Browse Source

Merge pull request #10443 from thinkyhead/bf2_fix_and_improve

[2.0.x] Improve UBL mesh report, M420 V T, M421 N, and…
pull/1/head
Scott Lahteine 7 years ago
committed by GitHub
parent
commit
f57a008c58
No known key found for this signature in database GPG Key ID: 4AEE18F83AFDEB23
  1. 2
      Marlin/src/core/macros.h
  2. 16
      Marlin/src/feature/bedlevel/bedlevel.cpp
  3. 136
      Marlin/src/feature/bedlevel/ubl/ubl.cpp
  4. 4
      Marlin/src/feature/bedlevel/ubl/ubl_G29.cpp
  5. 14
      Marlin/src/feature/fwretract.cpp
  6. 3
      Marlin/src/gcode/bedlevel/M420.cpp
  7. 6
      Marlin/src/gcode/bedlevel/ubl/M421.cpp
  8. 8
      Marlin/src/gcode/config/M221.cpp
  9. 4
      Marlin/src/inc/Conditionals_post.h
  10. 14
      Marlin/src/lcd/ultralcd.cpp

2
Marlin/src/core/macros.h

@ -208,7 +208,7 @@
#define NEAR(x,y) NEAR_ZERO((x)-(y)) #define NEAR(x,y) NEAR_ZERO((x)-(y))
#define RECIPROCAL(x) (NEAR_ZERO(x) ? 0.0 : 1.0 / (x)) #define RECIPROCAL(x) (NEAR_ZERO(x) ? 0.0 : 1.0 / (x))
#define FIXFLOAT(f) (f + 0.00001) #define FIXFLOAT(f) (f + (f < 0.0 ? -0.00001 : 0.00001))
// //
// Maths macros that can be overridden by HAL // Maths macros that can be overridden by HAL

16
Marlin/src/feature/bedlevel/bedlevel.cpp

@ -99,7 +99,21 @@ void set_bed_leveling_enabled(const bool enable/*=true*/) {
planner.unapply_leveling(current_position); planner.unapply_leveling(current_position);
} }
#else #else
planner.leveling_active = enable; // just flip the bit, current_position will be wrong until next move. // UBL equivalents for apply/unapply_leveling
#if ENABLED(SKEW_CORRECTION)
float pos[XYZ] = { current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] };
planner.skew(pos[X_AXIS], pos[Y_AXIS], pos[Z_AXIS]);
#else
const float (&pos)[XYZE] = current_position;
#endif
if (planner.leveling_active) {
current_position[Z_AXIS] += ubl.get_z_correction(pos[X_AXIS], pos[Y_AXIS], pos[Z_AXIS]);
planner.leveling_active = false;
}
else {
planner.leveling_active = true;
current_position[Z_AXIS] -= ubl.get_z_correction(pos[X_AXIS], pos[Y_AXIS], pos[Z_AXIS]);
}
#endif #endif
#else // OLDSCHOOL_ABL #else // OLDSCHOOL_ABL

136
Marlin/src/feature/bedlevel/ubl/ubl.cpp

@ -51,7 +51,7 @@
) { ) {
if (!leveling_is_valid()) return; if (!leveling_is_valid()) return;
SERIAL_ECHO_START_P(port); SERIAL_ECHO_START_P(port);
SERIAL_ECHOLNPGM_P(port, " G29 I 999"); SERIAL_ECHOLNPGM_P(port, " G29 I99");
for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++) for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++) for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
if (!isnan(z_values[x][y])) { if (!isnan(z_values[x][y])) {
@ -59,9 +59,7 @@
SERIAL_ECHOPAIR_P(port, " M421 I", x); SERIAL_ECHOPAIR_P(port, " M421 I", x);
SERIAL_ECHOPAIR_P(port, " J", y); SERIAL_ECHOPAIR_P(port, " J", y);
SERIAL_ECHOPGM_P(port, " Z"); SERIAL_ECHOPGM_P(port, " Z");
SERIAL_ECHO_F_P(port, z_values[x][y], 6); SERIAL_ECHO_F_P(port, z_values[x][y], 2);
SERIAL_ECHOPAIR_P(port, " ; X", LOGICAL_X_POSITION(mesh_index_to_xpos(x)));
SERIAL_ECHOPAIR_P(port, ", Y", LOGICAL_Y_POSITION(mesh_index_to_ypos(y)));
SERIAL_EOL_P(port); SERIAL_EOL_P(port);
safe_delay(75); // Prevent Printrun from exploding safe_delay(75); // Prevent Printrun from exploding
} }
@ -83,15 +81,6 @@
safe_delay(50); safe_delay(50);
} }
static void serial_echo_xy(const int16_t x, const int16_t y) {
SERIAL_CHAR('(');
SERIAL_ECHO(x);
SERIAL_CHAR(',');
SERIAL_ECHO(y);
SERIAL_CHAR(')');
safe_delay(10);
}
#if ENABLED(UBL_DEVEL_DEBUGGING) #if ENABLED(UBL_DEVEL_DEBUGGING)
static void debug_echo_axis(const AxisEnum axis) { static void debug_echo_axis(const AxisEnum axis) {
@ -189,78 +178,109 @@
} }
} }
// display_map() currently produces three different mesh map types static void serial_echo_xy(const uint8_t sp, const int16_t x, const int16_t y) {
// 0 : suitable for PronterFace and Repetier's serial console SERIAL_ECHO_SP(sp);
// 1 : .CSV file suitable for importation into various spread sheets SERIAL_CHAR('(');
// 2 : disply of the map data on a RepRap Graphical LCD Panel if (x < 100) { SERIAL_CHAR(' '); if (x < 10) SERIAL_CHAR(' '); }
SERIAL_ECHO(x);
SERIAL_CHAR(',');
if (y < 100) { SERIAL_CHAR(' '); if (y < 10) SERIAL_CHAR(' '); }
SERIAL_ECHO(y);
SERIAL_CHAR(')');
safe_delay(5);
}
static void serial_echo_column_labels(const uint8_t sp) {
SERIAL_ECHO_SP(7);
for (int8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
if (i < 10) SERIAL_CHAR(' ');
SERIAL_ECHO(i);
SERIAL_ECHO_SP(sp);
}
safe_delay(10);
}
/**
* Produce one of these mesh maps:
* 0: Human-readable
* 1: CSV format for spreadsheet import
* 2: TODO: Display on Graphical LCD
* 4: Compact Human-Readable
*/
void unified_bed_leveling::display_map(const int map_type) { void unified_bed_leveling::display_map(const int map_type) {
#if HAS_AUTO_REPORTING || ENABLED(HOST_KEEPALIVE_FEATURE) #if HAS_AUTO_REPORTING || ENABLED(HOST_KEEPALIVE_FEATURE)
suspend_auto_report = true; suspend_auto_report = true;
#endif #endif
constexpr uint8_t spaces = 8 * (GRID_MAX_POINTS_X - 2); constexpr uint8_t eachsp = 1 + 6 + 1, // [-3.567]
twixt = eachsp * (GRID_MAX_POINTS_X) - 9 * 2; // Leading 4sp, Coordinates 9sp each
SERIAL_PROTOCOLPGM("\nBed Topography Report"); const bool human = !(map_type & 0x3), csv = map_type == 1, lcd = map_type == 2, comp = map_type & 0x4;
if (map_type == 0) {
SERIAL_PROTOCOLPGM(":\n\n"); SERIAL_ECHOPGM("\nBed Topography Report");
serial_echo_xy(0, GRID_MAX_POINTS_Y - 1); if (human) {
SERIAL_ECHO_SP(spaces + 3); SERIAL_ECHOPGM(":\n\n");
serial_echo_xy(GRID_MAX_POINTS_X - 1, GRID_MAX_POINTS_Y - 1); serial_echo_xy(4, MESH_MIN_X, MESH_MAX_Y);
SERIAL_EOL(); serial_echo_xy(twixt, MESH_MAX_X, MESH_MAX_Y);
serial_echo_xy(MESH_MIN_X, MESH_MAX_Y);
SERIAL_ECHO_SP(spaces);
serial_echo_xy(MESH_MAX_X, MESH_MAX_Y);
SERIAL_EOL(); SERIAL_EOL();
serial_echo_column_labels(eachsp - 2);
} }
else { else {
SERIAL_PROTOCOLPGM(" for "); SERIAL_ECHOPGM(" for ");
serialprintPGM(map_type == 1 ? PSTR("CSV:\n\n") : PSTR("LCD:\n\n")); serialprintPGM(csv ? PSTR("CSV:\n") : PSTR("LCD:\n"));
} }
const float current_xi = get_cell_index_x(current_position[X_AXIS] + (MESH_X_DIST) / 2.0), const float current_xi = get_cell_index_x(current_position[X_AXIS] + (MESH_X_DIST) / 2.0),
current_yi = get_cell_index_y(current_position[Y_AXIS] + (MESH_Y_DIST) / 2.0); current_yi = get_cell_index_y(current_position[Y_AXIS] + (MESH_Y_DIST) / 2.0);
if (!lcd) SERIAL_EOL();
for (int8_t j = GRID_MAX_POINTS_Y - 1; j >= 0; j--) { for (int8_t j = GRID_MAX_POINTS_Y - 1; j >= 0; j--) {
// Row Label (J index)
if (human) {
if (j < 10) SERIAL_CHAR(' ');
SERIAL_ECHO(j);
SERIAL_ECHOPGM(" |");
}
// Row Values (I indexes)
for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) { for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
const bool is_current = i == current_xi && j == current_yi;
// is the nozzle here? then mark the number // Opening Brace or Space
if (map_type == 0) SERIAL_CHAR(is_current ? '[' : ' '); const bool is_current = i == current_xi && j == current_yi;
if (human) SERIAL_CHAR(is_current ? '[' : ' ');
// Z Value at current I, J
const float f = z_values[i][j]; const float f = z_values[i][j];
if (isnan(f)) { if (lcd) {
serialprintPGM(map_type == 0 ? PSTR(" . ") : PSTR("NAN")); // TODO: Display on Graphical LCD
} }
else if (map_type <= 1) { else if (isnan(f))
// if we don't do this, the columns won't line up nicely serialprintPGM(human ? PSTR(" . ") : PSTR("NAN"));
if (map_type == 0 && f >= 0.0) SERIAL_CHAR(' '); else if (human || csv) {
SERIAL_PROTOCOL_F(f, 3); if (human && f >= 0.0) SERIAL_CHAR(f > 0 ? '+' : ' '); // Space for positive ('-' for negative)
SERIAL_ECHO_F(f, 3); // Positive: 5 digits, Negative: 6 digits
} }
idle(); if (csv && i < GRID_MAX_POINTS_X - 1) SERIAL_CHAR('\t');
if (map_type == 1 && i < GRID_MAX_POINTS_X - 1) SERIAL_CHAR(',');
// Closing Brace or Space
if (human) SERIAL_CHAR(is_current ? ']' : ' ');
SERIAL_FLUSHTX(); SERIAL_FLUSHTX();
safe_delay(15); idle();
if (map_type == 0) {
SERIAL_CHAR(is_current ? ']' : ' ');
SERIAL_CHAR(' ');
}
}
SERIAL_EOL();
if (j && map_type == 0) { // we want the (0,0) up tight against the block of numbers
SERIAL_CHAR(' ');
SERIAL_EOL();
} }
if (!lcd) SERIAL_EOL();
// A blank line between rows (unless compact)
if (j && human && !comp) SERIAL_ECHOLNPGM(" |");
} }
if (map_type == 0) { if (human) {
serial_echo_xy(MESH_MIN_X, MESH_MIN_Y); serial_echo_column_labels(eachsp - 2);
SERIAL_ECHO_SP(spaces + 4); SERIAL_EOL();
serial_echo_xy(MESH_MAX_X, MESH_MIN_Y); serial_echo_xy(4, MESH_MIN_X, MESH_MIN_Y);
serial_echo_xy(twixt, MESH_MAX_X, MESH_MIN_Y);
SERIAL_EOL(); SERIAL_EOL();
serial_echo_xy(0, 0);
SERIAL_ECHO_SP(spaces + 5);
serial_echo_xy(GRID_MAX_POINTS_X - 1, 0);
SERIAL_EOL(); SERIAL_EOL();
} }

4
Marlin/src/feature/bedlevel/ubl/ubl_G29.cpp

@ -252,9 +252,7 @@
* for subsequent Load and Store operations. Valid storage slot numbers begin at 0 and * for subsequent Load and Store operations. Valid storage slot numbers begin at 0 and
* extend to a limit related to the available EEPROM storage. * extend to a limit related to the available EEPROM storage.
* *
* S -1 Store Store the current Mesh as a print out that is suitable to be feed back into the system * S -1 Store Print the current Mesh as G-code that can be used to restore the mesh anytime.
* at a later date. The GCode output can be saved and later replayed by the host software
* to reconstruct the current mesh on another machine.
* *
* T Topology Display the Mesh Map Topology. * T Topology Display the Mesh Map Topology.
* 'T' can be used alone (e.g., G29 T) or in combination with most of the other commands. * 'T' can be used alone (e.g., G29 T) or in combination with most of the other commands.

14
Marlin/src/feature/fwretract.cpp

@ -122,6 +122,7 @@ void FWRetract::retract(const bool retracting
SERIAL_ECHOLNPAIR("] ", retracted_swap[i]); SERIAL_ECHOLNPAIR("] ", retracted_swap[i]);
} }
SERIAL_ECHOLNPAIR("current_position[z] ", current_position[Z_AXIS]); SERIAL_ECHOLNPAIR("current_position[z] ", current_position[Z_AXIS]);
SERIAL_ECHOLNPAIR("current_position[e] ", current_position[E_AXIS]);
SERIAL_ECHOLNPAIR("hop_amount ", hop_amount); SERIAL_ECHOLNPAIR("hop_amount ", hop_amount);
//*/ //*/
@ -138,7 +139,7 @@ void FWRetract::retract(const bool retracting
feedrate_mm_s = retract_feedrate_mm_s; feedrate_mm_s = retract_feedrate_mm_s;
current_position[E_AXIS] += (swapping ? swap_retract_length : retract_length) * renormalize; current_position[E_AXIS] += (swapping ? swap_retract_length : retract_length) * renormalize;
sync_plan_position_e(); sync_plan_position_e();
prepare_move_to_destination(); prepare_move_to_destination(); // set_current_to_destination
// Is a Z hop set, and has the hop not yet been done? // Is a Z hop set, and has the hop not yet been done?
// No double zlifting // No double zlifting
@ -148,7 +149,7 @@ void FWRetract::retract(const bool retracting
hop_amount += retract_zlift; // Add to the hop total (again, only once) hop_amount += retract_zlift; // Add to the hop total (again, only once)
destination[Z_AXIS] += retract_zlift; // Raise Z by the zlift (M207 Z) amount destination[Z_AXIS] += retract_zlift; // Raise Z by the zlift (M207 Z) amount
feedrate_mm_s = planner.max_feedrate_mm_s[Z_AXIS]; // Maximum Z feedrate feedrate_mm_s = planner.max_feedrate_mm_s[Z_AXIS]; // Maximum Z feedrate
prepare_move_to_destination(); // Raise up prepare_move_to_destination(); // Raise up, set_current_to_destination
current_position[Z_AXIS] = old_z; // Spoof the Z position in the planner current_position[Z_AXIS] = old_z; // Spoof the Z position in the planner
SYNC_PLAN_POSITION_KINEMATIC(); SYNC_PLAN_POSITION_KINEMATIC();
} }
@ -159,17 +160,17 @@ void FWRetract::retract(const bool retracting
current_position[Z_AXIS] += hop_amount; // Set actual Z (due to the prior hop) current_position[Z_AXIS] += hop_amount; // Set actual Z (due to the prior hop)
SYNC_PLAN_POSITION_KINEMATIC(); // Spoof the Z position in the planner SYNC_PLAN_POSITION_KINEMATIC(); // Spoof the Z position in the planner
feedrate_mm_s = planner.max_feedrate_mm_s[Z_AXIS]; // Z feedrate to max feedrate_mm_s = planner.max_feedrate_mm_s[Z_AXIS]; // Z feedrate to max
prepare_move_to_destination(); // Lower Z and update current_position prepare_move_to_destination(); // Lower Z, set_current_to_destination
hop_amount = 0.0; // Clear the hop amount hop_amount = 0.0; // Clear the hop amount
} }
// A retract multiplier has been added here to get faster swap recovery // A retract multiplier has been added here to get faster swap recovery
feedrate_mm_s = swapping ? swap_retract_recover_feedrate_mm_s : retract_recover_feedrate_mm_s; feedrate_mm_s = swapping ? swap_retract_recover_feedrate_mm_s : retract_recover_feedrate_mm_s;
const float move_e = swapping ? swap_retract_length + swap_retract_recover_length : retract_length + retract_recover_length; current_position[E_AXIS] -= (swapping ? swap_retract_length + swap_retract_recover_length
current_position[E_AXIS] -= move_e * renormalize; : retract_length + retract_recover_length) * renormalize;
sync_plan_position_e(); sync_plan_position_e();
prepare_move_to_destination(); // Recover E prepare_move_to_destination(); // Recover E, set_current_to_destination
} }
feedrate_mm_s = old_feedrate_mm_s; // Restore original feedrate feedrate_mm_s = old_feedrate_mm_s; // Restore original feedrate
@ -192,6 +193,7 @@ void FWRetract::retract(const bool retracting
SERIAL_ECHOLNPAIR("] ", retracted_swap[i]); SERIAL_ECHOLNPAIR("] ", retracted_swap[i]);
} }
SERIAL_ECHOLNPAIR("current_position[z] ", current_position[Z_AXIS]); SERIAL_ECHOLNPAIR("current_position[z] ", current_position[Z_AXIS]);
SERIAL_ECHOLNPAIR("current_position[e] ", current_position[E_AXIS]);
SERIAL_ECHOLNPAIR("hop_amount ", hop_amount); SERIAL_ECHOLNPAIR("hop_amount ", hop_amount);
//*/ //*/

3
Marlin/src/gcode/bedlevel/M420.cpp

@ -42,6 +42,7 @@
* With AUTO_BED_LEVELING_UBL only: * With AUTO_BED_LEVELING_UBL only:
* *
* L[index] Load UBL mesh from index (0 is default) * L[index] Load UBL mesh from index (0 is default)
* T[map] 0:Human-readable 1:CSV 2:"LCD" 4:Compact
*/ */
void GcodeSuite::M420() { void GcodeSuite::M420() {
@ -80,7 +81,7 @@ void GcodeSuite::M420() {
// L or V display the map info // L or V display the map info
if (parser.seen('L') || parser.seen('V')) { if (parser.seen('L') || parser.seen('V')) {
ubl.display_map(0); // Currently only supports one map type ubl.display_map(parser.byteval('T'));
SERIAL_ECHOLNPAIR("ubl.mesh_is_valid = ", ubl.mesh_is_valid()); SERIAL_ECHOLNPAIR("ubl.mesh_is_valid = ", ubl.mesh_is_valid());
SERIAL_ECHOLNPAIR("ubl.storage_slot = ", ubl.storage_slot); SERIAL_ECHOLNPAIR("ubl.storage_slot = ", ubl.storage_slot);
} }

6
Marlin/src/gcode/bedlevel/ubl/M421.cpp

@ -37,6 +37,7 @@
* Usage: * Usage:
* M421 I<xindex> J<yindex> Z<linear> * M421 I<xindex> J<yindex> Z<linear>
* M421 I<xindex> J<yindex> Q<offset> * M421 I<xindex> J<yindex> Q<offset>
* M421 I<xindex> J<yindex> N
* M421 C Z<linear> * M421 C Z<linear>
* M421 C Q<offset> * M421 C Q<offset>
*/ */
@ -45,6 +46,7 @@ void GcodeSuite::M421() {
const bool hasI = ix >= 0, const bool hasI = ix >= 0,
hasJ = iy >= 0, hasJ = iy >= 0,
hasC = parser.seen('C'), hasC = parser.seen('C'),
hasN = parser.seen('N'),
hasZ = parser.seen('Z'), hasZ = parser.seen('Z'),
hasQ = !hasZ && parser.seen('Q'); hasQ = !hasZ && parser.seen('Q');
@ -54,7 +56,7 @@ void GcodeSuite::M421() {
iy = location.y_index; iy = location.y_index;
} }
if (int(hasC) + int(hasI && hasJ) != 1 || !(hasZ || hasQ)) { if (int(hasC) + int(hasI && hasJ) != 1 || !(hasZ || hasQ || hasN)) {
SERIAL_ERROR_START(); SERIAL_ERROR_START();
SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS); SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
} }
@ -63,7 +65,7 @@ void GcodeSuite::M421() {
SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY); SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
} }
else else
ubl.z_values[ix][iy] = parser.value_linear_units() + (hasQ ? ubl.z_values[ix][iy] : 0); ubl.z_values[ix][iy] = hasN ? NAN : parser.value_linear_units() + (hasQ ? ubl.z_values[ix][iy] : 0);
} }
#endif // AUTO_BED_LEVELING_UBL #endif // AUTO_BED_LEVELING_UBL

8
Marlin/src/gcode/config/M221.cpp

@ -32,4 +32,12 @@ void GcodeSuite::M221() {
planner.flow_percentage[target_extruder] = parser.value_int(); planner.flow_percentage[target_extruder] = parser.value_int();
planner.refresh_e_factor(target_extruder); planner.refresh_e_factor(target_extruder);
} }
else {
SERIAL_ECHO_START();
SERIAL_CHAR('E');
SERIAL_CHAR('0' + target_extruder);
SERIAL_ECHOPAIR(" Flow: ", planner.flow_percentage[target_extruder]);
SERIAL_CHAR('%');
SERIAL_EOL();
}
} }

4
Marlin/src/inc/Conditionals_post.h

@ -1039,6 +1039,10 @@
#define PLANNER_LEVELING (OLDSCHOOL_ABL || ENABLED(MESH_BED_LEVELING) || UBL_SEGMENTED || ENABLED(SKEW_CORRECTION)) #define PLANNER_LEVELING (OLDSCHOOL_ABL || ENABLED(MESH_BED_LEVELING) || UBL_SEGMENTED || ENABLED(SKEW_CORRECTION))
#define HAS_PROBING_PROCEDURE (HAS_ABL || ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)) #define HAS_PROBING_PROCEDURE (HAS_ABL || ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST))
#if ENABLED(AUTO_BED_LEVELING_UBL)
#undef LCD_BED_LEVELING
#endif
/** /**
* Heater & Fan Pausing * Heater & Fan Pausing
*/ */

14
Marlin/src/lcd/ultralcd.cpp

@ -2931,14 +2931,16 @@ void kill_screen(const char* lcd_msg) {
const float diff = float((int32_t)encoderPosition) * move_menu_scale; const float diff = float((int32_t)encoderPosition) * move_menu_scale;
#if IS_KINEMATIC #if IS_KINEMATIC
manual_move_offset += diff; manual_move_offset += diff;
// Limit only when trying to move towards the limit if ((int32_t)encoderPosition < 0)
if ((int32_t)encoderPosition < 0) NOLESS(manual_move_offset, min - current_position[axis]); NOLESS(manual_move_offset, min - current_position[axis]);
if ((int32_t)encoderPosition > 0) NOMORE(manual_move_offset, max - current_position[axis]); else
NOMORE(manual_move_offset, max - current_position[axis]);
#else #else
current_position[axis] += diff; current_position[axis] += diff;
// Limit only when trying to move towards the limit if ((int32_t)encoderPosition < 0)
if ((int32_t)encoderPosition < 0) NOLESS(current_position[axis], min); NOLESS(current_position[axis], min);
if ((int32_t)encoderPosition > 0) NOMORE(current_position[axis], max); else
NOMORE(current_position[axis], max);
#endif #endif
manual_move_to_current(axis); manual_move_to_current(axis);

Loading…
Cancel
Save