|
|
@ -541,13 +541,14 @@ float junction_deviation = 0.1; |
|
|
|
// these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
|
|
|
|
block->steps[A_AXIS] = labs(dx + dy); |
|
|
|
block->steps[B_AXIS] = labs(dx - dy); |
|
|
|
block->steps[Z_AXIS] = labs(dz); |
|
|
|
#else |
|
|
|
// default non-h-bot planning
|
|
|
|
block->steps[X_AXIS] = labs(dx); |
|
|
|
block->steps[Y_AXIS] = labs(dy); |
|
|
|
block->steps[Z_AXIS] = labs(dz); |
|
|
|
#endif |
|
|
|
|
|
|
|
block->steps[Z_AXIS] = labs(dz); |
|
|
|
block->steps[E_AXIS] = labs(de); |
|
|
|
block->steps[E_AXIS] *= volumetric_multiplier[extruder]; |
|
|
|
block->steps[E_AXIS] *= extruder_multiplier[extruder]; |
|
|
@ -568,13 +569,14 @@ float junction_deviation = 0.1; |
|
|
|
#ifdef COREXY |
|
|
|
if (dx < 0) db |= BIT(X_HEAD); // Save the real Extruder (head) direction in X Axis
|
|
|
|
if (dy < 0) db |= BIT(Y_HEAD); // ...and Y
|
|
|
|
if (dz < 0) db |= BIT(Z_AXIS); |
|
|
|
if (dx + dy < 0) db |= BIT(A_AXIS); // Motor A direction
|
|
|
|
if (dx - dy < 0) db |= BIT(B_AXIS); // Motor B direction
|
|
|
|
#else |
|
|
|
if (dx < 0) db |= BIT(X_AXIS); |
|
|
|
if (dy < 0) db |= BIT(Y_AXIS); |
|
|
|
#endif |
|
|
|
if (dz < 0) db |= BIT(Z_AXIS); |
|
|
|
#endif |
|
|
|
if (de < 0) db |= BIT(E_AXIS); |
|
|
|
block->direction_bits = db; |
|
|
|
|
|
|
@ -586,14 +588,16 @@ float junction_deviation = 0.1; |
|
|
|
enable_x(); |
|
|
|
enable_y(); |
|
|
|
} |
|
|
|
#ifndef Z_LATE_ENABLE |
|
|
|
if (block->steps[Z_AXIS]) enable_z(); |
|
|
|
#endif |
|
|
|
#else |
|
|
|
if (block->steps[X_AXIS]) enable_x(); |
|
|
|
if (block->steps[Y_AXIS]) enable_y(); |
|
|
|
#endif |
|
|
|
|
|
|
|
#ifndef Z_LATE_ENABLE |
|
|
|
if (block->steps[Z_AXIS]) enable_z(); |
|
|
|
#endif |
|
|
|
#endif |
|
|
|
|
|
|
|
// Enable extruder(s)
|
|
|
|
if (block->steps[E_AXIS]) { |
|
|
@ -676,14 +680,15 @@ float junction_deviation = 0.1; |
|
|
|
float delta_mm[6]; |
|
|
|
delta_mm[X_HEAD] = dx / axis_steps_per_unit[A_AXIS]; |
|
|
|
delta_mm[Y_HEAD] = dy / axis_steps_per_unit[B_AXIS]; |
|
|
|
delta_mm[Z_AXIS] = dz / axis_steps_per_unit[Z_AXIS]; |
|
|
|
delta_mm[A_AXIS] = (dx + dy) / axis_steps_per_unit[A_AXIS]; |
|
|
|
delta_mm[B_AXIS] = (dx - dy) / axis_steps_per_unit[B_AXIS]; |
|
|
|
#else |
|
|
|
float delta_mm[4]; |
|
|
|
delta_mm[X_AXIS] = dx / axis_steps_per_unit[X_AXIS]; |
|
|
|
delta_mm[Y_AXIS] = dy / axis_steps_per_unit[Y_AXIS]; |
|
|
|
#endif |
|
|
|
delta_mm[Z_AXIS] = dz / axis_steps_per_unit[Z_AXIS]; |
|
|
|
#endif |
|
|
|
delta_mm[E_AXIS] = (de / axis_steps_per_unit[E_AXIS]) * volumetric_multiplier[extruder] * extruder_multiplier[extruder] / 100.0; |
|
|
|
|
|
|
|
if (block->steps[X_AXIS] <= dropsegments && block->steps[Y_AXIS] <= dropsegments && block->steps[Z_AXIS] <= dropsegments) { |
|
|
@ -692,11 +697,10 @@ float junction_deviation = 0.1; |
|
|
|
else { |
|
|
|
block->millimeters = sqrt( |
|
|
|
#ifdef COREXY |
|
|
|
square(delta_mm[X_HEAD]) + square(delta_mm[Y_HEAD]) |
|
|
|
square(delta_mm[X_HEAD]) + square(delta_mm[Y_HEAD]) + square(delta_mm[Z_AXIS]) |
|
|
|
#else |
|
|
|
square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) |
|
|
|
square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_AXIS]) |
|
|
|
#endif |
|
|
|
+ square(delta_mm[Z_AXIS]) |
|
|
|
); |
|
|
|
} |
|
|
|
float inverse_millimeters = 1.0 / block->millimeters; // Inverse millimeters to remove multiple divides
|
|
|
|