Currently we use the probe exclusively as a device to find the build platform(bed).
For the currently supported setups this means, we use it as a additional min-endstop.
A triggered when not deployed probe disturbs the homing process for max-endstops.
Rename ENDSTOPPULLUP_ZPROBE to ENDSTOPPULLUP_ZMIN_PROBE
Rename Z_PROBE_ENDSTOP_INVERTING to Z_MIN_PROBE_ENDSTOP_INVERTING
Rename Z_PROBE_ENDSTOP to Z_MIN_PROBE_ENDSTOP
Rename DISABLE_Z_PROBE_ENDSTOP to DISABLE_Z_MIN_PROBE_ENDSTOP
Rename Z_PROBE_REPEATABILITY_TEST to Z_MIN_PROBE_REPEATABILITY_TEST
Rename Z_PROBE_ENDSTOP to Z_MIN_PROBE_ENDSTOP
Adjust comments accordingly
Remove Z_MAX check for the probe in update_endstops().
Using an delta related idea of @clefranc from #61,
extended to the general change for all setups.
Tested with Prusa i3, max-z-endstop and permanently triggered z-probe.
Worked for @clefranc's delta.
- `SD_DETECT_PIN` replaces `SDCARDDETECT`
- `SD_DETECT_INVERTED` replaces `SDCARDDETECTINVERTED`
- Revise the description of `SD_DETECT_INVERTED`
- Add a note about the override of `SD_DETECT_INVERTED` in
`Conditionals.h`
As suggested in #2521
- Move `ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED` because `SDSUPPORT` is
also required.
- Add a note that endstops must be enabled for the feature to have any
effect
A speaker needs a AC or a pulsed DC to make a sound, a buzzer only needs a DC.
A buzzer has it's own resonator. It works in most cases to feed the buzzer with a pulsed DC, but the sound will not be as loud as with pure DC.
There seem to be boards where the BEEPER-pin is not able to handle a PWM. Obviously intended for a buzzer.
To make these board able to handle a speaker
* replace the PWM based tone()-function again with a on-delay-off-delay loop.
Hopefully the last time I touch the beeper code.
Just set up the pin. Don't move to a random position.
Simplify servo::move()
* servo::move() does not need the pin parameter - The pin is set during servo_init() with attach().
* servo::move() does not need a return value.
SERVO_LEVELING is the wrong condition to deactivate the servos.
Remove some temporary (Servo *) variables.
SanityCheck for the servo indexes.
- Use `setTargetedHotend` in `M200`, as with other commands that use
`T` for the extruder
- Synthesize the "invalid extruder" message, obviating several long
strings
- Make thermal protection for all hotends and/or bed into simple
switches
- Now enable `WATCH_TEMP_PERIOD` when `THERMAL_PROTECTION_HOTENDS` is
enabled
- Move detailed thermal parameters to `Configuration_adv.h`
- Add sanity checks to warn about old configurations
- Change `WATCH_TEMP_PERIOD` to seconds instead of milliseconds