|
|
@ -40,13 +40,14 @@ |
|
|
|
|
|
|
|
#include <Wire.h> |
|
|
|
|
|
|
|
void I2CPositionEncoder::init(uint8_t address, AxisEnum axis) { |
|
|
|
|
|
|
|
void I2CPositionEncoder::init(const uint8_t address, const AxisEnum axis) { |
|
|
|
encoderAxis = axis; |
|
|
|
i2cAddress = address; |
|
|
|
|
|
|
|
initialised++; |
|
|
|
|
|
|
|
SERIAL_ECHOPAIR("Seetting up encoder on ", axis_codes[encoderAxis]); |
|
|
|
SERIAL_ECHOPAIR("Setting up encoder on ", axis_codes[encoderAxis]); |
|
|
|
SERIAL_ECHOLNPAIR(" axis, addr = ", address); |
|
|
|
|
|
|
|
position = get_position(); |
|
|
@ -98,13 +99,13 @@ |
|
|
|
|
|
|
|
//the encoder likely lost its place when the error occured, so we'll reset and use the printer's
|
|
|
|
//idea of where it the axis is to re-initialise
|
|
|
|
double position = stepper.get_axis_position_mm(encoderAxis); |
|
|
|
long positionInTicks = position * get_ticks_unit(); |
|
|
|
float position = stepper.get_axis_position_mm(encoderAxis); |
|
|
|
int32_t positionInTicks = position * get_ticks_unit(); |
|
|
|
|
|
|
|
//shift position from previous to current position
|
|
|
|
zeroOffset -= (positionInTicks - get_position()); |
|
|
|
|
|
|
|
#if defined(I2CPE_DEBUG) |
|
|
|
#ifdef I2CPE_DEBUG |
|
|
|
SERIAL_ECHOPGM("Current position is "); |
|
|
|
SERIAL_ECHOLN(position); |
|
|
|
|
|
|
@ -126,23 +127,23 @@ |
|
|
|
} |
|
|
|
|
|
|
|
lastPosition = position; |
|
|
|
millis_t positionTime = millis(); |
|
|
|
const millis_t positionTime = millis(); |
|
|
|
|
|
|
|
//only do error correction if setup and enabled
|
|
|
|
if (ec && ecMethod != I2CPE_ECM_NONE) { |
|
|
|
|
|
|
|
#if defined(I2CPE_EC_THRESH_PROPORTIONAL) |
|
|
|
millis_t deltaTime = positionTime - lastPositionTime; |
|
|
|
unsigned long distance = abs(position - lastPosition); |
|
|
|
unsigned long speed = distance / deltaTime; |
|
|
|
float threshold = constrain(speed / 50, 1, 50) * ecThreshold; |
|
|
|
#ifdef I2CPE_EC_THRESH_PROPORTIONAL |
|
|
|
const millis_t deltaTime = positionTime - lastPositionTime; |
|
|
|
const uint32_t distance = abs(position - lastPosition), |
|
|
|
speed = distance / deltaTime; |
|
|
|
const float threshold = constrain((speed / 50), 1, 50) * ecThreshold; |
|
|
|
#else |
|
|
|
float threshold = get_error_correct_threshold(); |
|
|
|
const float threshold = get_error_correct_threshold(); |
|
|
|
#endif |
|
|
|
|
|
|
|
//check error
|
|
|
|
#if ENABLED(I2CPE_ERR_ROLLING_AVERAGE) |
|
|
|
double sum = 0, diffSum = 0; |
|
|
|
float sum = 0, diffSum = 0; |
|
|
|
|
|
|
|
errIdx = (errIdx >= I2CPE_ERR_ARRAY_SIZE - 1) ? 0 : errIdx + 1; |
|
|
|
err[errIdx] = get_axis_error_steps(false); |
|
|
@ -152,16 +153,16 @@ |
|
|
|
if (i) diffSum += abs(err[i-1] - err[i]); |
|
|
|
} |
|
|
|
|
|
|
|
long error = (long)(sum/(I2CPE_ERR_ARRAY_SIZE + 1)); //calculate average for error
|
|
|
|
const int32_t error = int32_t(sum / (I2CPE_ERR_ARRAY_SIZE + 1)); //calculate average for error
|
|
|
|
|
|
|
|
#else |
|
|
|
long error = get_axis_error_steps(false); |
|
|
|
const int32_t error = get_axis_error_steps(false); |
|
|
|
#endif |
|
|
|
|
|
|
|
//SERIAL_ECHOPGM("Axis err*r steps: ");
|
|
|
|
//SERIAL_ECHOPGM("Axis error steps: ");
|
|
|
|
//SERIAL_ECHOLN(error);
|
|
|
|
|
|
|
|
#if defined(I2CPE_ERR_THRESH_ABORT) |
|
|
|
#ifdef I2CPE_ERR_THRESH_ABORT |
|
|
|
if (labs(error) > I2CPE_ERR_THRESH_ABORT * planner.axis_steps_per_mm[encoderAxis]) { |
|
|
|
//kill("Significant Error");
|
|
|
|
SERIAL_ECHOPGM("Axis error greater than set threshold, aborting!"); |
|
|
@ -215,7 +216,7 @@ |
|
|
|
homed++; |
|
|
|
trusted++; |
|
|
|
|
|
|
|
#if defined(I2CPE_DEBUG) |
|
|
|
#ifdef I2CPE_DEBUG |
|
|
|
SERIAL_ECHO(axis_codes[encoderAxis]); |
|
|
|
SERIAL_ECHOPAIR(" axis encoder homed, offset of ", zeroOffset); |
|
|
|
SERIAL_ECHOLNPGM(" ticks."); |
|
|
@ -223,36 +224,27 @@ |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
bool I2CPositionEncoder::passes_test(bool report) { |
|
|
|
if (H == I2CPE_MAG_SIG_GOOD) { |
|
|
|
bool I2CPositionEncoder::passes_test(const bool report) { |
|
|
|
if (report) { |
|
|
|
if (H != I2CPE_MAG_SIG_GOOD) SERIAL_ECHOPGM("Warning. "); |
|
|
|
SERIAL_ECHO(axis_codes[encoderAxis]); |
|
|
|
SERIAL_ECHOLNPGM(" axis encoder passes test; field strength good."); |
|
|
|
} |
|
|
|
return true; |
|
|
|
} else if (H == I2CPE_MAG_SIG_MID) { |
|
|
|
if (report) { |
|
|
|
SERIAL_ECHOPAIR("Warning, ", axis_codes[encoderAxis]); |
|
|
|
SERIAL_ECHOLNPGM(" axis encoder passes test; field strength fair."); |
|
|
|
SERIAL_ECHOPGM(" axis "); |
|
|
|
serialprintPGM(H == I2CPE_MAG_SIG_BAD ? PSTR("magnetic strip ") : PSTR("encoder ")); |
|
|
|
switch (H) { |
|
|
|
case I2CPE_MAG_SIG_GOOD: |
|
|
|
case I2CPE_MAG_SIG_MID: |
|
|
|
SERIAL_ECHOLNPGM("passes test; field strength "); |
|
|
|
serialprintPGM(H == I2CPE_MAG_SIG_GOOD ? PSTR("good.\n") : PSTR("fair.\n")); |
|
|
|
break; |
|
|
|
default: |
|
|
|
SERIAL_ECHOLNPGM("not detected!"); |
|
|
|
} |
|
|
|
return true; |
|
|
|
} else if (H == I2CPE_MAG_SIG_BAD) { |
|
|
|
if (report) { |
|
|
|
SERIAL_ECHOPAIR("Warning, ", axis_codes[encoderAxis]); |
|
|
|
SERIAL_ECHOLNPGM(" axis magnetic strip not detected!"); |
|
|
|
} |
|
|
|
return false; |
|
|
|
return (H == I2CPE_MAG_SIG_GOOD || H == I2CPE_MAG_SIG_MID); |
|
|
|
} |
|
|
|
|
|
|
|
if (report) { |
|
|
|
SERIAL_ECHOPAIR("Warning, ", axis_codes[encoderAxis]); |
|
|
|
SERIAL_ECHOLNPGM(" axis encoder not detected!"); |
|
|
|
} |
|
|
|
return false; |
|
|
|
} |
|
|
|
|
|
|
|
double I2CPositionEncoder::get_axis_error_mm(bool report) { |
|
|
|
double target, actual, error; |
|
|
|
float I2CPositionEncoder::get_axis_error_mm(const bool report) { |
|
|
|
float target, actual, error; |
|
|
|
|
|
|
|
target = stepper.get_axis_position_mm(encoderAxis); |
|
|
|
actual = mm_from_count(position); |
|
|
@ -270,7 +262,7 @@ |
|
|
|
return error; |
|
|
|
} |
|
|
|
|
|
|
|
long I2CPositionEncoder::get_axis_error_steps(bool report) { |
|
|
|
int32_t I2CPositionEncoder::get_axis_error_steps(const bool report) { |
|
|
|
if (!active) { |
|
|
|
if (report) { |
|
|
|
SERIAL_ECHO(axis_codes[encoderAxis]); |
|
|
@ -280,8 +272,8 @@ |
|
|
|
} |
|
|
|
|
|
|
|
float stepperTicksPerUnit; |
|
|
|
long encoderTicks = position, encoderCountInStepperTicksScaled; |
|
|
|
//long stepperTicks = stepper.position(encoderAxis);
|
|
|
|
int32_t encoderTicks = position, encoderCountInStepperTicksScaled; |
|
|
|
//int32_t stepperTicks = stepper.position(encoderAxis);
|
|
|
|
|
|
|
|
// With a rotary encoder we're concerned with ticks/rev; whereas with a linear we're concerned with ticks/mm
|
|
|
|
stepperTicksPerUnit = (type == I2CPE_ENC_TYPE_ROTARY) ? stepperTicks : planner.axis_steps_per_mm[encoderAxis]; |
|
|
@ -289,7 +281,7 @@ |
|
|
|
//convert both 'ticks' into same units / base
|
|
|
|
encoderCountInStepperTicksScaled = LROUND((stepperTicksPerUnit * encoderTicks) / encoderTicksPerUnit); |
|
|
|
|
|
|
|
long target = stepper.position(encoderAxis), |
|
|
|
int32_t target = stepper.position(encoderAxis), |
|
|
|
error = (encoderCountInStepperTicksScaled - target); |
|
|
|
|
|
|
|
//suppress discontinuities (might be caused by bad I2C readings...?)
|
|
|
@ -309,7 +301,7 @@ |
|
|
|
return (suppressOutput ? 0 : error); |
|
|
|
} |
|
|
|
|
|
|
|
long I2CPositionEncoder::get_raw_count() { |
|
|
|
int32_t I2CPositionEncoder::get_raw_count() { |
|
|
|
uint8_t index = 0; |
|
|
|
i2cLong encoderCount; |
|
|
|
|
|
|
@ -340,14 +332,11 @@ |
|
|
|
//only works on XYZ cartesian machines for the time being
|
|
|
|
if (!(encoderAxis == X_AXIS || encoderAxis == Y_AXIS || encoderAxis == Z_AXIS)) return false; |
|
|
|
|
|
|
|
int feedrate; |
|
|
|
float startPosition, endPosition; |
|
|
|
float startCoord[NUM_AXIS] = { 0 }, endCoord[NUM_AXIS] = { 0 }; |
|
|
|
|
|
|
|
startPosition = soft_endstop_min[encoderAxis] + 10; |
|
|
|
endPosition = soft_endstop_max[encoderAxis] - 10; |
|
|
|
|
|
|
|
feedrate = (int)MMM_TO_MMS((encoderAxis == Z_AXIS) ? HOMING_FEEDRATE_Z : HOMING_FEEDRATE_XY); |
|
|
|
const float startPosition = soft_endstop_min[encoderAxis] + 10, |
|
|
|
endPosition = soft_endstop_max[encoderAxis] - 10, |
|
|
|
feedrate = FLOOR(MMM_TO_MMS((encoderAxis == Z_AXIS) ? HOMING_FEEDRATE_Z : HOMING_FEEDRATE_XY)); |
|
|
|
|
|
|
|
ec = false; |
|
|
|
|
|
|
@ -367,7 +356,7 @@ |
|
|
|
|
|
|
|
// if the module isn't currently trusted, wait until it is (or until it should be if things are working)
|
|
|
|
if (!trusted) { |
|
|
|
long startWaitingTime = millis(); |
|
|
|
int32_t startWaitingTime = millis(); |
|
|
|
while (!trusted && millis() - startWaitingTime < I2CPE_TIME_TRUSTED) |
|
|
|
safe_delay(500); |
|
|
|
} |
|
|
@ -381,7 +370,7 @@ |
|
|
|
return trusted; |
|
|
|
} |
|
|
|
|
|
|
|
void I2CPositionEncoder::calibrate_steps_mm(int iter) { |
|
|
|
void I2CPositionEncoder::calibrate_steps_mm(const uint8_t iter) { |
|
|
|
if (type != I2CPE_ENC_TYPE_LINEAR) { |
|
|
|
SERIAL_ECHOLNPGM("Steps per mm calibration is only available using linear encoders."); |
|
|
|
return; |
|
|
@ -392,14 +381,14 @@ |
|
|
|
return; |
|
|
|
} |
|
|
|
|
|
|
|
float oldStepsMm, newStepsMm, |
|
|
|
float old_steps_mm, new_steps_mm, |
|
|
|
startDistance, endDistance, |
|
|
|
travelDistance, travelledDistance, total = 0, |
|
|
|
startCoord[NUM_AXIS] = { 0 }, endCoord[NUM_AXIS] = { 0 }; |
|
|
|
|
|
|
|
double feedrate; |
|
|
|
float feedrate; |
|
|
|
|
|
|
|
long startCount, stopCount; |
|
|
|
int32_t startCount, stopCount; |
|
|
|
|
|
|
|
feedrate = MMM_TO_MMS((encoderAxis == Z_AXIS) ? HOMING_FEEDRATE_Z : HOMING_FEEDRATE_XY); |
|
|
|
|
|
|
@ -447,17 +436,17 @@ |
|
|
|
SERIAL_ECHOLNPGM("mm."); |
|
|
|
|
|
|
|
//Calculate new axis steps per unit
|
|
|
|
oldStepsMm = planner.axis_steps_per_mm[encoderAxis]; |
|
|
|
newStepsMm = (oldStepsMm * travelDistance) / travelledDistance; |
|
|
|
old_steps_mm = planner.axis_steps_per_mm[encoderAxis]; |
|
|
|
new_steps_mm = (old_steps_mm * travelDistance) / travelledDistance; |
|
|
|
|
|
|
|
SERIAL_ECHOLNPAIR("Old steps per mm: ", oldStepsMm); |
|
|
|
SERIAL_ECHOLNPAIR("New steps per mm: ", newStepsMm); |
|
|
|
SERIAL_ECHOLNPAIR("Old steps per mm: ", old_steps_mm); |
|
|
|
SERIAL_ECHOLNPAIR("New steps per mm: ", new_steps_mm); |
|
|
|
|
|
|
|
//Save new value
|
|
|
|
planner.axis_steps_per_mm[encoderAxis] = newStepsMm; |
|
|
|
planner.axis_steps_per_mm[encoderAxis] = new_steps_mm; |
|
|
|
|
|
|
|
if (iter > 1) { |
|
|
|
total += newStepsMm; |
|
|
|
total += new_steps_mm; |
|
|
|
|
|
|
|
// swap start and end points so next loop runs from current position
|
|
|
|
float tempCoord = startCoord[encoderAxis]; |
|
|
@ -486,6 +475,12 @@ |
|
|
|
#endif |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
bool I2CPositionEncodersMgr::I2CPE_anyaxis; |
|
|
|
uint8_t I2CPositionEncodersMgr::I2CPE_addr, |
|
|
|
I2CPositionEncodersMgr::I2CPE_idx; |
|
|
|
I2CPositionEncoder I2CPositionEncodersMgr::encoders[I2CPE_ENCODER_CNT]; |
|
|
|
|
|
|
|
void I2CPositionEncodersMgr::init() { |
|
|
|
Wire.begin(); |
|
|
|
|
|
|
@ -494,28 +489,28 @@ |
|
|
|
|
|
|
|
encoders[i].init(I2CPE_ENC_1_ADDR, I2CPE_ENC_1_AXIS); |
|
|
|
|
|
|
|
#if defined(I2CPE_ENC_1_TYPE) |
|
|
|
#ifdef I2CPE_ENC_1_TYPE |
|
|
|
encoders[i].set_type(I2CPE_ENC_1_TYPE); |
|
|
|
#endif |
|
|
|
#if defined(I2CPE_ENC_1_TICKS_UNIT) |
|
|
|
#ifdef I2CPE_ENC_1_TICKS_UNIT |
|
|
|
encoders[i].set_ticks_unit(I2CPE_ENC_1_TICKS_UNIT); |
|
|
|
#endif |
|
|
|
#if defined(I2CPE_ENC_1_TICKS_REV) |
|
|
|
#ifdef I2CPE_ENC_1_TICKS_REV |
|
|
|
encoders[i].set_stepper_ticks(I2CPE_ENC_1_TICKS_REV); |
|
|
|
#endif |
|
|
|
#if defined(I2CPE_ENC_1_INVERT) |
|
|
|
#ifdef I2CPE_ENC_1_INVERT |
|
|
|
encoders[i].set_inverted(I2CPE_ENC_1_INVERT); |
|
|
|
#endif |
|
|
|
#if defined(I2CPE_ENC_1_EC_METHOD) |
|
|
|
#ifdef I2CPE_ENC_1_EC_METHOD |
|
|
|
encoders[i].set_ec_method(I2CPE_ENC_1_EC_METHOD); |
|
|
|
#endif |
|
|
|
#if defined(I2CPE_ENC_1_EC_THRESH) |
|
|
|
#ifdef I2CPE_ENC_1_EC_THRESH |
|
|
|
encoders[i].set_ec_threshold(I2CPE_ENC_1_EC_THRESH); |
|
|
|
#endif |
|
|
|
|
|
|
|
encoders[i].set_active(encoders[i].passes_test(true)); |
|
|
|
|
|
|
|
#if (I2CPE_ENC_1_AXIS == E_AXIS) |
|
|
|
#if I2CPE_ENC_1_AXIS == E_AXIS |
|
|
|
encoders[i].set_homed(); |
|
|
|
#endif |
|
|
|
#endif |
|
|
@ -525,28 +520,28 @@ |
|
|
|
|
|
|
|
encoders[i].init(I2CPE_ENC_2_ADDR, I2CPE_ENC_2_AXIS); |
|
|
|
|
|
|
|
#if defined(I2CPE_ENC_2_TYPE) |
|
|
|
#ifdef I2CPE_ENC_2_TYPE |
|
|
|
encoders[i].set_type(I2CPE_ENC_2_TYPE); |
|
|
|
#endif |
|
|
|
#if defined(I2CPE_ENC_2_TICKS_UNIT) |
|
|
|
#ifdef I2CPE_ENC_2_TICKS_UNIT |
|
|
|
encoders[i].set_ticks_unit(I2CPE_ENC_2_TICKS_UNIT); |
|
|
|
#endif |
|
|
|
#if defined(I2CPE_ENC_2_TICKS_REV) |
|
|
|
#ifdef I2CPE_ENC_2_TICKS_REV |
|
|
|
encoders[i].set_stepper_ticks(I2CPE_ENC_2_TICKS_REV); |
|
|
|
#endif |
|
|
|
#if defined(I2CPE_ENC_2_INVERT) |
|
|
|
#ifdef I2CPE_ENC_2_INVERT |
|
|
|
encoders[i].set_inverted(I2CPE_ENC_2_INVERT); |
|
|
|
#endif |
|
|
|
#if defined(I2CPE_ENC_2_EC_METHOD) |
|
|
|
#ifdef I2CPE_ENC_2_EC_METHOD |
|
|
|
encoders[i].set_ec_method(I2CPE_ENC_2_EC_METHOD); |
|
|
|
#endif |
|
|
|
#if defined(I2CPE_ENC_2_EC_THRESH) |
|
|
|
#ifdef I2CPE_ENC_2_EC_THRESH |
|
|
|
encoders[i].set_ec_threshold(I2CPE_ENC_2_EC_THRESH); |
|
|
|
#endif |
|
|
|
|
|
|
|
encoders[i].set_active(encoders[i].passes_test(true)); |
|
|
|
|
|
|
|
#if (I2CPE_ENC_2_AXIS == E_AXIS) |
|
|
|
#if I2CPE_ENC_2_AXIS == E_AXIS |
|
|
|
encoders[i].set_homed(); |
|
|
|
#endif |
|
|
|
#endif |
|
|
@ -556,28 +551,28 @@ |
|
|
|
|
|
|
|
encoders[i].init(I2CPE_ENC_3_ADDR, I2CPE_ENC_3_AXIS); |
|
|
|
|
|
|
|
#if defined(I2CPE_ENC_3_TYPE) |
|
|
|
#ifdef I2CPE_ENC_3_TYPE |
|
|
|
encoders[i].set_type(I2CPE_ENC_3_TYPE); |
|
|
|
#endif |
|
|
|
#if defined(I2CPE_ENC_3_TICKS_UNIT) |
|
|
|
#ifdef I2CPE_ENC_3_TICKS_UNIT |
|
|
|
encoders[i].set_ticks_unit(I2CPE_ENC_3_TICKS_UNIT); |
|
|
|
#endif |
|
|
|
#if defined(I2CPE_ENC_3_TICKS_REV) |
|
|
|
#ifdef I2CPE_ENC_3_TICKS_REV |
|
|
|
encoders[i].set_stepper_ticks(I2CPE_ENC_3_TICKS_REV); |
|
|
|
#endif |
|
|
|
#if defined(I2CPE_ENC_3_INVERT) |
|
|
|
#ifdef I2CPE_ENC_3_INVERT |
|
|
|
encoders[i].set_inverted(I2CPE_ENC_3_INVERT); |
|
|
|
#endif |
|
|
|
#if defined(I2CPE_ENC_3_EC_METHOD) |
|
|
|
#ifdef I2CPE_ENC_3_EC_METHOD |
|
|
|
encoders[i].set_ec_method(I2CPE_ENC_3_EC_METHOD); |
|
|
|
#endif |
|
|
|
#if defined(I2CPE_ENC_3_EC_THRESH) |
|
|
|
#ifdef I2CPE_ENC_3_EC_THRESH |
|
|
|
encoders[i].set_ec_threshold(I2CPE_ENC_3_EC_THRESH); |
|
|
|
#endif |
|
|
|
|
|
|
|
encoders[i].set_active(encoders[i].passes_test(true)); |
|
|
|
|
|
|
|
#if (I2CPE_ENC_3_AXIS == E_AXIS) |
|
|
|
#if I2CPE_ENC_3_AXIS == E_AXIS |
|
|
|
encoders[i].set_homed(); |
|
|
|
#endif |
|
|
|
#endif |
|
|
@ -587,28 +582,28 @@ |
|
|
|
|
|
|
|
encoders[i].init(I2CPE_ENC_4_ADDR, I2CPE_ENC_4_AXIS); |
|
|
|
|
|
|
|
#if defined(I2CPE_ENC_4_TYPE) |
|
|
|
#ifdef I2CPE_ENC_4_TYPE |
|
|
|
encoders[i].set_type(I2CPE_ENC_4_TYPE); |
|
|
|
#endif |
|
|
|
#if defined(I2CPE_ENC_4_TICKS_UNIT) |
|
|
|
#ifdef I2CPE_ENC_4_TICKS_UNIT |
|
|
|
encoders[i].set_ticks_unit(I2CPE_ENC_4_TICKS_UNIT); |
|
|
|
#endif |
|
|
|
#if defined(I2CPE_ENC_4_TICKS_REV) |
|
|
|
#ifdef I2CPE_ENC_4_TICKS_REV |
|
|
|
encoders[i].set_stepper_ticks(I2CPE_ENC_4_TICKS_REV); |
|
|
|
#endif |
|
|
|
#if defined(I2CPE_ENC_4_INVERT) |
|
|
|
#ifdef I2CPE_ENC_4_INVERT |
|
|
|
encoders[i].set_inverted(I2CPE_ENC_4_INVERT); |
|
|
|
#endif |
|
|
|
#if defined(I2CPE_ENC_4_EC_METHOD) |
|
|
|
#ifdef I2CPE_ENC_4_EC_METHOD |
|
|
|
encoders[i].set_ec_method(I2CPE_ENC_4_EC_METHOD); |
|
|
|
#endif |
|
|
|
#if defined(I2CPE_ENC_4_EC_THRESH) |
|
|
|
#ifdef I2CPE_ENC_4_EC_THRESH |
|
|
|
encoders[i].set_ec_threshold(I2CPE_ENC_4_EC_THRESH); |
|
|
|
#endif |
|
|
|
|
|
|
|
encoders[i].set_active(encoders[i].passes_test(true)); |
|
|
|
|
|
|
|
#if (I2CPE_ENC_4_AXIS == E_AXIS) |
|
|
|
#if I2CPE_ENC_4_AXIS == E_AXIS |
|
|
|
encoders[i].set_homed(); |
|
|
|
#endif |
|
|
|
#endif |
|
|
@ -618,56 +613,57 @@ |
|
|
|
|
|
|
|
encoders[i].init(I2CPE_ENC_5_ADDR, I2CPE_ENC_5_AXIS); |
|
|
|
|
|
|
|
#if defined(I2CPE_ENC_5_TYPE) |
|
|
|
#ifdef I2CPE_ENC_5_TYPE |
|
|
|
encoders[i].set_type(I2CPE_ENC_5_TYPE); |
|
|
|
#endif |
|
|
|
#if defined(I2CPE_ENC_5_TICKS_UNIT) |
|
|
|
#ifdef I2CPE_ENC_5_TICKS_UNIT |
|
|
|
encoders[i].set_ticks_unit(I2CPE_ENC_5_TICKS_UNIT); |
|
|
|
#endif |
|
|
|
#if defined(I2CPE_ENC_5_TICKS_REV) |
|
|
|
#ifdef I2CPE_ENC_5_TICKS_REV |
|
|
|
encoders[i].set_stepper_ticks(I2CPE_ENC_5_TICKS_REV); |
|
|
|
#endif |
|
|
|
#if defined(I2CPE_ENC_5_INVERT) |
|
|
|
#ifdef I2CPE_ENC_5_INVERT |
|
|
|
encoders[i].set_inverted(I2CPE_ENC_5_INVERT); |
|
|
|
#endif |
|
|
|
#if defined(I2CPE_ENC_5_EC_METHOD) |
|
|
|
#ifdef I2CPE_ENC_5_EC_METHOD |
|
|
|
encoders[i].set_ec_method(I2CPE_ENC_5_EC_METHOD); |
|
|
|
#endif |
|
|
|
#if defined(I2CPE_ENC_5_EC_THRESH) |
|
|
|
#ifdef I2CPE_ENC_5_EC_THRESH |
|
|
|
encoders[i].set_ec_threshold(I2CPE_ENC_5_EC_THRESH); |
|
|
|
#endif |
|
|
|
|
|
|
|
encoders[i].set_active(encoders[i].passes_test(true)); |
|
|
|
|
|
|
|
#if (I2CPE_ENC_5_AXIS == E_AXIS) |
|
|
|
#if I2CPE_ENC_5_AXIS == E_AXIS |
|
|
|
encoders[i].set_homed(); |
|
|
|
#endif |
|
|
|
#endif |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
void I2CPositionEncodersMgr::report_position(uint8_t idx, bool units, bool noOffset) { |
|
|
|
CHECK_IDX |
|
|
|
void I2CPositionEncodersMgr::report_position(const int8_t idx, const bool units, const bool noOffset) { |
|
|
|
CHECK_IDX(); |
|
|
|
|
|
|
|
if (units) { |
|
|
|
if (units) |
|
|
|
SERIAL_ECHOLN(noOffset ? encoders[idx].mm_from_count(encoders[idx].get_raw_count()) : encoders[idx].get_position_mm()); |
|
|
|
} else { |
|
|
|
else { |
|
|
|
if (noOffset) { |
|
|
|
long raw_count = encoders[idx].get_raw_count(); |
|
|
|
const int32_t raw_count = encoders[idx].get_raw_count(); |
|
|
|
SERIAL_ECHO(axis_codes[encoders[idx].get_axis()]); |
|
|
|
SERIAL_ECHOPGM(" "); |
|
|
|
SERIAL_CHAR(' '); |
|
|
|
|
|
|
|
for (uint8_t j = 31; j > 0; j--) |
|
|
|
SERIAL_ECHO((bool)(0x00000001 & (raw_count >> j))); |
|
|
|
|
|
|
|
SERIAL_ECHO((bool)(0x00000001 & (raw_count))); |
|
|
|
SERIAL_ECHOLNPAIR(" ", raw_count); |
|
|
|
} else |
|
|
|
SERIAL_ECHO((bool)(0x00000001 & raw_count)); |
|
|
|
SERIAL_CHAR(' '); |
|
|
|
SERIAL_ECHOLN(raw_count); |
|
|
|
} |
|
|
|
else |
|
|
|
SERIAL_ECHOLN(encoders[idx].get_position()); |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
void I2CPositionEncodersMgr::change_module_address(uint8_t oldaddr, uint8_t newaddr) { |
|
|
|
void I2CPositionEncodersMgr::change_module_address(const uint8_t oldaddr, const uint8_t newaddr) { |
|
|
|
// First check 'new' address is not in use
|
|
|
|
Wire.beginTransmission(newaddr); |
|
|
|
if (!Wire.endTransmission()) { |
|
|
@ -709,7 +705,7 @@ |
|
|
|
|
|
|
|
// Now, if this module is configured, find which encoder instance it's supposed to correspond to
|
|
|
|
// and enable it (it will likely have failed initialisation on power-up, before the address change).
|
|
|
|
int8_t idx = idx_from_addr(newaddr); |
|
|
|
const int8_t idx = idx_from_addr(newaddr); |
|
|
|
if (idx >= 0 && !encoders[idx].get_active()) { |
|
|
|
SERIAL_ECHO(axis_codes[encoders[idx].get_axis()]); |
|
|
|
SERIAL_ECHOLNPGM(" axis encoder was not detected on printer startup. Trying again."); |
|
|
@ -717,7 +713,7 @@ |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
void I2CPositionEncodersMgr::report_module_firmware(uint8_t address) { |
|
|
|
void I2CPositionEncodersMgr::report_module_firmware(const uint8_t address) { |
|
|
|
// First check there is a module
|
|
|
|
Wire.beginTransmission(address); |
|
|
|
if (Wire.endTransmission()) { |
|
|
@ -727,7 +723,7 @@ |
|
|
|
} |
|
|
|
|
|
|
|
SERIAL_ECHOPAIR("Requesting version info from module at address ", address); |
|
|
|
SERIAL_ECHOPGM(":\n"); |
|
|
|
SERIAL_ECHOLNPGM(":"); |
|
|
|
|
|
|
|
Wire.beginTransmission(address); |
|
|
|
Wire.write(I2CPE_SET_REPORT_MODE); |
|
|
@ -743,7 +739,7 @@ |
|
|
|
} |
|
|
|
|
|
|
|
// Set module back to normal (distance) mode
|
|
|
|
Wire.beginTransmission((int)address); |
|
|
|
Wire.beginTransmission(address); |
|
|
|
Wire.write(I2CPE_SET_REPORT_MODE); |
|
|
|
Wire.write(I2CPE_REPORT_DISTANCE); |
|
|
|
Wire.endTransmission(); |
|
|
@ -753,43 +749,43 @@ |
|
|
|
I2CPE_addr = 0; |
|
|
|
|
|
|
|
if (parser.seen('A')) { |
|
|
|
|
|
|
|
if (!parser.has_value()) { |
|
|
|
SERIAL_PROTOCOLLNPGM("?A seen, but no address specified! [30-200]"); |
|
|
|
return I2CPE_PARSE_ERR; |
|
|
|
}; |
|
|
|
|
|
|
|
I2CPE_addr = parser.value_byte(); |
|
|
|
|
|
|
|
if (!WITHIN(I2CPE_addr, 30, 200)) { // reserve the first 30 and last 55
|
|
|
|
SERIAL_PROTOCOLLNPGM("?Address out of range. [30-200]"); |
|
|
|
return I2CPE_PARSE_ERR; |
|
|
|
} |
|
|
|
|
|
|
|
I2CPE_idx = idx_from_addr(I2CPE_addr); |
|
|
|
|
|
|
|
if (!WITHIN(I2CPE_idx, 0, I2CPE_ENCODER_CNT - 1)) { |
|
|
|
if (I2CPE_idx >= I2CPE_ENCODER_CNT) { |
|
|
|
SERIAL_PROTOCOLLNPGM("?No device with this address!"); |
|
|
|
return I2CPE_PARSE_ERR; |
|
|
|
} |
|
|
|
} else if (parser.seenval('I')) { |
|
|
|
} |
|
|
|
else if (parser.seenval('I')) { |
|
|
|
|
|
|
|
if (!parser.has_value()) { |
|
|
|
SERIAL_PROTOCOLLNPAIR("?I seen, but no index specified! [0-", I2CPE_ENCODER_CNT - 1); |
|
|
|
SERIAL_ECHOLNPGM("]"); |
|
|
|
SERIAL_PROTOCOLLNPGM("]"); |
|
|
|
return I2CPE_PARSE_ERR; |
|
|
|
}; |
|
|
|
|
|
|
|
I2CPE_idx = parser.value_byte(); |
|
|
|
|
|
|
|
if (!WITHIN(I2CPE_idx, 0, I2CPE_ENCODER_CNT - 1)) { |
|
|
|
if (I2CPE_idx >= I2CPE_ENCODER_CNT) { |
|
|
|
SERIAL_PROTOCOLLNPAIR("?Index out of range. [0-", I2CPE_ENCODER_CNT - 1); |
|
|
|
SERIAL_ECHOLNPGM("]"); |
|
|
|
return I2CPE_PARSE_ERR; |
|
|
|
} |
|
|
|
|
|
|
|
I2CPE_addr = encoders[I2CPE_idx].get_address(); |
|
|
|
} else { |
|
|
|
I2CPE_idx = -1; |
|
|
|
} |
|
|
|
else |
|
|
|
I2CPE_idx = 0xFF; |
|
|
|
|
|
|
|
I2CPE_anyaxis = parser.seen_axis(); |
|
|
|
|
|
|
@ -814,15 +810,18 @@ |
|
|
|
void I2CPositionEncodersMgr::M860() { |
|
|
|
if (parse()) return; |
|
|
|
|
|
|
|
bool hasU = parser.seen('U'), hasO = parser.seen('O'); |
|
|
|
const bool hasU = parser.seen('U'), hasO = parser.seen('O'); |
|
|
|
|
|
|
|
if (I2CPE_idx < 0) { |
|
|
|
int8_t idx; |
|
|
|
if (I2CPE_idx == 0xFF) { |
|
|
|
LOOP_XYZE(i) { |
|
|
|
if ((!I2CPE_anyaxis || parser.seen(axis_codes[i])) && ((idx = idx_from_axis(AxisEnum(i))) >= 0)) |
|
|
|
report_position((uint8_t)idx, hasU, hasO); |
|
|
|
if (!I2CPE_anyaxis || parser.seen(axis_codes[i])) { |
|
|
|
const uint8_t idx = idx_from_axis(AxisEnum(i)); |
|
|
|
if ((int8_t)idx >= 0) report_position(idx, hasU, hasO); |
|
|
|
} |
|
|
|
} else report_position((uint8_t)I2CPE_idx, hasU, hasO); |
|
|
|
} |
|
|
|
} |
|
|
|
else |
|
|
|
report_position(I2CPE_idx, hasU, hasO); |
|
|
|
} |
|
|
|
|
|
|
|
/**
|
|
|
@ -841,13 +840,16 @@ |
|
|
|
void I2CPositionEncodersMgr::M861() { |
|
|
|
if (parse()) return; |
|
|
|
|
|
|
|
if (I2CPE_idx < 0) { |
|
|
|
int8_t idx; |
|
|
|
if (I2CPE_idx == 0xFF) { |
|
|
|
LOOP_XYZE(i) { |
|
|
|
if ((!I2CPE_anyaxis || parser.seen(axis_codes[i])) && ((idx = idx_from_axis(AxisEnum(i))) >= 0)) |
|
|
|
report_status((uint8_t)idx); |
|
|
|
if (!I2CPE_anyaxis || parser.seen(axis_codes[i])) { |
|
|
|
const uint8_t idx = idx_from_axis(AxisEnum(i)); |
|
|
|
if ((int8_t)idx >= 0) report_status(idx); |
|
|
|
} |
|
|
|
} |
|
|
|
} else report_status((uint8_t)I2CPE_idx); |
|
|
|
} |
|
|
|
else |
|
|
|
report_status(I2CPE_idx); |
|
|
|
} |
|
|
|
|
|
|
|
/**
|
|
|
@ -867,13 +869,16 @@ |
|
|
|
void I2CPositionEncodersMgr::M862() { |
|
|
|
if (parse()) return; |
|
|
|
|
|
|
|
if (I2CPE_idx < 0) { |
|
|
|
int8_t idx; |
|
|
|
if (I2CPE_idx == 0xFF) { |
|
|
|
LOOP_XYZE(i) { |
|
|
|
if ((!I2CPE_anyaxis || parser.seen(axis_codes[i])) && ((idx = idx_from_axis(AxisEnum(i))) >= 0)) |
|
|
|
test_axis((uint8_t)idx); |
|
|
|
if (!I2CPE_anyaxis || parser.seen(axis_codes[i])) { |
|
|
|
const uint8_t idx = idx_from_axis(AxisEnum(i)); |
|
|
|
if ((int8_t)idx >= 0) test_axis(idx); |
|
|
|
} |
|
|
|
} |
|
|
|
} else test_axis((uint8_t)I2CPE_idx); |
|
|
|
} |
|
|
|
else |
|
|
|
test_axis(I2CPE_idx); |
|
|
|
} |
|
|
|
|
|
|
|
/**
|
|
|
@ -894,15 +899,18 @@ |
|
|
|
void I2CPositionEncodersMgr::M863() { |
|
|
|
if (parse()) return; |
|
|
|
|
|
|
|
int iterations = parser.seenval('P') ? constrain(parser.value_byte(), 1, 10) : 1; |
|
|
|
const uint8_t iterations = constrain(parser.byteval('P', 1), 1, 10); |
|
|
|
|
|
|
|
if (I2CPE_idx < 0) { |
|
|
|
int8_t idx; |
|
|
|
if (I2CPE_idx == 0xFF) { |
|
|
|
LOOP_XYZE(i) { |
|
|
|
if ((!I2CPE_anyaxis || parser.seen(axis_codes[i])) && ((idx = idx_from_axis(AxisEnum(i))) >= 0)) |
|
|
|
calibrate_steps_mm((uint8_t)idx, iterations); |
|
|
|
if (!I2CPE_anyaxis || parser.seen(axis_codes[i])) { |
|
|
|
const uint8_t idx = idx_from_axis(AxisEnum(i)); |
|
|
|
if ((int8_t)idx >= 0) calibrate_steps_mm(idx, iterations); |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
} else calibrate_steps_mm((uint8_t)I2CPE_idx, iterations); |
|
|
|
else |
|
|
|
calibrate_steps_mm(I2CPE_idx, iterations); |
|
|
|
} |
|
|
|
|
|
|
|
/**
|
|
|
@ -910,9 +918,9 @@ |
|
|
|
* |
|
|
|
* A<addr> Module current/old I2C address. If not present, |
|
|
|
* assumes default address (030). [30, 200]. |
|
|
|
* N<addr> Module new I2C address. [30, 200]. |
|
|
|
* S<addr> Module new I2C address. [30, 200]. |
|
|
|
* |
|
|
|
* If N not specified: |
|
|
|
* If S is not specified: |
|
|
|
* X Use I2CPE_PRESET_ADDR_X (030). |
|
|
|
* Y Use I2CPE_PRESET_ADDR_Y (031). |
|
|
|
* Z Use I2CPE_PRESET_ADDR_Z (032). |
|
|
@ -925,22 +933,23 @@ |
|
|
|
|
|
|
|
if (!I2CPE_addr) I2CPE_addr = I2CPE_PRESET_ADDR_X; |
|
|
|
|
|
|
|
if (parser.seen('N')) { |
|
|
|
if (parser.seen('S')) { |
|
|
|
if (!parser.has_value()) { |
|
|
|
SERIAL_PROTOCOLLNPGM("?N seen, but no address specified! [30-200]"); |
|
|
|
SERIAL_PROTOCOLLNPGM("?S seen, but no address specified! [30-200]"); |
|
|
|
return; |
|
|
|
}; |
|
|
|
|
|
|
|
newAddress = parser.value_byte(); |
|
|
|
|
|
|
|
if (!WITHIN(newAddress, 30, 200)) { |
|
|
|
SERIAL_PROTOCOLLNPGM("?New address out of range. [30-200]"); |
|
|
|
return; |
|
|
|
} |
|
|
|
} else if (!I2CPE_anyaxis) { |
|
|
|
SERIAL_PROTOCOLLNPGM("?You must specify N or [XYZE]."); |
|
|
|
} |
|
|
|
else if (!I2CPE_anyaxis) { |
|
|
|
SERIAL_PROTOCOLLNPGM("?You must specify S or [XYZE]."); |
|
|
|
return; |
|
|
|
} else { |
|
|
|
} |
|
|
|
else { |
|
|
|
if (parser.seen('X')) newAddress = I2CPE_PRESET_ADDR_X; |
|
|
|
else if (parser.seen('Y')) newAddress = I2CPE_PRESET_ADDR_Y; |
|
|
|
else if (parser.seen('Z')) newAddress = I2CPE_PRESET_ADDR_Z; |
|
|
@ -970,12 +979,15 @@ |
|
|
|
if (parse()) return; |
|
|
|
|
|
|
|
if (!I2CPE_addr) { |
|
|
|
int8_t idx; |
|
|
|
LOOP_XYZE(i) { |
|
|
|
if ((!I2CPE_anyaxis || parser.seen(axis_codes[i])) && ((idx = idx_from_axis(AxisEnum(i))) >= 0)) |
|
|
|
report_module_firmware(encoders[idx].get_address()); |
|
|
|
if (!I2CPE_anyaxis || parser.seen(axis_codes[i])) { |
|
|
|
const uint8_t idx = idx_from_axis(AxisEnum(i)); |
|
|
|
if ((int8_t)idx >= 0) report_module_firmware(encoders[idx].get_address()); |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
} else report_module_firmware(I2CPE_addr); |
|
|
|
else |
|
|
|
report_module_firmware(I2CPE_addr); |
|
|
|
} |
|
|
|
|
|
|
|
/**
|
|
|
@ -995,21 +1007,26 @@ |
|
|
|
void I2CPositionEncodersMgr::M866() { |
|
|
|
if (parse()) return; |
|
|
|
|
|
|
|
bool hasR = parser.seen('R'); |
|
|
|
const bool hasR = parser.seen('R'); |
|
|
|
|
|
|
|
if (I2CPE_idx < 0) { |
|
|
|
int8_t idx; |
|
|
|
if (I2CPE_idx == 0xFF) { |
|
|
|
LOOP_XYZE(i) { |
|
|
|
if ((!I2CPE_anyaxis || parser.seen(axis_codes[i])) && ((idx = idx_from_axis(AxisEnum(i))) >= 0)) { |
|
|
|
if (hasR) reset_error_count((uint8_t)idx, AxisEnum(i)); |
|
|
|
else report_error_count((uint8_t)idx, AxisEnum(i)); |
|
|
|
if (!I2CPE_anyaxis || parser.seen(axis_codes[i])) { |
|
|
|
const uint8_t idx = idx_from_axis(AxisEnum(i)); |
|
|
|
if ((int8_t)idx >= 0) { |
|
|
|
if (hasR) |
|
|
|
reset_error_count(idx, AxisEnum(i)); |
|
|
|
else |
|
|
|
report_error_count(idx, AxisEnum(i)); |
|
|
|
} |
|
|
|
} |
|
|
|
} else { |
|
|
|
if (hasR) reset_error_count((uint8_t)I2CPE_idx, encoders[I2CPE_idx].get_axis()); |
|
|
|
else report_error_count((uint8_t)I2CPE_idx, encoders[I2CPE_idx].get_axis()); |
|
|
|
} |
|
|
|
} |
|
|
|
else if (hasR) |
|
|
|
reset_error_count(I2CPE_idx, encoders[I2CPE_idx].get_axis()); |
|
|
|
else |
|
|
|
report_error_count(I2CPE_idx, encoders[I2CPE_idx].get_axis()); |
|
|
|
} |
|
|
|
|
|
|
|
/**
|
|
|
|
* M867: Enable/disable or toggle error correction for position encoder modules. |
|
|
@ -1028,19 +1045,22 @@ |
|
|
|
void I2CPositionEncodersMgr::M867() { |
|
|
|
if (parse()) return; |
|
|
|
|
|
|
|
int8_t onoff = parser.seenval('S') ? parser.value_int() : -1; |
|
|
|
const int8_t onoff = parser.seenval('S') ? parser.value_int() : -1; |
|
|
|
|
|
|
|
if (I2CPE_idx < 0) { |
|
|
|
int8_t idx; |
|
|
|
if (I2CPE_idx == 0xFF) { |
|
|
|
LOOP_XYZE(i) { |
|
|
|
if ((!I2CPE_anyaxis || parser.seen(axis_codes[i])) && ((idx = idx_from_axis(AxisEnum(i))) >= 0)) { |
|
|
|
if (onoff == -1) enable_ec((uint8_t)idx, !encoders[idx].get_ec_enabled(), AxisEnum(i)); |
|
|
|
else enable_ec((uint8_t)idx, (bool)onoff, AxisEnum(i)); |
|
|
|
if (!I2CPE_anyaxis || parser.seen(axis_codes[i])) { |
|
|
|
const uint8_t idx = idx_from_axis(AxisEnum(i)); |
|
|
|
if ((int8_t)idx >= 0) { |
|
|
|
const bool ena = onoff == -1 ? !encoders[I2CPE_idx].get_ec_enabled() : !!onoff; |
|
|
|
enable_ec(idx, ena, AxisEnum(i)); |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
} else { |
|
|
|
if (onoff == -1) enable_ec((uint8_t)I2CPE_idx, !encoders[I2CPE_idx].get_ec_enabled(), encoders[I2CPE_idx].get_axis()); |
|
|
|
else enable_ec((uint8_t)I2CPE_idx, (bool)onoff, encoders[I2CPE_idx].get_axis()); |
|
|
|
} |
|
|
|
else { |
|
|
|
const bool ena = onoff == -1 ? !encoders[I2CPE_idx].get_ec_enabled() : !!onoff; |
|
|
|
enable_ec(I2CPE_idx, ena, encoders[I2CPE_idx].get_axis()); |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
@ -1061,20 +1081,25 @@ |
|
|
|
void I2CPositionEncodersMgr::M868() { |
|
|
|
if (parse()) return; |
|
|
|
|
|
|
|
float newThreshold = parser.seenval('T') ? parser.value_float() : -9999; |
|
|
|
const float newThreshold = parser.seenval('T') ? parser.value_float() : -9999; |
|
|
|
|
|
|
|
if (I2CPE_idx < 0) { |
|
|
|
int8_t idx; |
|
|
|
if (I2CPE_idx == 0xFF) { |
|
|
|
LOOP_XYZE(i) { |
|
|
|
if ((!I2CPE_anyaxis || parser.seen(axis_codes[i])) && ((idx = idx_from_axis(AxisEnum(i))) >= 0)) { |
|
|
|
if (newThreshold != -9999) set_ec_threshold((uint8_t)idx, newThreshold, encoders[idx].get_axis()); |
|
|
|
else get_ec_threshold((uint8_t)idx, encoders[idx].get_axis()); |
|
|
|
if (!I2CPE_anyaxis || parser.seen(axis_codes[i])) { |
|
|
|
const uint8_t idx = idx_from_axis(AxisEnum(i)); |
|
|
|
if ((int8_t)idx >= 0) { |
|
|
|
if (newThreshold != -9999) |
|
|
|
set_ec_threshold(idx, newThreshold, encoders[idx].get_axis()); |
|
|
|
else |
|
|
|
get_ec_threshold(idx, encoders[idx].get_axis()); |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
} else { |
|
|
|
if (newThreshold != -9999) set_ec_threshold((uint8_t)I2CPE_idx, newThreshold, encoders[I2CPE_idx].get_axis()); |
|
|
|
else get_ec_threshold((uint8_t)I2CPE_idx, encoders[I2CPE_idx].get_axis()); |
|
|
|
} |
|
|
|
else if (newThreshold != -9999) |
|
|
|
set_ec_threshold(I2CPE_idx, newThreshold, encoders[I2CPE_idx].get_axis()); |
|
|
|
else |
|
|
|
get_ec_threshold(I2CPE_idx, encoders[I2CPE_idx].get_axis()); |
|
|
|
} |
|
|
|
|
|
|
|
/**
|
|
|
@ -1092,13 +1117,16 @@ |
|
|
|
void I2CPositionEncodersMgr::M869() { |
|
|
|
if (parse()) return; |
|
|
|
|
|
|
|
if (I2CPE_idx < 0) { |
|
|
|
int8_t idx; |
|
|
|
if (I2CPE_idx == 0xFF) { |
|
|
|
LOOP_XYZE(i) { |
|
|
|
if ((!I2CPE_anyaxis || parser.seen(axis_codes[i])) && ((idx = idx_from_axis(AxisEnum(i))) >= 0)) |
|
|
|
report_error((uint8_t)idx); |
|
|
|
if (!I2CPE_anyaxis || parser.seen(axis_codes[i])) { |
|
|
|
const uint8_t idx = idx_from_axis(AxisEnum(i)); |
|
|
|
if ((int8_t)idx >= 0) report_error(idx); |
|
|
|
} |
|
|
|
} |
|
|
|
} else report_error((uint8_t)I2CPE_idx); |
|
|
|
} |
|
|
|
else |
|
|
|
report_error(I2CPE_idx); |
|
|
|
} |
|
|
|
|
|
|
|
#endif |
|
|
|
#endif // I2C_POSITION_ENCODERS
|
|
|
|