Marlin 2.0 for Flying Bear 4S/5
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

387 lines
15 KiB

/**
* Marlin 3D Printer Firmware
5 years ago
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../../inc/MarlinConfig.h"
#if ENABLED(ARC_SUPPORT)
#include "../gcode.h"
#include "../../module/motion.h"
#include "../../module/planner.h"
#include "../../module/temperature.h"
#if ENABLED(DELTA)
#include "../../module/delta.h"
#elif ENABLED(SCARA)
#include "../../module/scara.h"
#endif
#if N_ARC_CORRECTION < 1
#undef N_ARC_CORRECTION
#define N_ARC_CORRECTION 1
#endif
/**
* Plan an arc in 2 dimensions, with optional linear motion in a 3rd dimension
*
* The arc is traced by generating many small linear segments, as configured by
* MM_PER_ARC_SEGMENT (Default 1mm). In the future we hope more slicers will include
* an option to generate G2/G3 arcs for curved surfaces, as this will allow faster
* boards to produce much smoother curved surfaces.
*/
void plan_arc(
const xyze_pos_t &cart, // Destination position
const ab_float_t &offset, // Center of rotation relative to current_position
const bool clockwise, // Clockwise?
const uint8_t circles // Take the scenic route
) {
#if ENABLED(CNC_WORKSPACE_PLANES)
AxisEnum p_axis, q_axis, l_axis;
switch (gcode.workspace_plane) {
default:
case GcodeSuite::PLANE_XY: p_axis = X_AXIS; q_axis = Y_AXIS; l_axis = Z_AXIS; break;
case GcodeSuite::PLANE_YZ: p_axis = Y_AXIS; q_axis = Z_AXIS; l_axis = X_AXIS; break;
case GcodeSuite::PLANE_ZX: p_axis = Z_AXIS; q_axis = X_AXIS; l_axis = Y_AXIS; break;
}
#else
constexpr AxisEnum p_axis = X_AXIS, q_axis = Y_AXIS OPTARG(HAS_Z_AXIS, l_axis = Z_AXIS);
#endif
// Radius vector from center to current location
ab_float_t rvec = -offset;
const float radius = HYPOT(rvec.a, rvec.b),
center_P = current_position[p_axis] - rvec.a,
center_Q = current_position[q_axis] - rvec.b,
rt_X = cart[p_axis] - center_P,
rt_Y = cart[q_axis] - center_Q
OPTARG(HAS_Z_AXIS, start_L = current_position[l_axis]);
#ifdef MIN_ARC_SEGMENTS
uint16_t min_segments = MIN_ARC_SEGMENTS;
#else
constexpr uint16_t min_segments = 1;
#endif
// Angle of rotation between position and target from the circle center.
float angular_travel, abs_angular_travel;
// Do a full circle if starting and ending positions are "identical"
if (NEAR(current_position[p_axis], cart[p_axis]) && NEAR(current_position[q_axis], cart[q_axis])) {
// Preserve direction for circles
angular_travel = clockwise ? -RADIANS(360) : RADIANS(360);
abs_angular_travel = RADIANS(360);
}
else {
// Calculate the angle
angular_travel = ATAN2(rvec.a * rt_Y - rvec.b * rt_X, rvec.a * rt_X + rvec.b * rt_Y);
// Angular travel too small to detect? Just return.
if (!angular_travel) return;
// Make sure angular travel over 180 degrees goes the other way around.
switch (((angular_travel < 0) << 1) | clockwise) {
case 1: angular_travel -= RADIANS(360); break; // Positive but CW? Reverse direction.
case 2: angular_travel += RADIANS(360); break; // Negative but CCW? Reverse direction.
}
abs_angular_travel = ABS(angular_travel);
#ifdef MIN_ARC_SEGMENTS
min_segments = CEIL(min_segments * abs_angular_travel / RADIANS(360));
NOLESS(min_segments, 1U);
#endif
}
#if HAS_Z_AXIS
float linear_travel = cart[l_axis] - start_L;
#endif
#if HAS_EXTRUDERS
float extruder_travel = cart.e - current_position.e;
#endif
// If circling around...
if (TERN0(ARC_P_CIRCLES, circles)) {
const float total_angular = abs_angular_travel + circles * RADIANS(360), // Total rotation with all circles and remainder
part_per_circle = RADIANS(360) / total_angular; // Each circle's part of the total
#if HAS_Z_AXIS
const float l_per_circle = linear_travel * part_per_circle; // L movement per circle
#endif
#if HAS_EXTRUDERS
const float e_per_circle = extruder_travel * part_per_circle; // E movement per circle
#endif
xyze_pos_t temp_position = current_position; // for plan_arc to compare to current_position
for (uint16_t n = circles; n--;) {
TERN_(HAS_EXTRUDERS, temp_position.e += e_per_circle); // Destination E axis
TERN_(HAS_Z_AXIS, temp_position[l_axis] += l_per_circle); // Destination L axis
plan_arc(temp_position, offset, clockwise, 0); // Plan a single whole circle
}
TERN_(HAS_Z_AXIS, linear_travel = cart[l_axis] - current_position[l_axis]);
TERN_(HAS_EXTRUDERS, extruder_travel = cart.e - current_position.e);
}
const float flat_mm = radius * abs_angular_travel,
mm_of_travel = TERN_(HAS_Z_AXIS, linear_travel ? HYPOT(flat_mm, linear_travel) :) flat_mm;
if (mm_of_travel < 0.001f) return;
const feedRate_t scaled_fr_mm_s = MMS_SCALED(feedrate_mm_s);
// Start with a nominal segment length
float seg_length = (
#ifdef ARC_SEGMENTS_PER_R
constrain(MM_PER_ARC_SEGMENT * radius, MM_PER_ARC_SEGMENT, ARC_SEGMENTS_PER_R)
#elif ARC_SEGMENTS_PER_SEC
_MAX(scaled_fr_mm_s * RECIPROCAL(ARC_SEGMENTS_PER_SEC), MM_PER_ARC_SEGMENT)
#else
MM_PER_ARC_SEGMENT
#endif
);
// Divide total travel by nominal segment length
uint16_t segments = FLOOR(mm_of_travel / seg_length);
4 years ago
NOLESS(segments, min_segments); // At least some segments
seg_length = mm_of_travel / segments;
/**
* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
* and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
* r_T = [cos(phi) -sin(phi);
* sin(phi) cos(phi)] * r ;
*
* For arc generation, the center of the circle is the axis of rotation and the radius vector is
* defined from the circle center to the initial position. Each line segment is formed by successive
* vector rotations. This requires only two cos() and sin() computations to form the rotation
* matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
* all double numbers are single precision on the Arduino. (True double precision will not have
* round off issues for CNC applications.) Single precision error can accumulate to be greater than
* tool precision in some cases. Therefore, arc path correction is implemented.
*
* Small angle approximation may be used to reduce computation overhead further. This approximation
* holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
* theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
* to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
* numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
* issue for CNC machines with the single precision Arduino calculations.
*
* This approximation also allows plan_arc to immediately insert a line segment into the planner
* without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
* a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
* This is important when there are successive arc motions.
*/
// Vector rotation matrix values
xyze_pos_t raw;
const float theta_per_segment = angular_travel / segments,
sq_theta_per_segment = sq(theta_per_segment),
sin_T = theta_per_segment - sq_theta_per_segment * theta_per_segment / 6,
cos_T = 1 - 0.5f * sq_theta_per_segment; // Small angle approximation
#if HAS_Z_AXIS && DISABLED(AUTO_BED_LEVELING_UBL)
const float linear_per_segment = linear_travel / segments;
#endif
#if HAS_EXTRUDERS
const float extruder_per_segment = extruder_travel / segments;
#endif
// Initialize the linear axis
TERN_(HAS_Z_AXIS, raw[l_axis] = current_position[l_axis]);
// Initialize the extruder axis
TERN_(HAS_EXTRUDERS, raw.e = current_position.e);
#if ENABLED(SCARA_FEEDRATE_SCALING)
const float inv_duration = scaled_fr_mm_s / seg_length;
#endif
millis_t next_idle_ms = millis() + 200UL;
#if N_ARC_CORRECTION > 1
int8_t arc_recalc_count = N_ARC_CORRECTION;
#endif
for (uint16_t i = 1; i < segments; i++) { // Iterate (segments-1) times
thermalManager.manage_heater();
if (ELAPSED(millis(), next_idle_ms)) {
next_idle_ms = millis() + 200UL;
idle();
}
#if N_ARC_CORRECTION > 1
if (--arc_recalc_count) {
// Apply vector rotation matrix to previous rvec.a / 1
const float r_new_Y = rvec.a * sin_T + rvec.b * cos_T;
rvec.a = rvec.a * cos_T - rvec.b * sin_T;
rvec.b = r_new_Y;
}
else
#endif
{
#if N_ARC_CORRECTION > 1
arc_recalc_count = N_ARC_CORRECTION;
#endif
// Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
// Compute exact location by applying transformation matrix from initial radius vector(=-offset).
// To reduce stuttering, the sin and cos could be computed at different times.
// For now, compute both at the same time.
const float cos_Ti = cos(i * theta_per_segment), sin_Ti = sin(i * theta_per_segment);
rvec.a = -offset[0] * cos_Ti + offset[1] * sin_Ti;
rvec.b = -offset[0] * sin_Ti - offset[1] * cos_Ti;
}
// Update raw location
raw[p_axis] = center_P + rvec.a;
raw[q_axis] = center_Q + rvec.b;
#if HAS_Z_AXIS
raw[l_axis] = TERN(AUTO_BED_LEVELING_UBL, start_L, raw[l_axis] + linear_per_segment);
#endif
TERN_(HAS_EXTRUDERS, raw.e += extruder_per_segment);
apply_motion_limits(raw);
#if HAS_LEVELING && !PLANNER_LEVELING
planner.apply_leveling(raw);
#endif
if (!planner.buffer_line(raw, scaled_fr_mm_s, active_extruder, 0
OPTARG(SCARA_FEEDRATE_SCALING, inv_duration)
)) break;
}
// Ensure last segment arrives at target location.
raw = cart;
TERN_(AUTO_BED_LEVELING_UBL, TERN_(HAS_Z_AXIS, raw[l_axis] = start_L));
apply_motion_limits(raw);
5 years ago
#if HAS_LEVELING && !PLANNER_LEVELING
planner.apply_leveling(raw);
#endif
planner.buffer_line(raw, scaled_fr_mm_s, active_extruder, 0
OPTARG(SCARA_FEEDRATE_SCALING, inv_duration)
);
TERN_(AUTO_BED_LEVELING_UBL, TERN_(HAS_Z_AXIS, raw[l_axis] = start_L));
current_position = raw;
} // plan_arc
/**
* G2: Clockwise Arc
* G3: Counterclockwise Arc
*
* This command has two forms: IJ-form (JK, KI) and R-form.
*
* - Depending on the current Workspace Plane orientation,
* use parameters IJ/JK/KI to specify the XY/YZ/ZX offsets.
* At least one of the IJ/JK/KI parameters is required.
* XY/YZ/ZX can be omitted to do a complete circle.
* The given XY/YZ/ZX is not error-checked. The arc ends
* based on the angle of the destination.
* Mixing IJ/JK/KI with R will throw an error.
*
* - R specifies the radius. X or Y (Y or Z / Z or X) is required.
* Omitting both XY/YZ/ZX will throw an error.
* XY/YZ/ZX must differ from the current XY/YZ/ZX.
* Mixing R with IJ/JK/KI will throw an error.
*
* - P specifies the number of full circles to do
* before the specified arc move.
*
* Examples:
*
* G2 I10 ; CW circle centered at X+10
* G3 X20 Y12 R14 ; CCW circle with r=14 ending at X20 Y12
*/
void GcodeSuite::G2_G3(const bool clockwise) {
if (MOTION_CONDITIONS) {
TERN_(FULL_REPORT_TO_HOST_FEATURE, set_and_report_grblstate(M_RUNNING));
#if ENABLED(SF_ARC_FIX)
const bool relative_mode_backup = relative_mode;
relative_mode = true;
#endif
get_destination_from_command(); // Get X Y Z E F (and set cutter power)
TERN_(SF_ARC_FIX, relative_mode = relative_mode_backup);
ab_float_t arc_offset = { 0, 0 };
if (parser.seenval('R')) {
const float r = parser.value_linear_units();
if (r) {
const xy_pos_t p1 = current_position, p2 = destination;
if (p1 != p2) {
const xy_pos_t d2 = (p2 - p1) * 0.5f; // XY vector to midpoint of move from current
const float e = clockwise ^ (r < 0) ? -1 : 1, // clockwise -1/1, counterclockwise 1/-1
len = d2.magnitude(), // Distance to mid-point of move from current
h2 = (r - len) * (r + len), // factored to reduce rounding error
h = (h2 >= 0) ? SQRT(h2) : 0.0f; // Distance to the arc pivot-point from midpoint
const xy_pos_t s = { -d2.y, d2.x }; // Perpendicular bisector. (Divide by len for unit vector.)
arc_offset = d2 + s / len * e * h; // The calculated offset (mid-point if |r| <= len)
}
}
}
else {
#if ENABLED(CNC_WORKSPACE_PLANES)
char achar, bchar;
switch (gcode.workspace_plane) {
default:
case GcodeSuite::PLANE_XY: achar = 'I'; bchar = 'J'; break;
case GcodeSuite::PLANE_YZ: achar = 'J'; bchar = 'K'; break;
case GcodeSuite::PLANE_ZX: achar = 'K'; bchar = 'I'; break;
}
#else
constexpr char achar = 'I', bchar = 'J';
#endif
if (parser.seenval(achar)) arc_offset.a = parser.value_linear_units();
if (parser.seenval(bchar)) arc_offset.b = parser.value_linear_units();
}
if (arc_offset) {
#if ENABLED(ARC_P_CIRCLES)
// P indicates number of circles to do
const int8_t circles_to_do = parser.byteval('P');
if (!WITHIN(circles_to_do, 0, 100))
SERIAL_ERROR_MSG(STR_ERR_ARC_ARGS);
#else
constexpr uint8_t circles_to_do = 0;
#endif
// Send the arc to the planner
plan_arc(destination, arc_offset, clockwise, circles_to_do);
reset_stepper_timeout();
}
else
SERIAL_ERROR_MSG(STR_ERR_ARC_ARGS);
TERN_(FULL_REPORT_TO_HOST_FEATURE, set_and_report_grblstate(M_IDLE));
}
}
#endif // ARC_SUPPORT