
SERIAL_EOL; |
|
|
|
} |
|
|
|
*/ |
|
|
|
//*/
|
|
|
|
|
|
|
|
static int ubl_state_at_invocation = 0, |
|
|
|
ubl_state_recursion_chk = 0; |
|
|
@ -1191,7 +1199,6 @@ |
|
|
|
ubl.state.active = ubl_state_at_invocation; |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Much of the 'What?' command can be eliminated. But until we are fully debugged, it is |
|
|
|
* good to have the extra information. Soon... we prune this to just a few items |
|
|
@ -1199,7 +1206,8 @@ |
|
|
|
void g29_what_command() { |
|
|
|
const uint16_t k = E2END - ubl.eeprom_start; |
|
|
|
|
|
|
|
SERIAL_PROTOCOLPGM("Unified Bed Leveling System Version " UBL_VERSION " "); |
|
|
|
say_ubl_name(); |
|
|
|
SERIAL_PROTOCOLPGM("System Version " UBL_VERSION " "); |
|
|
|
if (ubl.state.active) |
|
|
|
SERIAL_PROTOCOLCHAR('A'); |
|
|
|
else |
|
|
@ -1230,11 +1238,11 @@ |
|
|
|
SERIAL_EOL; |
|
|
|
safe_delay(25); |
|
|
|
|
|
|
|
SERIAL_PROTOCOLLNPAIR("ubl.eeprom_start=0x", hex_word(ubl.eeprom_start)); |
|
|
|
SERIAL_PROTOCOLLNPAIR("ubl.eeprom_start=", hex_address((void*)ubl.eeprom_start)); |
|
|
|
|
|
|
|
SERIAL_PROTOCOLPGM("X-Axis Mesh Points at: "); |
|
|
|
for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) { |
|
|
|
SERIAL_PROTOCOL_F(LOGICAL_X_POSITION(pgm_read_float(&(ubl.mesh_index_to_xpos[i]))), 1); |
|
|
|
SERIAL_PROTOCOL_F(LOGICAL_X_POSITION(pgm_read_float(&ubl.mesh_index_to_xpos[i])), 1); |
|
|
|
SERIAL_PROTOCOLPGM(" "); |
|
|
|
safe_delay(50); |
|
|
|
} |
|
|
@ -1242,7 +1250,7 @@ |
|
|
|
|
|
|
|
SERIAL_PROTOCOLPGM("Y-Axis Mesh Points at: "); |
|
|
|
for (uint8_t i = 0; i < GRID_MAX_POINTS_Y; i++) { |
|
|
|
SERIAL_PROTOCOL_F(LOGICAL_Y_POSITION(pgm_read_float(&(ubl.mesh_index_to_ypos[i]))), 1); |
|
|
|
SERIAL_PROTOCOL_F(LOGICAL_Y_POSITION(pgm_read_float(&ubl.mesh_index_to_ypos[i])), 1); |
|
|
|
SERIAL_PROTOCOLPGM(" "); |
|
|
|
safe_delay(50); |
|
|
|
} |
|
|
@ -1296,8 +1304,10 @@ |
|
|
|
SERIAL_EOL; |
|
|
|
safe_delay(50); |
|
|
|
|
|
|
|
if (!ubl.sanity_check()) |
|
|
|
SERIAL_PROTOCOLLNPGM("Unified Bed Leveling sanity checks passed."); |
|
|
|
if (!ubl.sanity_check()) { |
|
|
|
say_ubl_name(); |
|
|
|
SERIAL_PROTOCOLLNPGM("sanity checks passed."); |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
/**
|
|
|
@ -1357,18 +1367,18 @@ |
|
|
|
ubl.z_values[x][y] -= tmp_z_values[x][y]; |
|
|
|
} |
|
|
|
|
|
|
|
mesh_index_pair find_closest_mesh_point_of_type(const MeshPointType type, const float &lx, const float &ly, const bool probe_as_reference, unsigned int bits[16], bool far_flag) { |
|
|
|
float distance, closest = far_flag ? -99999.99 : 99999.99; |
|
|
|
mesh_index_pair return_val; |
|
|
|
|
|
|
|
return_val.x_index = return_val.y_index = -1; |
|
|
|
mesh_index_pair find_closest_mesh_point_of_type(const MeshPointType type, const float &lx, const float &ly, const bool probe_as_reference, unsigned int bits[16], const bool far_flag) { |
|
|
|
mesh_index_pair out_mesh; |
|
|
|
out_mesh.x_index = out_mesh.y_index = -1; |
|
|
|
|
|
|
|
const float current_x = current_position[X_AXIS], |
|
|
|
current_y = current_position[Y_AXIS]; |
|
|
|
|
|
|
|
// Get our reference position. Either the nozzle or probe location.
|
|
|
|
const float px = lx - (probe_as_reference==USE_PROBE_AS_REFERENCE ? X_PROBE_OFFSET_FROM_EXTRUDER : 0), |
|
|
|
py = ly - (probe_as_reference==USE_PROBE_AS_REFERENCE ? Y_PROBE_OFFSET_FROM_EXTRUDER : 0); |
|
|
|
const float px = lx - (probe_as_reference == USE_PROBE_AS_REFERENCE ? X_PROBE_OFFSET_FROM_EXTRUDER : 0), |
|
|
|
py = ly - (probe_as_reference == USE_PROBE_AS_REFERENCE ? Y_PROBE_OFFSET_FROM_EXTRUDER : 0); |
|
|
|
|
|
|
|
float closest = far_flag ? -99999.99 : 99999.99; |
|
|
|
|
|
|
|
for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) { |
|
|
|
for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) { |
|
|
@ -1380,13 +1390,13 @@ |
|
|
|
|
|
|
|
// We only get here if we found a Mesh Point of the specified type
|
|
|
|
|
|
|
|
const float rawx = pgm_read_float(&(ubl.mesh_index_to_xpos[i])), // Check if we can probe this mesh location
|
|
|
|
rawy = pgm_read_float(&(ubl.mesh_index_to_ypos[j])); |
|
|
|
const float rawx = pgm_read_float(&ubl.mesh_index_to_xpos[i]), // Check if we can probe this mesh location
|
|
|
|
rawy = pgm_read_float(&ubl.mesh_index_to_ypos[j]); |
|
|
|
|
|
|
|
// If using the probe as the reference there are some unreachable locations.
|
|
|
|
// Prune them from the list and ignore them till the next Phase (manual nozzle probing).
|
|
|
|
|
|
|
|
if (probe_as_reference==USE_PROBE_AS_REFERENCE && |
|
|
|
if (probe_as_reference == USE_PROBE_AS_REFERENCE && |
|
|
|
(!WITHIN(rawx, MIN_PROBE_X, MAX_PROBE_X) || !WITHIN(rawy, MIN_PROBE_Y, MAX_PROBE_Y)) |
|
|
|
) continue; |
|
|
|
|
|
|
@ -1396,30 +1406,38 @@ |
|
|
|
const float mx = LOGICAL_X_POSITION(rawx), // Check if we can probe this mesh location
|
|
|
|
my = LOGICAL_Y_POSITION(rawy); |
|
|
|
|
|
|
|
distance = HYPOT(px - mx, py - my) + HYPOT(current_x - mx, current_y - my) * 0.1; |
|
|
|
|
|
|
|
if (far_flag) { // If doing the far_flag action, we want to be as far as possible
|
|
|
|
for (uint8_t k = 0; k < GRID_MAX_POINTS_X; k++) { // from the starting point and from any other probed points. We
|
|
|
|
for (uint8_t l = 0; l < GRID_MAX_POINTS_Y; l++) { // want the next point spread out and filling in any blank spaces
|
|
|
|
if (!isnan(ubl.z_values[k][l])) { // in the mesh. So we add in some of the distance to every probed
|
|
|
|
distance += sq(i - k) * (MESH_X_DIST) * .05 // point we can find.
|
|
|
|
float distance = HYPOT(px - mx, py - my) + HYPOT(current_x - mx, current_y - my) * 0.1; |
|
|
|
|
|
|
|
/**
|
|
|
|
* If doing the far_flag action, we want to be as far as possible |
|
|
|
* from the starting point and from any other probed points. We |
|
|
|
* want the next point spread out and filling in any blank spaces |
|
|
|
* in the mesh. So we add in some of the distance to every probed |
|
|
|
* point we can find. |
|
|
|
*/ |
|
|
|
if (far_flag) { |
|
|
|
for (uint8_t k = 0; k < GRID_MAX_POINTS_X; k++) { |
|
|
|
for (uint8_t l = 0; l < GRID_MAX_POINTS_Y; l++) { |
|
|
|
if (!isnan(ubl.z_values[k][l])) { |
|
|
|
distance += sq(i - k) * (MESH_X_DIST) * .05 |
|
|
|
+ sq(j - l) * (MESH_Y_DIST) * .05; |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
if (far_flag == (distance > closest) && distance != closest) { // if far_flag, look for farthest point
|
|
|
|
// if far_flag, look for farthest point
|
|
|
|
if (far_flag == (distance > closest) && distance != closest) { |
|
|
|
closest = distance; // We found a closer/farther location with
|
|
|
|
return_val.x_index = i; // the specified type of mesh value.
|
|
|
|
return_val.y_index = j; |
|
|
|
return_val.distance = closest; |
|
|
|
out_mesh.x_index = i; // the specified type of mesh value.
|
|
|
|
out_mesh.y_index = j; |
|
|
|
out_mesh.distance = closest; |
|
|
|
} |
|
|
|
} |
|
|
|
} // for j
|
|
|
|
} // for i
|
|
|
|
|
|
|
|
return return_val; |
|
|
|
return out_mesh; |
|
|
|
} |
|
|
|
|
|
|
|
void fine_tune_mesh(const float &lx, const float &ly, const bool do_ubl_mesh_map) { |
|
|
@ -1439,15 +1457,15 @@ |
|
|
|
do_blocking_move_to_xy(lx, ly); |
|
|
|
do { |
|
|
|
location = find_closest_mesh_point_of_type(SET_IN_BITMAP, lx, ly, USE_NOZZLE_AS_REFERENCE, not_done, false); |
|
|
|
// It doesn't matter if the probe can not reach this
|
|
|
|
// location. This is a manual edit of the Mesh Point.
|
|
|
|
// It doesn't matter if the probe can't reach this
|
|
|
|
// location. This is a manual edit of the Mesh Point.
|
|
|
|
if (location.x_index < 0 && location.y_index < 0) continue; // abort if we can't find any more points.
|
|
|
|
|
|
|
|
bit_clear(not_done, location.x_index, location.y_index); // Mark this location as 'adjusted' so we will find a
|
|
|
|
// different location the next time through the loop
|
|
|
|
|
|
|
|
const float rawx = pgm_read_float(&(ubl.mesh_index_to_xpos[location.x_index])), |
|
|
|
rawy = pgm_read_float(&(ubl.mesh_index_to_ypos[location.y_index])); |
|
|
|
const float rawx = pgm_read_float(&ubl.mesh_index_to_xpos[location.x_index]), |
|
|
|
rawy = pgm_read_float(&ubl.mesh_index_to_ypos[location.y_index]); |
|
|
|
|
|
|
|
// TODO: Change to use `position_is_reachable` (for SCARA-compatibility)
|
|
|
|
if (!WITHIN(rawx, X_MIN_POS, X_MAX_POS) || !WITHIN(rawy, Y_MIN_POS, Y_MAX_POS)) { // In theory, we don't need this check.
|
|
|
@ -1464,45 +1482,31 @@ |
|
|
|
do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE); // Move the nozzle to where we are going to edit
|
|
|
|
do_blocking_move_to_xy(LOGICAL_X_POSITION(rawx), LOGICAL_Y_POSITION(rawy)); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
round_off = (int32_t)(new_z * 1000.0); // we chop off the last digits just to be clean. We are rounding to the
|
|
|
|
new_z = float(round_off) / 1000.0; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
KEEPALIVE_STATE(PAUSED_FOR_USER); |
|
|
|
ubl.has_control_of_lcd_panel = true; |
|
|
|
|
|
|
|
|
|
|
|
if (do_ubl_mesh_map) ubl.display_map(map_type); // show the user which point is being adjusted
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lcd_implementation_clear(); |
|
|
|
|
|
|
|
lcd_mesh_edit_setup(new_z); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
do { |
|
|
|
new_z = lcd_mesh_edit(); |
|
|
|
idle(); |
|
|
|
} while (!ubl_lcd_clicked()); |
|
|
|
|
|
|
|
|
|
|
|
lcd_return_to_status(); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ubl.has_control_of_lcd_panel = true; // There is a race condition for the Encoder Wheel getting clicked.
|
|
|
|
// It could get detected in lcd_mesh_edit (actually _lcd_mesh_fine_tune)
|
|
|
|
// or here.
|
|
|
|
// There is a race condition for the Encoder Wheel getting clicked.
|
|
|
|
// It could get detected in lcd_mesh_edit (actually _lcd_mesh_fine_tune)
|
|
|
|
// or here.
|
|
|
|
ubl.has_control_of_lcd_panel = true; |
|
|
|
} |
|
|
|
|
|
|
|
const millis_t nxt = millis() + 1500UL; |
|
|
|
while (ubl_lcd_clicked()) { // debounce and watch for abort
|
|
|
|
idle(); |
|
|
@ -1621,120 +1625,115 @@ |
|
|
|
|
|
|
|
|
|
|
|
void unified_bed_leveling::tilt_mesh_based_on_probed_grid(const bool do_ubl_mesh_map) { |
|
|
|
int8_t i, j ,k, xCount, yCount, xi, yi; // counter variables
|
|
|
|
int8_t ix, iy, zig_zag=0, status; |
|
|
|
constexpr int16_t x_min = max(MIN_PROBE_X, UBL_MESH_MIN_X), |
|
|
|
x_max = min(MAX_PROBE_X, UBL_MESH_MAX_X), |
|
|
|
y_min = max(MIN_PROBE_Y, UBL_MESH_MIN_Y), |
|
|
|
y_max = min(MAX_PROBE_Y, UBL_MESH_MAX_Y); |
|
|
|
|
|
|
|
const float dx = float(x_max - x_min) / (grid_size - 1.0), |
|
|
|
dy = float(y_max - y_min) / (grid_size - 1.0); |
|
|
|
|
|
|
|
float dx, dy, x, y, measured_z, inv_z; |
|
|
|
struct linear_fit_data lsf_results; |
|
|
|
matrix_3x3 rotation; |
|
|
|
vector_3 normal; |
|
|
|
incremental_LSF_reset(&lsf_results); |
|
|
|
|
|
|
|
int16_t x_min = max((MIN_PROBE_X),(UBL_MESH_MIN_X)), |
|
|
|
x_max = min((MAX_PROBE_X),(UBL_MESH_MAX_X)), |
|
|
|
y_min = max((MIN_PROBE_Y),(UBL_MESH_MIN_Y)), |
|
|
|
y_max = min((MAX_PROBE_Y),(UBL_MESH_MAX_Y)); |
|
|
|
bool zig_zag = false; |
|
|
|
for (uint8_t ix = 0; ix < grid_size; ix++) { |
|
|
|
const float x = float(x_min) + ix * dx; |
|
|
|
for (int8_t iy = 0; iy < grid_size; iy++) { |
|
|
|
const float y = float(y_min) + dy * (zig_zag ? grid_size - 1 - iy : iy); |
|
|
|
float measured_z = probe_pt(LOGICAL_X_POSITION(x), LOGICAL_Y_POSITION(y), code_seen('E'), g29_verbose_level); |
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE) |
|
|
|
if (DEBUGGING(LEVELING)) { |
|
|
|
SERIAL_CHAR('('); |
|
|
|
SERIAL_PROTOCOL_F(x, 7); |
|
|
|
SERIAL_CHAR(','); |
|
|
|
SERIAL_PROTOCOL_F(y, 7); |
|
|
|
SERIAL_ECHOPGM(") logical: "); |
|
|
|
SERIAL_CHAR('('); |
|
|
|
SERIAL_PROTOCOL_F(LOGICAL_X_POSITION(x), 7); |
|
|
|
SERIAL_CHAR(','); |
|
|
|
SERIAL_PROTOCOL_F(LOGICAL_X_POSITION(y), 7); |
|
|
|
SERIAL_ECHOPGM(") measured: "); |
|
|
|
SERIAL_PROTOCOL_F(measured_z, 7); |
|
|
|
SERIAL_ECHOPGM(" correction: "); |
|
|
|
SERIAL_PROTOCOL_F(ubl.get_z_correction(LOGICAL_X_POSITION(x), LOGICAL_Y_POSITION(y)), 7); |
|
|
|
} |
|
|
|
#endif |
|
|
|
|
|
|
|
dx = ((float)(x_max-x_min)) / (grid_size-1.0); |
|
|
|
dy = ((float)(y_max-y_min)) / (grid_size-1.0); |
|
|
|
measured_z -= ubl.get_z_correction(LOGICAL_X_POSITION(x), LOGICAL_Y_POSITION(y)) /* + zprobe_zoffset */ ; |
|
|
|
|
|
|
|
incremental_LSF_reset(&lsf_results); |
|
|
|
for(ix=0; ix<grid_size; ix++) { |
|
|
|
x = ((float)x_min) + ix*dx; |
|
|
|
for(iy=0; iy<grid_size; iy++) { |
|
|
|
if (zig_zag) |
|
|
|
y = ((float)y_min) + (grid_size-iy-1)*dy; |
|
|
|
else |
|
|
|
y = ((float)y_min) + iy*dy; |
|
|
|
measured_z = probe_pt(LOGICAL_X_POSITION(x), LOGICAL_Y_POSITION(y), code_seen('E'), g29_verbose_level); |
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE) |
|
|
|
if (DEBUGGING(LEVELING)) { |
|
|
|
SERIAL_ECHOPGM("("); |
|
|
|
SERIAL_PROTOCOL_F( x, 7); |
|
|
|
SERIAL_ECHOPGM(","); |
|
|
|
SERIAL_PROTOCOL_F( y, 7); |
|
|
|
SERIAL_ECHOPGM(") logical: "); |
|
|
|
SERIAL_ECHOPGM("("); |
|
|
|
SERIAL_PROTOCOL_F( LOGICAL_X_POSITION(x), 7); |
|
|
|
SERIAL_ECHOPGM(","); |
|
|
|
SERIAL_PROTOCOL_F( LOGICAL_X_POSITION(y), 7); |
|
|
|
SERIAL_ECHOPGM(") measured: "); |
|
|
|
SERIAL_PROTOCOL_F( measured_z, 7); |
|
|
|
SERIAL_ECHOPGM(" correction: "); |
|
|
|
SERIAL_PROTOCOL_F( ubl.get_z_correction(LOGICAL_X_POSITION(x), LOGICAL_Y_POSITION(y)), 7); |
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE) |
|
|
|
if (DEBUGGING(LEVELING)) { |
|
|
|
SERIAL_ECHOPGM(" final >>>---> "); |
|
|
|
SERIAL_PROTOCOL_F(measured_z, 7); |
|
|
|
SERIAL_EOL; |
|
|
|
} |
|
|
|
#endif |
|
|
|
measured_z -= ubl.get_z_correction(LOGICAL_X_POSITION(x), LOGICAL_Y_POSITION(y)) /* + zprobe_zoffset */ ; |
|
|
|
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE) |
|
|
|
if (DEBUGGING(LEVELING)) { |
|
|
|
SERIAL_ECHOPGM(" final >>>---> "); |
|
|
|
SERIAL_PROTOCOL_F( measured_z, 7); |
|
|
|
SERIAL_ECHOPGM("\n"); |
|
|
|
} |
|
|
|
#endif |
|
|
|
incremental_LSF(&lsf_results, x, y, measured_z); |
|
|
|
} |
|
|
|
#endif |
|
|
|
|
|
|
|
zig_zag = !zig_zag; |
|
|
|
incremental_LSF(&lsf_results, x, y, measured_z); |
|
|
|
} |
|
|
|
|
|
|
|
status = finish_incremental_LSF(&lsf_results); |
|
|
|
if (g29_verbose_level>3) { |
|
|
|
zig_zag ^= true; |
|
|
|
} |
|
|
|
|
|
|
|
const int status = finish_incremental_LSF(&lsf_results); |
|
|
|
|
|
|
|
if (g29_verbose_level > 3) { |
|
|
|
SERIAL_ECHOPGM("LSF Results A="); |
|
|
|
SERIAL_PROTOCOL_F( lsf_results.A, 7); |
|
|
|
SERIAL_PROTOCOL_F(lsf_results.A, 7); |
|
|
|
SERIAL_ECHOPGM(" B="); |
|
|
|
SERIAL_PROTOCOL_F( lsf_results.B, 7); |
|
|
|
SERIAL_PROTOCOL_F(lsf_results.B, 7); |
|
|
|
SERIAL_ECHOPGM(" D="); |
|
|
|
SERIAL_PROTOCOL_F( lsf_results.D, 7); |
|
|
|
SERIAL_CHAR('\n'); |
|
|
|
SERIAL_PROTOCOL_F(lsf_results.D, 7); |
|
|
|
SERIAL_EOL; |
|
|
|
} |
|
|
|
|
|
|
|
normal = vector_3( lsf_results.A, lsf_results.B, 1.0000); |
|
|
|
normal = normal.get_normal(); |
|
|
|
vector_3 normal = vector_3(lsf_results.A, lsf_results.B, 1.0000).get_normal(); |
|
|
|
|
|
|
|
if (g29_verbose_level>2) { |
|
|
|
if (g29_verbose_level > 2) { |
|
|
|
SERIAL_ECHOPGM("bed plane normal = ["); |
|
|
|
SERIAL_PROTOCOL_F( normal.x, 7); |
|
|
|
SERIAL_ECHOPGM(","); |
|
|
|
SERIAL_PROTOCOL_F( normal.y, 7); |
|
|
|
SERIAL_ECHOPGM(","); |
|
|
|
SERIAL_PROTOCOL_F( normal.z, 7); |
|
|
|
SERIAL_ECHOPGM("]\n"); |
|
|
|
SERIAL_PROTOCOL_F(normal.x, 7); |
|
|
|
SERIAL_PROTOCOLCHAR(','); |
|
|
|
SERIAL_PROTOCOL_F(normal.y, 7); |
|
|
|
SERIAL_PROTOCOLCHAR(','); |
|
|
|
SERIAL_PROTOCOL_F(normal.z, 7); |
|
|
|
SERIAL_ECHOLNPGM("]"); |
|
|
|
} |
|
|
|
|
|
|
|
rotation = matrix_3x3::create_look_at( vector_3( lsf_results.A, lsf_results.B, 1)); |
|
|
|
matrix_3x3 rotation = matrix_3x3::create_look_at(vector_3(lsf_results.A, lsf_results.B, 1)); |
|
|
|
|
|
|
|
for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) { |
|
|
|
for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) { |
|
|
|
float x_tmp = pgm_read_float(&ubl.mesh_index_to_xpos[i]), |
|
|
|
y_tmp = pgm_read_float(&ubl.mesh_index_to_ypos[j]), |
|
|
|
z_tmp = ubl.z_values[i][j]; |
|
|
|
|
|
|
|
for (i = 0; i < GRID_MAX_POINTS_X; i++) { |
|
|
|
for (j = 0; j < GRID_MAX_POINTS_Y; j++) { |
|
|
|
float x_tmp, y_tmp, z_tmp; |
|
|
|
x_tmp = pgm_read_float(&(ubl.mesh_index_to_xpos[i])); |
|
|
|
y_tmp = pgm_read_float(&(ubl.mesh_index_to_ypos[j])); |
|
|
|
z_tmp = ubl.z_values[i][j]; |
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE) |
|
|
|
if (DEBUGGING(LEVELING)) { |
|
|
|
SERIAL_ECHOPGM("before rotation = ["); |
|
|
|
SERIAL_PROTOCOL_F( x_tmp, 7); |
|
|
|
SERIAL_ECHOPGM(","); |
|
|
|
SERIAL_PROTOCOL_F( y_tmp, 7); |
|
|
|
SERIAL_ECHOPGM(","); |
|
|
|
SERIAL_PROTOCOL_F( z_tmp, 7); |
|
|
|
SERIAL_PROTOCOL_F(x_tmp, 7); |
|
|
|
SERIAL_PROTOCOLCHAR(','); |
|
|
|
SERIAL_PROTOCOL_F(y_tmp, 7); |
|
|
|
SERIAL_PROTOCOLCHAR(','); |
|
|
|
SERIAL_PROTOCOL_F(z_tmp, 7); |
|
|
|
SERIAL_ECHOPGM("] ---> "); |
|
|
|
safe_delay(20); |
|
|
|
} |
|
|
|
#endif |
|
|
|
|
|
|
|
apply_rotation_xyz(rotation, x_tmp, y_tmp, z_tmp); |
|
|
|
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE) |
|
|
|
if (DEBUGGING(LEVELING)) { |
|
|
|
SERIAL_ECHOPGM("after rotation = ["); |
|
|
|
SERIAL_PROTOCOL_F( x_tmp, 7); |
|
|
|
SERIAL_ECHOPGM(","); |
|
|
|
SERIAL_PROTOCOL_F( y_tmp, 7); |
|
|
|
SERIAL_ECHOPGM(","); |
|
|
|
SERIAL_PROTOCOL_F( z_tmp, 7); |
|
|
|
SERIAL_ECHOPGM("]\n"); |
|
|
|
SERIAL_PROTOCOL_F(x_tmp, 7); |
|
|
|
SERIAL_PROTOCOLCHAR(','); |
|
|
|
SERIAL_PROTOCOL_F(y_tmp, 7); |
|
|
|
SERIAL_PROTOCOLCHAR(','); |
|
|
|
SERIAL_PROTOCOL_F(z_tmp, 7); |
|
|
|
SERIAL_ECHOLNPGM("]"); |
|
|
|
safe_delay(55); |
|
|
|
} |
|
|
|
|
|
|
|
#endif |
|
|
|
|
|
|
|
ubl.z_values[i][j] += z_tmp - lsf_results.D; |
|
|
@ -1743,27 +1742,26 @@ |
|
|
|
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE) |
|
|
|
if (DEBUGGING(LEVELING)) { |
|
|
|
rotation.debug("rotation matrix:"); |
|
|
|
rotation.debug(PSTR("rotation matrix:")); |
|
|
|
SERIAL_ECHOPGM("LSF Results A="); |
|
|
|
SERIAL_PROTOCOL_F( lsf_results.A, 7); |
|
|
|
SERIAL_PROTOCOL_F(lsf_results.A, 7); |
|
|
|
SERIAL_ECHOPGM(" B="); |
|
|
|
SERIAL_PROTOCOL_F( lsf_results.B, 7); |
|
|
|
SERIAL_PROTOCOL_F(lsf_results.B, 7); |
|
|
|
SERIAL_ECHOPGM(" D="); |
|
|
|
SERIAL_PROTOCOL_F( lsf_results.D, 7); |
|
|
|
SERIAL_CHAR('\n'); |
|
|
|
SERIAL_PROTOCOL_F(lsf_results.D, 7); |
|
|
|
SERIAL_EOL; |
|
|
|
safe_delay(55); |
|
|
|
|
|
|
|
SERIAL_ECHOPGM("bed plane normal = ["); |
|
|
|
SERIAL_PROTOCOL_F( normal.x, 7); |
|
|
|
SERIAL_ECHOPGM(","); |
|
|
|
SERIAL_PROTOCOL_F( normal.y, 7); |
|
|
|
SERIAL_ECHOPGM(","); |
|
|
|
SERIAL_PROTOCOL_F( normal.z, 7); |
|
|
|
SERIAL_PROTOCOL_F(normal.x, 7); |
|
|
|
SERIAL_PROTOCOLCHAR(','); |
|
|
|
SERIAL_PROTOCOL_F(normal.y, 7); |
|
|
|
SERIAL_PROTOCOLCHAR(','); |
|
|
|
SERIAL_PROTOCOL_F(normal.z, 7); |
|
|
|
SERIAL_ECHOPGM("]\n"); |
|
|
|
SERIAL_CHAR('\n'); |
|
|
|
SERIAL_EOL; |
|
|
|
} |
|
|
|
#endif |
|
|
|
return; |
|
|
|
} |
|
|
|
|
|
|
|
#endif // AUTO_BED_LEVELING_UBL
|
|
|
|