/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * Copyright (c) 2017 Victor Perez * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ #include "../platforms.h" #ifdef HAL_STM32 #include "../../inc/MarlinConfig.h" #include // ------------------------ // Public Variables // ------------------------ static SPISettings spiConfig; // ------------------------ // Public functions // ------------------------ #if ENABLED(SOFTWARE_SPI) // ------------------------ // Software SPI // ------------------------ #include "../shared/Delay.h" void spiBegin(void) { #if PIN_EXISTS(SD_SS) OUT_WRITE(SD_SS_PIN, HIGH); #endif OUT_WRITE(SD_SCK_PIN, HIGH); SET_INPUT(SD_MISO_PIN); OUT_WRITE(SD_MOSI_PIN, HIGH); } // Use function with compile-time value so we can actually reach the desired frequency // Need to adjust this a little bit: on a 72MHz clock, we have 14ns/clock // and we'll use ~3 cycles to jump to the method and going back, so it'll take ~40ns from the given clock here #define CALLING_COST_NS (3U * 1000000000U) / (F_CPU) void (*delaySPIFunc)(); void delaySPI_125() { DELAY_NS(125 - CALLING_COST_NS); } void delaySPI_250() { DELAY_NS(250 - CALLING_COST_NS); } void delaySPI_500() { DELAY_NS(500 - CALLING_COST_NS); } void delaySPI_1000() { DELAY_NS(1000 - CALLING_COST_NS); } void delaySPI_2000() { DELAY_NS(2000 - CALLING_COST_NS); } void delaySPI_4000() { DELAY_NS(4000 - CALLING_COST_NS); } void spiInit(uint8_t spiRate) { // Use datarates Marlin uses switch (spiRate) { case SPI_FULL_SPEED: delaySPIFunc = &delaySPI_125; break; // desired: 8,000,000 actual: ~1.1M case SPI_HALF_SPEED: delaySPIFunc = &delaySPI_125; break; // desired: 4,000,000 actual: ~1.1M case SPI_QUARTER_SPEED:delaySPIFunc = &delaySPI_250; break; // desired: 2,000,000 actual: ~890K case SPI_EIGHTH_SPEED: delaySPIFunc = &delaySPI_500; break; // desired: 1,000,000 actual: ~590K case SPI_SPEED_5: delaySPIFunc = &delaySPI_1000; break; // desired: 500,000 actual: ~360K case SPI_SPEED_6: delaySPIFunc = &delaySPI_2000; break; // desired: 250,000 actual: ~210K default: delaySPIFunc = &delaySPI_4000; break; // desired: 125,000 actual: ~123K } SPI.begin(); } // Begin SPI transaction, set clock, bit order, data mode void spiBeginTransaction(uint32_t spiClock, uint8_t bitOrder, uint8_t dataMode) { /* do nothing */ } uint8_t HAL_SPI_STM32_SpiTransfer_Mode_3(uint8_t b) { // using Mode 3 for (uint8_t bits = 8; bits--;) { WRITE(SD_SCK_PIN, LOW); WRITE(SD_MOSI_PIN, b & 0x80); delaySPIFunc(); WRITE(SD_SCK_PIN, HIGH); delaySPIFunc(); b <<= 1; // little setup time b |= (READ(SD_MISO_PIN) != 0); } DELAY_NS(125); return b; } // Soft SPI receive byte uint8_t spiRec() { hal.isr_off(); // No interrupts during byte receive const uint8_t data = HAL_SPI_STM32_SpiTransfer_Mode_3(0xFF); hal.isr_on(); // Enable interrupts return data; } // Soft SPI read data void spiRead(uint8_t *buf, uint16_t nbyte) { for (uint16_t i = 0; i < nbyte; i++) buf[i] = spiRec(); } // Soft SPI send byte void spiSend(uint8_t data) { hal.isr_off(); // No interrupts during byte send HAL_SPI_STM32_SpiTransfer_Mode_3(data); // Don't care what is received hal.isr_on(); // Enable interrupts } // Soft SPI send block void spiSendBlock(uint8_t token, const uint8_t *buf) { spiSend(token); for (uint16_t i = 0; i < 512; i++) spiSend(buf[i]); } #else // ------------------------ // Hardware SPI // ------------------------ /** * VGPV SPI speed start and PCLK2/2, by default 108/2 = 54Mhz */ /** * @brief Begin SPI port setup * * @return Nothing * * @details Only configures SS pin since stm32duino creates and initialize the SPI object */ void spiBegin() { #if PIN_EXISTS(SD_SS) OUT_WRITE(SD_SS_PIN, HIGH); #endif } // Configure SPI for specified SPI speed void spiInit(uint8_t spiRate) { // Use datarates Marlin uses uint32_t clock; switch (spiRate) { case SPI_FULL_SPEED: clock = 20000000; break; // 13.9mhz=20000000 6.75mhz=10000000 3.38mhz=5000000 .833mhz=1000000 case SPI_HALF_SPEED: clock = 5000000; break; case SPI_QUARTER_SPEED: clock = 2500000; break; case SPI_EIGHTH_SPEED: clock = 1250000; break; case SPI_SPEED_5: clock = 625000; break; case SPI_SPEED_6: clock = 300000; break; default: clock = 4000000; // Default from the SPI library } spiConfig = SPISettings(clock, MSBFIRST, SPI_MODE0); SPI.setMISO(SD_MISO_PIN); SPI.setMOSI(SD_MOSI_PIN); SPI.setSCLK(SD_SCK_PIN); SPI.begin(); } /** * @brief Receives a single byte from the SPI port. * * @return Byte received * * @details */ uint8_t spiRec() { uint8_t returnByte = SPI.transfer(0xFF); return returnByte; } /** * @brief Receive a number of bytes from the SPI port to a buffer * * @param buf Pointer to starting address of buffer to write to. * @param nbyte Number of bytes to receive. * @return Nothing * * @details Uses DMA */ void spiRead(uint8_t *buf, uint16_t nbyte) { if (nbyte == 0) return; memset(buf, 0xFF, nbyte); SPI.transfer(buf, nbyte); } /** * @brief Send a single byte on SPI port * * @param b Byte to send * * @details */ void spiSend(uint8_t b) { SPI.transfer(b); } /** * @brief Write token and then write from 512 byte buffer to SPI (for SD card) * * @param buf Pointer with buffer start address * @return Nothing * * @details Use DMA */ void spiSendBlock(uint8_t token, const uint8_t *buf) { uint8_t rxBuf[512]; SPI.transfer(token); SPI.transfer((uint8_t*)buf, &rxBuf, 512); } #endif // SOFTWARE_SPI #endif // HAL_STM32