Marlin 2.0 for Flying Bear 4S/5
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

231 lines
6.8 KiB

/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
* Copyright (c) 2017 Victor Perez
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../platforms.h"
#ifdef HAL_STM32
#include "../../inc/MarlinConfig.h"
#include <SPI.h>
// ------------------------
// Public Variables
// ------------------------
static SPISettings spiConfig;
// ------------------------
// Public functions
// ------------------------
#if ENABLED(SOFTWARE_SPI)
// ------------------------
// Software SPI
// ------------------------
#include "../shared/Delay.h"
void spiBegin(void) {
#if PIN_EXISTS(SD_SS)
OUT_WRITE(SD_SS_PIN, HIGH);
#endif
OUT_WRITE(SD_SCK_PIN, HIGH);
SET_INPUT(SD_MISO_PIN);
OUT_WRITE(SD_MOSI_PIN, HIGH);
}
// Use function with compile-time value so we can actually reach the desired frequency
// Need to adjust this a little bit: on a 72MHz clock, we have 14ns/clock
// and we'll use ~3 cycles to jump to the method and going back, so it'll take ~40ns from the given clock here
#define CALLING_COST_NS (3U * 1000000000U) / (F_CPU)
void (*delaySPIFunc)();
void delaySPI_125() { DELAY_NS(125 - CALLING_COST_NS); }
void delaySPI_250() { DELAY_NS(250 - CALLING_COST_NS); }
void delaySPI_500() { DELAY_NS(500 - CALLING_COST_NS); }
void delaySPI_1000() { DELAY_NS(1000 - CALLING_COST_NS); }
void delaySPI_2000() { DELAY_NS(2000 - CALLING_COST_NS); }
void delaySPI_4000() { DELAY_NS(4000 - CALLING_COST_NS); }
void spiInit(uint8_t spiRate) {
// Use datarates Marlin uses
switch (spiRate) {
case SPI_FULL_SPEED: delaySPIFunc = &delaySPI_125; break; // desired: 8,000,000 actual: ~1.1M
case SPI_HALF_SPEED: delaySPIFunc = &delaySPI_125; break; // desired: 4,000,000 actual: ~1.1M
case SPI_QUARTER_SPEED:delaySPIFunc = &delaySPI_250; break; // desired: 2,000,000 actual: ~890K
case SPI_EIGHTH_SPEED: delaySPIFunc = &delaySPI_500; break; // desired: 1,000,000 actual: ~590K
case SPI_SPEED_5: delaySPIFunc = &delaySPI_1000; break; // desired: 500,000 actual: ~360K
case SPI_SPEED_6: delaySPIFunc = &delaySPI_2000; break; // desired: 250,000 actual: ~210K
default: delaySPIFunc = &delaySPI_4000; break; // desired: 125,000 actual: ~123K
}
SPI.begin();
}
// Begin SPI transaction, set clock, bit order, data mode
void spiBeginTransaction(uint32_t spiClock, uint8_t bitOrder, uint8_t dataMode) { /* do nothing */ }
uint8_t HAL_SPI_STM32_SpiTransfer_Mode_3(uint8_t b) { // using Mode 3
for (uint8_t bits = 8; bits--;) {
WRITE(SD_SCK_PIN, LOW);
WRITE(SD_MOSI_PIN, b & 0x80);
delaySPIFunc();
WRITE(SD_SCK_PIN, HIGH);
delaySPIFunc();
b <<= 1; // little setup time
b |= (READ(SD_MISO_PIN) != 0);
}
DELAY_NS(125);
return b;
}
// Soft SPI receive byte
uint8_t spiRec() {
hal.isr_off(); // No interrupts during byte receive
const uint8_t data = HAL_SPI_STM32_SpiTransfer_Mode_3(0xFF);
hal.isr_on(); // Enable interrupts
return data;
}
// Soft SPI read data
void spiRead(uint8_t *buf, uint16_t nbyte) {
for (uint16_t i = 0; i < nbyte; i++)
buf[i] = spiRec();
}
// Soft SPI send byte
void spiSend(uint8_t data) {
hal.isr_off(); // No interrupts during byte send
HAL_SPI_STM32_SpiTransfer_Mode_3(data); // Don't care what is received
hal.isr_on(); // Enable interrupts
}
// Soft SPI send block
void spiSendBlock(uint8_t token, const uint8_t *buf) {
spiSend(token);
for (uint16_t i = 0; i < 512; i++)
spiSend(buf[i]);
}
#else
// ------------------------
// Hardware SPI
// ------------------------
/**
* VGPV SPI speed start and PCLK2/2, by default 108/2 = 54Mhz
*/
/**
* @brief Begin SPI port setup
*
* @return Nothing
*
* @details Only configures SS pin since stm32duino creates and initialize the SPI object
*/
void spiBegin() {
#if PIN_EXISTS(SD_SS)
OUT_WRITE(SD_SS_PIN, HIGH);
#endif
}
// Configure SPI for specified SPI speed
void spiInit(uint8_t spiRate) {
// Use datarates Marlin uses
uint32_t clock;
switch (spiRate) {
case SPI_FULL_SPEED: clock = 20000000; break; // 13.9mhz=20000000 6.75mhz=10000000 3.38mhz=5000000 .833mhz=1000000
case SPI_HALF_SPEED: clock = 5000000; break;
case SPI_QUARTER_SPEED: clock = 2500000; break;
case SPI_EIGHTH_SPEED: clock = 1250000; break;
case SPI_SPEED_5: clock = 625000; break;
case SPI_SPEED_6: clock = 300000; break;
default:
clock = 4000000; // Default from the SPI library
}
spiConfig = SPISettings(clock, MSBFIRST, SPI_MODE0);
SPI.setMISO(SD_MISO_PIN);
SPI.setMOSI(SD_MOSI_PIN);
SPI.setSCLK(SD_SCK_PIN);
SPI.begin();
}
/**
* @brief Receives a single byte from the SPI port.
*
* @return Byte received
*
* @details
*/
uint8_t spiRec() {
uint8_t returnByte = SPI.transfer(0xFF);
return returnByte;
}
/**
* @brief Receive a number of bytes from the SPI port to a buffer
*
* @param buf Pointer to starting address of buffer to write to.
* @param nbyte Number of bytes to receive.
* @return Nothing
*
* @details Uses DMA
*/
void spiRead(uint8_t *buf, uint16_t nbyte) {
if (nbyte == 0) return;
memset(buf, 0xFF, nbyte);
SPI.transfer(buf, nbyte);
}
/**
* @brief Send a single byte on SPI port
*
* @param b Byte to send
*
* @details
*/
void spiSend(uint8_t b) {
SPI.transfer(b);
}
/**
* @brief Write token and then write from 512 byte buffer to SPI (for SD card)
*
* @param buf Pointer with buffer start address
* @return Nothing
*
* @details Use DMA
*/
void spiSendBlock(uint8_t token, const uint8_t *buf) {
uint8_t rxBuf[512];
SPI.transfer(token);
SPI.transfer((uint8_t*)buf, &rxBuf, 512);
}
#endif // SOFTWARE_SPI
#endif // HAL_STM32