Browse Source

UBL tabs, whitespace, spelling, etc.

pull/1/head
Scott Lahteine 8 years ago
parent
commit
14a4257c7b
  1. 5
      Marlin/configuration_store.cpp
  2. 2
      Marlin/ubl.h
  3. 58
      Marlin/ubl_G29.cpp
  4. 2
      Marlin/ubl_motion.cpp

5
Marlin/configuration_store.cpp

@ -1458,10 +1458,7 @@ void MarlinSettings::reset() {
#endif
SERIAL_EOL;
if (!forReplay) {
ubl.g29_what_command();
}
if (!forReplay) ubl.g29_what_command();
#elif HAS_ABL

2
Marlin/ubl.h

@ -110,7 +110,7 @@
void save_ubl_active_state_and_disable();
void restore_ubl_active_state_and_leave();
void g29_what_command();
void g29_eeprom_dump() ;
void g29_eeprom_dump();
void g29_compare_current_mesh_to_stored_mesh();
void fine_tune_mesh(const float &lx, const float &ly, const bool do_ubl_mesh_map);
void smart_fill_mesh();

58
Marlin/ubl_G29.cpp

@ -74,18 +74,17 @@
* A Activate Activate the Unified Bed Leveling system.
*
* B # Business Use the 'Business Card' mode of the Manual Probe subsystem. This is invoked as
* G29 P2 B The mode of G29 P2 allows you to use a bussiness card or recipe card
* G29 P2 B. The mode of G29 P2 allows you to use a business card or recipe card
* as a shim that the nozzle will pinch as it is lowered. The idea is that you
* can easily feel the nozzle getting to the same height by the amount of resistance
* the business card exhibits to movement. You should try to achieve the same amount
* of resistance on each probed point to facilitate accurate and repeatable measurements.
* You should be very careful not to drive the nozzle into the bussiness card with a
* You should be very careful not to drive the nozzle into the business card with a
* lot of force as it is very possible to cause damage to your printer if your are
* careless. If you use the B option with G29 P2 B you can leave the number parameter off
* on its first use to enable measurement of the business card thickness. Subsequent usage
* of the B parameter can have the number previously measured supplied to the command.
* Incidently, you are much better off using something like a Spark Gap feeler gauge than
* something that compresses like a Business Card.
* careless. If you use the B option with G29 P2 B you can omit the numeric value
* on first use to measure the business card's thickness. Subsequent usage of 'B'
* will apply the previously-measured thickness as the default.
* Note: A non-compressible Spark Gap feeler gauge is recommended over a Business Card.
*
* C Continue Continue, Constant, Current Location. This is not a primary command. C is used to
* further refine the behaviour of several other commands. Issuing a G29 P1 C will
@ -98,7 +97,7 @@
*
* E Stow_probe Stow the probe after each sampled point.
*
* F # Fade * Fade the amount of Mesh Based Compensation over a specified height. At the
* F # Fade Fade the amount of Mesh Based Compensation over a specified height. At the
* specified height, no correction is applied and natural printer kenimatics take over. If no
* number is specified for the command, 10mm is assumed to be reasonable.
*
@ -115,15 +114,15 @@
* the bed and use this feature to select the center of the area (or cell) you want to
* invalidate.
*
* J # Grid * Perform a Grid Based Leveling of the current Mesh using a grid with n points on a side.
* J # Grid Perform a Grid Based Leveling of the current Mesh using a grid with n points on a side.
* Not specifying a grid size will invoke the 3-Point leveling function.
*
* K # Kompare Kompare current Mesh with stored Mesh # replacing current Mesh with the result. This
* command literally performs a diff between two Meshes.
*
* L Load * Load Mesh from the previously activated location in the EEPROM.
* L Load Load Mesh from the previously activated location in the EEPROM.
*
* L # Load * Load Mesh from the specified location in the EEPROM. Set this location as activated
* L # Load Load Mesh from the specified location in the EEPROM. Set this location as activated
* for subsequent Load and Store operations.
*
* The P or Phase commands are used for the bulk of the work to setup a Mesh. In general, your Mesh will
@ -143,12 +142,11 @@
* probing needed locations. This allows you to invalidate portions of the Mesh but still
* use the automatic probing capabilities of the Unified Bed Leveling System. An X and Y
* parameter can be given to prioritize where the command should be trying to measure points.
* If the X and Y parameters are not specified the current probe position is used. Phase 1
* allows you to specify the M (Map) parameter so you can watch the generation of the Mesh.
* Phase 1 also watches for the LCD Panel's Encoder Switch being held in a depressed state.
* It will suspend generation of the Mesh if it sees the user request that. (This check is
* only done between probe points. You will need to press and hold the switch until the
* Phase 1 command can detect it.)
* If the X and Y parameters are not specified the current probe position is used.
* P1 accepts a 'T' (Topology) parameter so you can observe mesh generation.
* P1 also watches for the LCD Panel Encoder Switch to be held down, and will suspend
* generation of the Mesh in that case. (Note: This check is only done between probe points,
* so you must press and hold the switch until the Phase 1 command detects it.)
*
* P2 Phase 2 Probe areas of the Mesh that can't be automatically handled. Phase 2 respects an H
* parameter to control the height between Mesh points. The default height for movement
@ -171,7 +169,7 @@
* be done based on the current location of the nozzle.
*
* A B parameter is also available for this command and described up above. It places the
* manual probe subsystem into Business Card mode where the thickness of a business care is
* manual probe subsystem into Business Card mode where the thickness of a business card is
* measured and then used to accurately set the nozzle height in all manual probing for the
* duration of the command. (S for Shim mode would be a better parameter name, but S is needed
* for Save or Store of the Mesh to EEPROM) A Business card can be used, but you will have
@ -237,7 +235,7 @@
* you should have the Mesh adjusted for a Mean Height of 0.00 and the Z-Probe measuring
* 0.000 at the Z Home location.
*
* Q Test * Load specified Test Pattern to assist in checking correct operation of system. This
* Q Test Load specified Test Pattern to assist in checking correct operation of system. This
* command is not anticipated to be of much value to the typical user. It is intended
* for developers to help them verify correct operation of the Unified Bed Leveling System.
*
@ -262,14 +260,16 @@
* is suitable to paste into a spreadsheet for a 3D graph of the mesh.
*
* U Unlevel Perform a probe of the outer perimeter to assist in physically leveling unlevel beds.
* Only used for G29 P1 O U It will speed up the probing of the edge of the bed. This
* is useful when the entire bed does not need to be probed because it will be adjusted.
* Only used for G29 P1 O U. This speeds up the probing of the edge of the bed. Useful
* when the entire bed doesn't need to be probed because it will be adjusted.
*
* W What? Display valuable data the Unified Bed Leveling System knows.
* V # Verbosity Set the verbosity level (0-4) for extra details. (Default 0)
*
* X # * * X Location for this line of commands
* W What? Display valuable Unified Bed Leveling System data.
*
* Y # * * Y Location for this line of commands
* X # X Location for this command
*
* Y # Y Location for this command
*
*
* Release Notes:
@ -377,7 +377,7 @@
}
if (code_seen('J')) {
if (grid_size!=0) { // if not 0 it is a normal n x n grid being probed
if (grid_size) { // if not 0 it is a normal n x n grid being probed
ubl.save_ubl_active_state_and_disable();
ubl.tilt_mesh_based_on_probed_grid(code_seen('T'));
ubl.restore_ubl_active_state_and_leave();
@ -497,14 +497,14 @@
* - Allow 'G29 P3' to choose a 'reasonable' constant.
*/
if (c_flag) {
if (repetition_cnt >= GRID_MAX_POINTS) {
for ( uint8_t x = 0; x < GRID_MAX_POINTS_X; x++ ) {
for ( uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++ ) {
for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++) {
for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++) {
ubl.z_values[x][y] = ubl_constant;
}
}
} else {
}
else {
while (repetition_cnt--) { // this only populates reachable mesh points near
const mesh_index_pair location = find_closest_mesh_point_of_type(INVALID, x_pos, y_pos, USE_NOZZLE_AS_REFERENCE, NULL, false);
if (location.x_index < 0) break; // No more reachable invalid Mesh Points to populate

2
Marlin/ubl_motion.cpp

@ -56,7 +56,7 @@
xy_dist = HYPOT(dx, dy);
if (xy_dist == 0.0)
return;
return;
else {
SERIAL_ECHOPGM(" fpmm=");
const float fpmm = de / xy_dist;

Loading…
Cancel
Save