|
|
@ -8652,7 +8652,68 @@ void set_current_from_steppers_for_axis(const AxisEnum axis) { |
|
|
|
mesh_line_to_destination(fr_mm_s, x_splits, y_splits); |
|
|
|
} |
|
|
|
|
|
|
|
#endif // MESH_BED_LEVELING
|
|
|
|
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR) |
|
|
|
|
|
|
|
/**
|
|
|
|
* Prepare a mesh-leveled linear move in a Cartesian setup, |
|
|
|
* splitting the move where it crosses mesh borders. |
|
|
|
*/ |
|
|
|
void bilinear_line_to_destination(float fr_mm_s, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) { |
|
|
|
int cx1 = RAW_CURRENT_POSITION(X_AXIS) / bilinear_grid_spacing[X_AXIS], |
|
|
|
cy1 = RAW_CURRENT_POSITION(Y_AXIS) / bilinear_grid_spacing[Y_AXIS], |
|
|
|
cx2 = RAW_X_POSITION(destination[X_AXIS]) / bilinear_grid_spacing[X_AXIS], |
|
|
|
cy2 = RAW_Y_POSITION(destination[Y_AXIS]) / bilinear_grid_spacing[Y_AXIS]; |
|
|
|
NOMORE(cx1, ABL_GRID_POINTS_X - 2); |
|
|
|
NOMORE(cy1, ABL_GRID_POINTS_Y - 2); |
|
|
|
NOMORE(cx2, ABL_GRID_POINTS_X - 2); |
|
|
|
NOMORE(cy2, ABL_GRID_POINTS_Y - 2); |
|
|
|
|
|
|
|
if (cx1 == cx2 && cy1 == cy2) { |
|
|
|
// Start and end on same mesh square
|
|
|
|
line_to_destination(fr_mm_s); |
|
|
|
set_current_to_destination(); |
|
|
|
return; |
|
|
|
} |
|
|
|
|
|
|
|
#define LINE_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist) |
|
|
|
|
|
|
|
float normalized_dist, end[NUM_AXIS]; |
|
|
|
|
|
|
|
// Split at the left/front border of the right/top square
|
|
|
|
int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2); |
|
|
|
if (cx2 != cx1 && TEST(x_splits, gcx)) { |
|
|
|
memcpy(end, destination, sizeof(end)); |
|
|
|
destination[X_AXIS] = LOGICAL_X_POSITION(bilinear_start[X_AXIS] + bilinear_grid_spacing[X_AXIS] * gcx); |
|
|
|
normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]); |
|
|
|
destination[Y_AXIS] = LINE_SEGMENT_END(Y); |
|
|
|
CBI(x_splits, gcx); |
|
|
|
} |
|
|
|
else if (cy2 != cy1 && TEST(y_splits, gcy)) { |
|
|
|
memcpy(end, destination, sizeof(end)); |
|
|
|
destination[Y_AXIS] = LOGICAL_Y_POSITION(bilinear_start[Y_AXIS] + bilinear_grid_spacing[Y_AXIS] * gcy); |
|
|
|
normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]); |
|
|
|
destination[X_AXIS] = LINE_SEGMENT_END(X); |
|
|
|
CBI(y_splits, gcy); |
|
|
|
} |
|
|
|
else { |
|
|
|
// Already split on a border
|
|
|
|
line_to_destination(fr_mm_s); |
|
|
|
set_current_to_destination(); |
|
|
|
return; |
|
|
|
} |
|
|
|
|
|
|
|
destination[Z_AXIS] = LINE_SEGMENT_END(Z); |
|
|
|
destination[E_AXIS] = LINE_SEGMENT_END(E); |
|
|
|
|
|
|
|
// Do the split and look for more borders
|
|
|
|
bilinear_line_to_destination(fr_mm_s, x_splits, y_splits); |
|
|
|
|
|
|
|
// Restore destination from stack
|
|
|
|
memcpy(destination, end, sizeof(end)); |
|
|
|
bilinear_line_to_destination(fr_mm_s, x_splits, y_splits); |
|
|
|
} |
|
|
|
|
|
|
|
#endif // AUTO_BED_LEVELING_BILINEAR
|
|
|
|
|
|
|
|
#if IS_KINEMATIC |
|
|
|
|
|
|
@ -8846,6 +8907,12 @@ void set_current_from_steppers_for_axis(const AxisEnum axis) { |
|
|
|
return false; |
|
|
|
} |
|
|
|
else |
|
|
|
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR) |
|
|
|
if (planner.abl_enabled) { |
|
|
|
bilinear_line_to_destination(MMS_SCALED(feedrate_mm_s)); |
|
|
|
return false; |
|
|
|
} |
|
|
|
else |
|
|
|
#endif |
|
|
|
line_to_destination(MMS_SCALED(feedrate_mm_s)); |
|
|
|
} |
|
|
|