|
|
@ -33,495 +33,490 @@ |
|
|
|
#include "stepper.h" |
|
|
|
#include "Marlin.h" |
|
|
|
|
|
|
|
#ifndef USBCON |
|
|
|
// this next line disables the entire HardwareSerial.cpp,
|
|
|
|
// this is so I can support Attiny series and any other chip without a UART
|
|
|
|
#if defined(UBRRH) || defined(UBRR0H) || defined(UBRR1H) || defined(UBRR2H) || defined(UBRR3H) |
|
|
|
// Disable HardwareSerial.cpp to support chips without a UART (Attiny, etc.)
|
|
|
|
|
|
|
|
#if UART_PRESENT(SERIAL_PORT) |
|
|
|
ring_buffer_r rx_buffer = { { 0 }, 0, 0 }; |
|
|
|
#if TX_BUFFER_SIZE > 0 |
|
|
|
ring_buffer_t tx_buffer = { { 0 }, 0, 0 }; |
|
|
|
static bool _written; |
|
|
|
#if !defined(USBCON) && (defined(UBRRH) || defined(UBRR0H) || defined(UBRR1H) || defined(UBRR2H) || defined(UBRR3H)) |
|
|
|
|
|
|
|
#if UART_PRESENT(SERIAL_PORT) |
|
|
|
ring_buffer_r rx_buffer = { { 0 }, 0, 0 }; |
|
|
|
#if TX_BUFFER_SIZE > 0 |
|
|
|
ring_buffer_t tx_buffer = { { 0 }, 0, 0 }; |
|
|
|
static bool _written; |
|
|
|
#endif |
|
|
|
#endif |
|
|
|
#endif |
|
|
|
|
|
|
|
#if ENABLED(EMERGENCY_PARSER) |
|
|
|
|
|
|
|
#include "language.h" |
|
|
|
|
|
|
|
// Currently looking for: M108, M112, M410
|
|
|
|
// If you alter the parser please don't forget to update the capabilities in Conditionals_post.h
|
|
|
|
|
|
|
|
FORCE_INLINE void emergency_parser(const unsigned char c) { |
|
|
|
|
|
|
|
static e_parser_state state = state_RESET; |
|
|
|
|
|
|
|
FORCE_INLINE void store_char(unsigned char c) { |
|
|
|
CRITICAL_SECTION_START; |
|
|
|
uint8_t h = rx_buffer.head; |
|
|
|
uint8_t i = (uint8_t)(h + 1) & (RX_BUFFER_SIZE - 1); |
|
|
|
switch (state) { |
|
|
|
case state_RESET: |
|
|
|
switch (c) { |
|
|
|
case ' ': break; |
|
|
|
case 'N': state = state_N; break; |
|
|
|
case 'M': state = state_M; break; |
|
|
|
default: state = state_IGNORE; |
|
|
|
} |
|
|
|
break; |
|
|
|
|
|
|
|
case state_N: |
|
|
|
switch (c) { |
|
|
|
case '0': case '1': case '2': |
|
|
|
case '3': case '4': case '5': |
|
|
|
case '6': case '7': case '8': |
|
|
|
case '9': case '-': case ' ': break; |
|
|
|
case 'M': state = state_M; break; |
|
|
|
default: state = state_IGNORE; |
|
|
|
} |
|
|
|
break; |
|
|
|
|
|
|
|
case state_M: |
|
|
|
switch (c) { |
|
|
|
case ' ': break; |
|
|
|
case '1': state = state_M1; break; |
|
|
|
case '4': state = state_M4; break; |
|
|
|
default: state = state_IGNORE; |
|
|
|
} |
|
|
|
break; |
|
|
|
|
|
|
|
// if we should be storing the received character into the location
|
|
|
|
// just before the tail (meaning that the head would advance to the
|
|
|
|
// current location of the tail), we're about to overflow the buffer
|
|
|
|
// and so we don't write the character or advance the head.
|
|
|
|
if (i != rx_buffer.tail) { |
|
|
|
rx_buffer.buffer[h] = c; |
|
|
|
rx_buffer.head = i; |
|
|
|
case state_M1: |
|
|
|
switch (c) { |
|
|
|
case '0': state = state_M10; break; |
|
|
|
case '1': state = state_M11; break; |
|
|
|
default: state = state_IGNORE; |
|
|
|
} |
|
|
|
break; |
|
|
|
|
|
|
|
case state_M10: |
|
|
|
state = (c == '8') ? state_M108 : state_IGNORE; |
|
|
|
break; |
|
|
|
|
|
|
|
case state_M11: |
|
|
|
state = (c == '2') ? state_M112 : state_IGNORE; |
|
|
|
break; |
|
|
|
|
|
|
|
case state_M4: |
|
|
|
state = (c == '1') ? state_M41 : state_IGNORE; |
|
|
|
break; |
|
|
|
|
|
|
|
case state_M41: |
|
|
|
state = (c == '0') ? state_M410 : state_IGNORE; |
|
|
|
break; |
|
|
|
|
|
|
|
case state_IGNORE: |
|
|
|
if (c == '\n') state = state_RESET; |
|
|
|
break; |
|
|
|
|
|
|
|
default: |
|
|
|
if (c == '\n') { |
|
|
|
switch (state) { |
|
|
|
case state_M108: |
|
|
|
wait_for_user = wait_for_heatup = false; |
|
|
|
break; |
|
|
|
case state_M112: |
|
|
|
kill(PSTR(MSG_KILLED)); |
|
|
|
break; |
|
|
|
case state_M410: |
|
|
|
quickstop_stepper(); |
|
|
|
break; |
|
|
|
default: |
|
|
|
break; |
|
|
|
} |
|
|
|
state = state_RESET; |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
CRITICAL_SECTION_END; |
|
|
|
|
|
|
|
#if ENABLED(EMERGENCY_PARSER) |
|
|
|
emergency_parser(c); |
|
|
|
#endif |
|
|
|
} |
|
|
|
|
|
|
|
#if TX_BUFFER_SIZE > 0 |
|
|
|
|
|
|
|
FORCE_INLINE void _tx_udr_empty_irq(void) { |
|
|
|
// If interrupts are enabled, there must be more data in the output
|
|
|
|
// buffer. Send the next byte
|
|
|
|
uint8_t t = tx_buffer.tail; |
|
|
|
uint8_t c = tx_buffer.buffer[t]; |
|
|
|
tx_buffer.tail = (t + 1) & (TX_BUFFER_SIZE - 1); |
|
|
|
FORCE_INLINE void store_char(unsigned char c) { |
|
|
|
CRITICAL_SECTION_START; |
|
|
|
uint8_t h = rx_buffer.head; |
|
|
|
uint8_t i = (uint8_t)(h + 1) & (RX_BUFFER_SIZE - 1); |
|
|
|
|
|
|
|
// if we should be storing the received character into the location
|
|
|
|
// just before the tail (meaning that the head would advance to the
|
|
|
|
// current location of the tail), we're about to overflow the buffer
|
|
|
|
// and so we don't write the character or advance the head.
|
|
|
|
if (i != rx_buffer.tail) { |
|
|
|
rx_buffer.buffer[h] = c; |
|
|
|
rx_buffer.head = i; |
|
|
|
} |
|
|
|
CRITICAL_SECTION_END; |
|
|
|
|
|
|
|
M_UDRx = c; |
|
|
|
#if ENABLED(EMERGENCY_PARSER) |
|
|
|
emergency_parser(c); |
|
|
|
#endif |
|
|
|
} |
|
|
|
|
|
|
|
// clear the TXC bit -- "can be cleared by writing a one to its bit
|
|
|
|
// location". This makes sure flush() won't return until the bytes
|
|
|
|
// actually got written
|
|
|
|
SBI(M_UCSRxA, M_TXCx); |
|
|
|
#if TX_BUFFER_SIZE > 0 |
|
|
|
|
|
|
|
if (tx_buffer.head == tx_buffer.tail) { |
|
|
|
// Buffer empty, so disable interrupts
|
|
|
|
CBI(M_UCSRxB, M_UDRIEx); |
|
|
|
} |
|
|
|
} |
|
|
|
FORCE_INLINE void _tx_udr_empty_irq(void) { |
|
|
|
// If interrupts are enabled, there must be more data in the output
|
|
|
|
// buffer. Send the next byte
|
|
|
|
uint8_t t = tx_buffer.tail; |
|
|
|
uint8_t c = tx_buffer.buffer[t]; |
|
|
|
tx_buffer.tail = (t + 1) & (TX_BUFFER_SIZE - 1); |
|
|
|
|
|
|
|
#ifdef M_USARTx_UDRE_vect |
|
|
|
ISR(M_USARTx_UDRE_vect) { |
|
|
|
_tx_udr_empty_irq(); |
|
|
|
M_UDRx = c; |
|
|
|
|
|
|
|
// clear the TXC bit -- "can be cleared by writing a one to its bit
|
|
|
|
// location". This makes sure flush() won't return until the bytes
|
|
|
|
// actually got written
|
|
|
|
SBI(M_UCSRxA, M_TXCx); |
|
|
|
|
|
|
|
if (tx_buffer.head == tx_buffer.tail) { |
|
|
|
// Buffer empty, so disable interrupts
|
|
|
|
CBI(M_UCSRxB, M_UDRIEx); |
|
|
|
} |
|
|
|
} |
|
|
|
#endif |
|
|
|
|
|
|
|
#endif // TX_BUFFER_SIZE
|
|
|
|
#ifdef M_USARTx_UDRE_vect |
|
|
|
ISR(M_USARTx_UDRE_vect) { |
|
|
|
_tx_udr_empty_irq(); |
|
|
|
} |
|
|
|
#endif |
|
|
|
|
|
|
|
#ifdef M_USARTx_RX_vect |
|
|
|
ISR(M_USARTx_RX_vect) { |
|
|
|
unsigned char c = M_UDRx; |
|
|
|
store_char(c); |
|
|
|
} |
|
|
|
#endif |
|
|
|
#endif // TX_BUFFER_SIZE
|
|
|
|
|
|
|
|
// Constructors ////////////////////////////////////////////////////////////////
|
|
|
|
#ifdef M_USARTx_RX_vect |
|
|
|
ISR(M_USARTx_RX_vect) { |
|
|
|
unsigned char c = M_UDRx; |
|
|
|
store_char(c); |
|
|
|
} |
|
|
|
#endif |
|
|
|
|
|
|
|
MarlinSerial::MarlinSerial() { } |
|
|
|
// Public Methods
|
|
|
|
|
|
|
|
// Public Methods //////////////////////////////////////////////////////////////
|
|
|
|
void MarlinSerial::begin(long baud) { |
|
|
|
uint16_t baud_setting; |
|
|
|
bool useU2X = true; |
|
|
|
|
|
|
|
void MarlinSerial::begin(long baud) { |
|
|
|
uint16_t baud_setting; |
|
|
|
bool useU2X = true; |
|
|
|
#if F_CPU == 16000000UL && SERIAL_PORT == 0 |
|
|
|
// hard-coded exception for compatibility with the bootloader shipped
|
|
|
|
// with the Duemilanove and previous boards and the firmware on the 8U2
|
|
|
|
// on the Uno and Mega 2560.
|
|
|
|
if (baud == 57600) { |
|
|
|
useU2X = false; |
|
|
|
} |
|
|
|
#endif |
|
|
|
|
|
|
|
#if F_CPU == 16000000UL && SERIAL_PORT == 0 |
|
|
|
// hard-coded exception for compatibility with the bootloader shipped
|
|
|
|
// with the Duemilanove and previous boards and the firmware on the 8U2
|
|
|
|
// on the Uno and Mega 2560.
|
|
|
|
if (baud == 57600) { |
|
|
|
useU2X = false; |
|
|
|
if (useU2X) { |
|
|
|
M_UCSRxA = _BV(M_U2Xx); |
|
|
|
baud_setting = (F_CPU / 4 / baud - 1) / 2; |
|
|
|
} |
|
|
|
else { |
|
|
|
M_UCSRxA = 0; |
|
|
|
baud_setting = (F_CPU / 8 / baud - 1) / 2; |
|
|
|
} |
|
|
|
#endif |
|
|
|
|
|
|
|
if (useU2X) { |
|
|
|
M_UCSRxA = _BV(M_U2Xx); |
|
|
|
baud_setting = (F_CPU / 4 / baud - 1) / 2; |
|
|
|
} |
|
|
|
else { |
|
|
|
M_UCSRxA = 0; |
|
|
|
baud_setting = (F_CPU / 8 / baud - 1) / 2; |
|
|
|
} |
|
|
|
// assign the baud_setting, a.k.a. ubbr (USART Baud Rate Register)
|
|
|
|
M_UBRRxH = baud_setting >> 8; |
|
|
|
M_UBRRxL = baud_setting; |
|
|
|
|
|
|
|
// assign the baud_setting, a.k.a. ubbr (USART Baud Rate Register)
|
|
|
|
M_UBRRxH = baud_setting >> 8; |
|
|
|
M_UBRRxL = baud_setting; |
|
|
|
SBI(M_UCSRxB, M_RXENx); |
|
|
|
SBI(M_UCSRxB, M_TXENx); |
|
|
|
SBI(M_UCSRxB, M_RXCIEx); |
|
|
|
#if TX_BUFFER_SIZE > 0 |
|
|
|
CBI(M_UCSRxB, M_UDRIEx); |
|
|
|
_written = false; |
|
|
|
#endif |
|
|
|
} |
|
|
|
|
|
|
|
SBI(M_UCSRxB, M_RXENx); |
|
|
|
SBI(M_UCSRxB, M_TXENx); |
|
|
|
SBI(M_UCSRxB, M_RXCIEx); |
|
|
|
#if TX_BUFFER_SIZE > 0 |
|
|
|
void MarlinSerial::end() { |
|
|
|
CBI(M_UCSRxB, M_RXENx); |
|
|
|
CBI(M_UCSRxB, M_TXENx); |
|
|
|
CBI(M_UCSRxB, M_RXCIEx); |
|
|
|
CBI(M_UCSRxB, M_UDRIEx); |
|
|
|
_written = false; |
|
|
|
#endif |
|
|
|
} |
|
|
|
|
|
|
|
void MarlinSerial::end() { |
|
|
|
CBI(M_UCSRxB, M_RXENx); |
|
|
|
CBI(M_UCSRxB, M_TXENx); |
|
|
|
CBI(M_UCSRxB, M_RXCIEx); |
|
|
|
CBI(M_UCSRxB, M_UDRIEx); |
|
|
|
} |
|
|
|
|
|
|
|
void MarlinSerial::checkRx(void) { |
|
|
|
if (TEST(M_UCSRxA, M_RXCx)) { |
|
|
|
uint8_t c = M_UDRx; |
|
|
|
store_char(c); |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
int MarlinSerial::peek(void) { |
|
|
|
CRITICAL_SECTION_START; |
|
|
|
int v = rx_buffer.head == rx_buffer.tail ? -1 : rx_buffer.buffer[rx_buffer.tail]; |
|
|
|
CRITICAL_SECTION_END; |
|
|
|
return v; |
|
|
|
} |
|
|
|
|
|
|
|
int MarlinSerial::read(void) { |
|
|
|
int v; |
|
|
|
CRITICAL_SECTION_START; |
|
|
|
uint8_t t = rx_buffer.tail; |
|
|
|
if (rx_buffer.head == t) { |
|
|
|
v = -1; |
|
|
|
} |
|
|
|
else { |
|
|
|
v = rx_buffer.buffer[t]; |
|
|
|
rx_buffer.tail = (uint8_t)(t + 1) & (RX_BUFFER_SIZE - 1); |
|
|
|
|
|
|
|
void MarlinSerial::checkRx(void) { |
|
|
|
if (TEST(M_UCSRxA, M_RXCx)) { |
|
|
|
uint8_t c = M_UDRx; |
|
|
|
store_char(c); |
|
|
|
} |
|
|
|
CRITICAL_SECTION_END; |
|
|
|
return v; |
|
|
|
} |
|
|
|
|
|
|
|
uint8_t MarlinSerial::available(void) { |
|
|
|
CRITICAL_SECTION_START; |
|
|
|
uint8_t h = rx_buffer.head, |
|
|
|
t = rx_buffer.tail; |
|
|
|
CRITICAL_SECTION_END; |
|
|
|
return (uint8_t)(RX_BUFFER_SIZE + h - t) & (RX_BUFFER_SIZE - 1); |
|
|
|
} |
|
|
|
|
|
|
|
void MarlinSerial::flush(void) { |
|
|
|
// RX
|
|
|
|
// don't reverse this or there may be problems if the RX interrupt
|
|
|
|
// occurs after reading the value of rx_buffer_head but before writing
|
|
|
|
// the value to rx_buffer_tail; the previous value of rx_buffer_head
|
|
|
|
// may be written to rx_buffer_tail, making it appear as if the buffer
|
|
|
|
// were full, not empty.
|
|
|
|
CRITICAL_SECTION_START; |
|
|
|
rx_buffer.head = rx_buffer.tail; |
|
|
|
CRITICAL_SECTION_END; |
|
|
|
} |
|
|
|
|
|
|
|
#if TX_BUFFER_SIZE > 0 |
|
|
|
uint8_t MarlinSerial::availableForWrite(void) { |
|
|
|
} |
|
|
|
|
|
|
|
int MarlinSerial::peek(void) { |
|
|
|
CRITICAL_SECTION_START; |
|
|
|
uint8_t h = tx_buffer.head; |
|
|
|
uint8_t t = tx_buffer.tail; |
|
|
|
int v = rx_buffer.head == rx_buffer.tail ? -1 : rx_buffer.buffer[rx_buffer.tail]; |
|
|
|
CRITICAL_SECTION_END; |
|
|
|
return v; |
|
|
|
} |
|
|
|
|
|
|
|
int MarlinSerial::read(void) { |
|
|
|
int v; |
|
|
|
CRITICAL_SECTION_START; |
|
|
|
uint8_t t = rx_buffer.tail; |
|
|
|
if (rx_buffer.head == t) { |
|
|
|
v = -1; |
|
|
|
} |
|
|
|
else { |
|
|
|
v = rx_buffer.buffer[t]; |
|
|
|
rx_buffer.tail = (uint8_t)(t + 1) & (RX_BUFFER_SIZE - 1); |
|
|
|
} |
|
|
|
CRITICAL_SECTION_END; |
|
|
|
return (uint8_t)(TX_BUFFER_SIZE + h - t) & (TX_BUFFER_SIZE - 1); |
|
|
|
return v; |
|
|
|
} |
|
|
|
|
|
|
|
void MarlinSerial::write(uint8_t c) { |
|
|
|
_written = true; |
|
|
|
uint8_t MarlinSerial::available(void) { |
|
|
|
CRITICAL_SECTION_START; |
|
|
|
bool emty = (tx_buffer.head == tx_buffer.tail); |
|
|
|
uint8_t h = rx_buffer.head, |
|
|
|
t = rx_buffer.tail; |
|
|
|
CRITICAL_SECTION_END; |
|
|
|
// If the buffer and the data register is empty, just write the byte
|
|
|
|
// to the data register and be done. This shortcut helps
|
|
|
|
// significantly improve the effective datarate at high (>
|
|
|
|
// 500kbit/s) bitrates, where interrupt overhead becomes a slowdown.
|
|
|
|
if (emty && TEST(M_UCSRxA, M_UDREx)) { |
|
|
|
return (uint8_t)(RX_BUFFER_SIZE + h - t) & (RX_BUFFER_SIZE - 1); |
|
|
|
} |
|
|
|
|
|
|
|
void MarlinSerial::flush(void) { |
|
|
|
// RX
|
|
|
|
// don't reverse this or there may be problems if the RX interrupt
|
|
|
|
// occurs after reading the value of rx_buffer_head but before writing
|
|
|
|
// the value to rx_buffer_tail; the previous value of rx_buffer_head
|
|
|
|
// may be written to rx_buffer_tail, making it appear as if the buffer
|
|
|
|
// were full, not empty.
|
|
|
|
CRITICAL_SECTION_START; |
|
|
|
rx_buffer.head = rx_buffer.tail; |
|
|
|
CRITICAL_SECTION_END; |
|
|
|
} |
|
|
|
|
|
|
|
#if TX_BUFFER_SIZE > 0 |
|
|
|
uint8_t MarlinSerial::availableForWrite(void) { |
|
|
|
CRITICAL_SECTION_START; |
|
|
|
M_UDRx = c; |
|
|
|
SBI(M_UCSRxA, M_TXCx); |
|
|
|
uint8_t h = tx_buffer.head; |
|
|
|
uint8_t t = tx_buffer.tail; |
|
|
|
CRITICAL_SECTION_END; |
|
|
|
return; |
|
|
|
} |
|
|
|
uint8_t i = (tx_buffer.head + 1) & (TX_BUFFER_SIZE - 1); |
|
|
|
|
|
|
|
// If the output buffer is full, there's nothing for it other than to
|
|
|
|
// wait for the interrupt handler to empty it a bit
|
|
|
|
while (i == tx_buffer.tail) { |
|
|
|
if (!TEST(SREG, SREG_I)) { |
|
|
|
// Interrupts are disabled, so we'll have to poll the data
|
|
|
|
// register empty flag ourselves. If it is set, pretend an
|
|
|
|
// interrupt has happened and call the handler to free up
|
|
|
|
// space for us.
|
|
|
|
if (TEST(M_UCSRxA, M_UDREx)) |
|
|
|
_tx_udr_empty_irq(); |
|
|
|
} else { |
|
|
|
// nop, the interrupt handler will free up space for us
|
|
|
|
} |
|
|
|
return (uint8_t)(TX_BUFFER_SIZE + h - t) & (TX_BUFFER_SIZE - 1); |
|
|
|
} |
|
|
|
|
|
|
|
tx_buffer.buffer[tx_buffer.head] = c; |
|
|
|
{ CRITICAL_SECTION_START; |
|
|
|
tx_buffer.head = i; |
|
|
|
SBI(M_UCSRxB, M_UDRIEx); |
|
|
|
void MarlinSerial::write(uint8_t c) { |
|
|
|
_written = true; |
|
|
|
CRITICAL_SECTION_START; |
|
|
|
bool emty = (tx_buffer.head == tx_buffer.tail); |
|
|
|
CRITICAL_SECTION_END; |
|
|
|
} |
|
|
|
return; |
|
|
|
} |
|
|
|
// If the buffer and the data register is empty, just write the byte
|
|
|
|
// to the data register and be done. This shortcut helps
|
|
|
|
// significantly improve the effective datarate at high (>
|
|
|
|
// 500kbit/s) bitrates, where interrupt overhead becomes a slowdown.
|
|
|
|
if (emty && TEST(M_UCSRxA, M_UDREx)) { |
|
|
|
CRITICAL_SECTION_START; |
|
|
|
M_UDRx = c; |
|
|
|
SBI(M_UCSRxA, M_TXCx); |
|
|
|
CRITICAL_SECTION_END; |
|
|
|
return; |
|
|
|
} |
|
|
|
uint8_t i = (tx_buffer.head + 1) & (TX_BUFFER_SIZE - 1); |
|
|
|
|
|
|
|
// If the output buffer is full, there's nothing for it other than to
|
|
|
|
// wait for the interrupt handler to empty it a bit
|
|
|
|
while (i == tx_buffer.tail) { |
|
|
|
if (!TEST(SREG, SREG_I)) { |
|
|
|
// Interrupts are disabled, so we'll have to poll the data
|
|
|
|
// register empty flag ourselves. If it is set, pretend an
|
|
|
|
// interrupt has happened and call the handler to free up
|
|
|
|
// space for us.
|
|
|
|
if (TEST(M_UCSRxA, M_UDREx)) |
|
|
|
_tx_udr_empty_irq(); |
|
|
|
} else { |
|
|
|
// nop, the interrupt handler will free up space for us
|
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
void MarlinSerial::flushTX(void) { |
|
|
|
// TX
|
|
|
|
// If we have never written a byte, no need to flush. This special
|
|
|
|
// case is needed since there is no way to force the TXC (transmit
|
|
|
|
// complete) bit to 1 during initialization
|
|
|
|
if (!_written) |
|
|
|
tx_buffer.buffer[tx_buffer.head] = c; |
|
|
|
{ CRITICAL_SECTION_START; |
|
|
|
tx_buffer.head = i; |
|
|
|
SBI(M_UCSRxB, M_UDRIEx); |
|
|
|
CRITICAL_SECTION_END; |
|
|
|
} |
|
|
|
return; |
|
|
|
|
|
|
|
while (TEST(M_UCSRxB, M_UDRIEx) || !TEST(M_UCSRxA, M_TXCx)) { |
|
|
|
if (!TEST(SREG, SREG_I) && TEST(M_UCSRxB, M_UDRIEx)) |
|
|
|
// Interrupts are globally disabled, but the DR empty
|
|
|
|
// interrupt should be enabled, so poll the DR empty flag to
|
|
|
|
// prevent deadlock
|
|
|
|
if (TEST(M_UCSRxA, M_UDREx)) |
|
|
|
_tx_udr_empty_irq(); |
|
|
|
} |
|
|
|
// If we get here, nothing is queued anymore (DRIE is disabled) and
|
|
|
|
// the hardware finished tranmission (TXC is set).
|
|
|
|
} |
|
|
|
|
|
|
|
#else |
|
|
|
void MarlinSerial::write(uint8_t c) { |
|
|
|
while (!TEST(M_UCSRxA, M_UDREx)) |
|
|
|
; |
|
|
|
M_UDRx = c; |
|
|
|
|
|
|
|
void MarlinSerial::flushTX(void) { |
|
|
|
// TX
|
|
|
|
// If we have never written a byte, no need to flush. This special
|
|
|
|
// case is needed since there is no way to force the TXC (transmit
|
|
|
|
// complete) bit to 1 during initialization
|
|
|
|
if (!_written) |
|
|
|
return; |
|
|
|
|
|
|
|
while (TEST(M_UCSRxB, M_UDRIEx) || !TEST(M_UCSRxA, M_TXCx)) { |
|
|
|
if (!TEST(SREG, SREG_I) && TEST(M_UCSRxB, M_UDRIEx)) |
|
|
|
// Interrupts are globally disabled, but the DR empty
|
|
|
|
// interrupt should be enabled, so poll the DR empty flag to
|
|
|
|
// prevent deadlock
|
|
|
|
if (TEST(M_UCSRxA, M_UDREx)) |
|
|
|
_tx_udr_empty_irq(); |
|
|
|
} |
|
|
|
// If we get here, nothing is queued anymore (DRIE is disabled) and
|
|
|
|
// the hardware finished tranmission (TXC is set).
|
|
|
|
} |
|
|
|
#endif |
|
|
|
|
|
|
|
// end NEW
|
|
|
|
#else |
|
|
|
void MarlinSerial::write(uint8_t c) { |
|
|
|
while (!TEST(M_UCSRxA, M_UDREx)) |
|
|
|
; |
|
|
|
M_UDRx = c; |
|
|
|
} |
|
|
|
#endif |
|
|
|
|
|
|
|
/// imports from print.h
|
|
|
|
// end NEW
|
|
|
|
|
|
|
|
/// imports from print.h
|
|
|
|
|
|
|
|
void MarlinSerial::print(char c, int base) { |
|
|
|
print((long) c, base); |
|
|
|
} |
|
|
|
|
|
|
|
void MarlinSerial::print(unsigned char b, int base) { |
|
|
|
print((unsigned long) b, base); |
|
|
|
} |
|
|
|
void MarlinSerial::print(char c, int base) { |
|
|
|
print((long) c, base); |
|
|
|
} |
|
|
|
|
|
|
|
void MarlinSerial::print(int n, int base) { |
|
|
|
print((long) n, base); |
|
|
|
} |
|
|
|
void MarlinSerial::print(unsigned char b, int base) { |
|
|
|
print((unsigned long) b, base); |
|
|
|
} |
|
|
|
|
|
|
|
void MarlinSerial::print(unsigned int n, int base) { |
|
|
|
print((unsigned long) n, base); |
|
|
|
} |
|
|
|
void MarlinSerial::print(int n, int base) { |
|
|
|
print((long) n, base); |
|
|
|
} |
|
|
|
|
|
|
|
void MarlinSerial::print(long n, int base) { |
|
|
|
if (base == 0) { |
|
|
|
write(n); |
|
|
|
void MarlinSerial::print(unsigned int n, int base) { |
|
|
|
print((unsigned long) n, base); |
|
|
|
} |
|
|
|
else if (base == 10) { |
|
|
|
if (n < 0) { |
|
|
|
print('-'); |
|
|
|
n = -n; |
|
|
|
|
|
|
|
void MarlinSerial::print(long n, int base) { |
|
|
|
if (base == 0) { |
|
|
|
write(n); |
|
|
|
} |
|
|
|
else if (base == 10) { |
|
|
|
if (n < 0) { |
|
|
|
print('-'); |
|
|
|
n = -n; |
|
|
|
} |
|
|
|
printNumber(n, 10); |
|
|
|
} |
|
|
|
else { |
|
|
|
printNumber(n, base); |
|
|
|
} |
|
|
|
printNumber(n, 10); |
|
|
|
} |
|
|
|
else { |
|
|
|
printNumber(n, base); |
|
|
|
|
|
|
|
void MarlinSerial::print(unsigned long n, int base) { |
|
|
|
if (base == 0) write(n); |
|
|
|
else printNumber(n, base); |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
void MarlinSerial::print(unsigned long n, int base) { |
|
|
|
if (base == 0) write(n); |
|
|
|
else printNumber(n, base); |
|
|
|
} |
|
|
|
|
|
|
|
void MarlinSerial::print(double n, int digits) { |
|
|
|
printFloat(n, digits); |
|
|
|
} |
|
|
|
|
|
|
|
void MarlinSerial::println(void) { |
|
|
|
print('\r'); |
|
|
|
print('\n'); |
|
|
|
} |
|
|
|
|
|
|
|
void MarlinSerial::println(const String& s) { |
|
|
|
print(s); |
|
|
|
println(); |
|
|
|
} |
|
|
|
|
|
|
|
void MarlinSerial::println(const char c[]) { |
|
|
|
print(c); |
|
|
|
println(); |
|
|
|
} |
|
|
|
|
|
|
|
void MarlinSerial::println(char c, int base) { |
|
|
|
print(c, base); |
|
|
|
println(); |
|
|
|
} |
|
|
|
|
|
|
|
void MarlinSerial::println(unsigned char b, int base) { |
|
|
|
print(b, base); |
|
|
|
println(); |
|
|
|
} |
|
|
|
|
|
|
|
void MarlinSerial::println(int n, int base) { |
|
|
|
print(n, base); |
|
|
|
println(); |
|
|
|
} |
|
|
|
|
|
|
|
void MarlinSerial::println(unsigned int n, int base) { |
|
|
|
print(n, base); |
|
|
|
println(); |
|
|
|
} |
|
|
|
|
|
|
|
void MarlinSerial::println(long n, int base) { |
|
|
|
print(n, base); |
|
|
|
println(); |
|
|
|
} |
|
|
|
|
|
|
|
void MarlinSerial::println(unsigned long n, int base) { |
|
|
|
print(n, base); |
|
|
|
println(); |
|
|
|
} |
|
|
|
|
|
|
|
void MarlinSerial::println(double n, int digits) { |
|
|
|
print(n, digits); |
|
|
|
println(); |
|
|
|
} |
|
|
|
|
|
|
|
// Private Methods /////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
void MarlinSerial::printNumber(unsigned long n, uint8_t base) { |
|
|
|
if (n) { |
|
|
|
unsigned char buf[8 * sizeof(long)]; // Enough space for base 2
|
|
|
|
int8_t i = 0; |
|
|
|
while (n) { |
|
|
|
buf[i++] = n % base; |
|
|
|
n /= base; |
|
|
|
} |
|
|
|
while (i--) |
|
|
|
print((char)(buf[i] + (buf[i] < 10 ? '0' : 'A' - 10))); |
|
|
|
|
|
|
|
void MarlinSerial::print(double n, int digits) { |
|
|
|
printFloat(n, digits); |
|
|
|
} |
|
|
|
else |
|
|
|
print('0'); |
|
|
|
} |
|
|
|
|
|
|
|
void MarlinSerial::printFloat(double number, uint8_t digits) { |
|
|
|
// Handle negative numbers
|
|
|
|
if (number < 0.0) { |
|
|
|
print('-'); |
|
|
|
number = -number; |
|
|
|
|
|
|
|
void MarlinSerial::println(void) { |
|
|
|
print('\r'); |
|
|
|
print('\n'); |
|
|
|
} |
|
|
|
|
|
|
|
// Round correctly so that print(1.999, 2) prints as "2.00"
|
|
|
|
double rounding = 0.5; |
|
|
|
for (uint8_t i = 0; i < digits; ++i) |
|
|
|
rounding *= 0.1; |
|
|
|
|
|
|
|
number += rounding; |
|
|
|
|
|
|
|
// Extract the integer part of the number and print it
|
|
|
|
unsigned long int_part = (unsigned long)number; |
|
|
|
double remainder = number - (double)int_part; |
|
|
|
print(int_part); |
|
|
|
|
|
|
|
// Print the decimal point, but only if there are digits beyond
|
|
|
|
if (digits) { |
|
|
|
print('.'); |
|
|
|
// Extract digits from the remainder one at a time
|
|
|
|
while (digits--) { |
|
|
|
remainder *= 10.0; |
|
|
|
int toPrint = int(remainder); |
|
|
|
print(toPrint); |
|
|
|
remainder -= toPrint; |
|
|
|
} |
|
|
|
void MarlinSerial::println(const String& s) { |
|
|
|
print(s); |
|
|
|
println(); |
|
|
|
} |
|
|
|
} |
|
|
|
// Preinstantiate Objects //////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
void MarlinSerial::println(const char c[]) { |
|
|
|
print(c); |
|
|
|
println(); |
|
|
|
} |
|
|
|
|
|
|
|
MarlinSerial customizedSerial; |
|
|
|
void MarlinSerial::println(char c, int base) { |
|
|
|
print(c, base); |
|
|
|
println(); |
|
|
|
} |
|
|
|
|
|
|
|
#endif // whole file
|
|
|
|
#endif // !USBCON
|
|
|
|
void MarlinSerial::println(unsigned char b, int base) { |
|
|
|
print(b, base); |
|
|
|
println(); |
|
|
|
} |
|
|
|
|
|
|
|
// For AT90USB targets use the UART for BT interfacing
|
|
|
|
#if defined(USBCON) && ENABLED(BLUETOOTH) |
|
|
|
HardwareSerial bluetoothSerial; |
|
|
|
#endif |
|
|
|
void MarlinSerial::println(int n, int base) { |
|
|
|
print(n, base); |
|
|
|
println(); |
|
|
|
} |
|
|
|
|
|
|
|
#if ENABLED(EMERGENCY_PARSER) |
|
|
|
void MarlinSerial::println(unsigned int n, int base) { |
|
|
|
print(n, base); |
|
|
|
println(); |
|
|
|
} |
|
|
|
|
|
|
|
// Currently looking for: M108, M112, M410
|
|
|
|
// If you alter the parser please don't forget to update the capabilities in Conditionals_post.h
|
|
|
|
void MarlinSerial::println(long n, int base) { |
|
|
|
print(n, base); |
|
|
|
println(); |
|
|
|
} |
|
|
|
|
|
|
|
FORCE_INLINE void emergency_parser(unsigned char c) { |
|
|
|
void MarlinSerial::println(unsigned long n, int base) { |
|
|
|
print(n, base); |
|
|
|
println(); |
|
|
|
} |
|
|
|
|
|
|
|
static e_parser_state state = state_RESET; |
|
|
|
void MarlinSerial::println(double n, int digits) { |
|
|
|
print(n, digits); |
|
|
|
println(); |
|
|
|
} |
|
|
|
|
|
|
|
switch (state) { |
|
|
|
case state_RESET: |
|
|
|
switch (c) { |
|
|
|
case ' ': break; |
|
|
|
case 'N': state = state_N; break; |
|
|
|
case 'M': state = state_M; break; |
|
|
|
default: state = state_IGNORE; |
|
|
|
} |
|
|
|
break; |
|
|
|
|
|
|
|
case state_N: |
|
|
|
switch (c) { |
|
|
|
case '0': case '1': case '2': |
|
|
|
case '3': case '4': case '5': |
|
|
|
case '6': case '7': case '8': |
|
|
|
case '9': case '-': case ' ': break; |
|
|
|
case 'M': state = state_M; break; |
|
|
|
default: state = state_IGNORE; |
|
|
|
} |
|
|
|
break; |
|
|
|
|
|
|
|
case state_M: |
|
|
|
switch (c) { |
|
|
|
case ' ': break; |
|
|
|
case '1': state = state_M1; break; |
|
|
|
case '4': state = state_M4; break; |
|
|
|
default: state = state_IGNORE; |
|
|
|
} |
|
|
|
break; |
|
|
|
// Private Methods
|
|
|
|
|
|
|
|
case state_M1: |
|
|
|
switch (c) { |
|
|
|
case '0': state = state_M10; break; |
|
|
|
case '1': state = state_M11; break; |
|
|
|
default: state = state_IGNORE; |
|
|
|
} |
|
|
|
break; |
|
|
|
|
|
|
|
case state_M10: |
|
|
|
state = (c == '8') ? state_M108 : state_IGNORE; |
|
|
|
break; |
|
|
|
|
|
|
|
case state_M11: |
|
|
|
state = (c == '2') ? state_M112 : state_IGNORE; |
|
|
|
break; |
|
|
|
|
|
|
|
case state_M4: |
|
|
|
state = (c == '1') ? state_M41 : state_IGNORE; |
|
|
|
break; |
|
|
|
|
|
|
|
case state_M41: |
|
|
|
state = (c == '0') ? state_M410 : state_IGNORE; |
|
|
|
break; |
|
|
|
|
|
|
|
case state_IGNORE: |
|
|
|
if (c == '\n') state = state_RESET; |
|
|
|
break; |
|
|
|
|
|
|
|
default: |
|
|
|
if (c == '\n') { |
|
|
|
switch (state) { |
|
|
|
case state_M108: |
|
|
|
wait_for_user = wait_for_heatup = false; |
|
|
|
break; |
|
|
|
case state_M112: |
|
|
|
kill(PSTR(MSG_KILLED)); |
|
|
|
break; |
|
|
|
case state_M410: |
|
|
|
quickstop_stepper(); |
|
|
|
break; |
|
|
|
default: |
|
|
|
break; |
|
|
|
} |
|
|
|
state = state_RESET; |
|
|
|
} |
|
|
|
void MarlinSerial::printNumber(unsigned long n, uint8_t base) { |
|
|
|
if (n) { |
|
|
|
unsigned char buf[8 * sizeof(long)]; // Enough space for base 2
|
|
|
|
int8_t i = 0; |
|
|
|
while (n) { |
|
|
|
buf[i++] = n % base; |
|
|
|
n /= base; |
|
|
|
} |
|
|
|
while (i--) |
|
|
|
print((char)(buf[i] + (buf[i] < 10 ? '0' : 'A' - 10))); |
|
|
|
} |
|
|
|
else |
|
|
|
print('0'); |
|
|
|
} |
|
|
|
|
|
|
|
void MarlinSerial::printFloat(double number, uint8_t digits) { |
|
|
|
// Handle negative numbers
|
|
|
|
if (number < 0.0) { |
|
|
|
print('-'); |
|
|
|
number = -number; |
|
|
|
} |
|
|
|
|
|
|
|
// Round correctly so that print(1.999, 2) prints as "2.00"
|
|
|
|
double rounding = 0.5; |
|
|
|
for (uint8_t i = 0; i < digits; ++i) |
|
|
|
rounding *= 0.1; |
|
|
|
|
|
|
|
number += rounding; |
|
|
|
|
|
|
|
// Extract the integer part of the number and print it
|
|
|
|
unsigned long int_part = (unsigned long)number; |
|
|
|
double remainder = number - (double)int_part; |
|
|
|
print(int_part); |
|
|
|
|
|
|
|
// Print the decimal point, but only if there are digits beyond
|
|
|
|
if (digits) { |
|
|
|
print('.'); |
|
|
|
// Extract digits from the remainder one at a time
|
|
|
|
while (digits--) { |
|
|
|
remainder *= 10.0; |
|
|
|
int toPrint = int(remainder); |
|
|
|
print(toPrint); |
|
|
|
remainder -= toPrint; |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
// Preinstantiate
|
|
|
|
MarlinSerial customizedSerial; |
|
|
|
|
|
|
|
#endif // !USBCON && (UBRRH || UBRR0H || UBRR1H || UBRR2H || UBRR3H)
|
|
|
|
|
|
|
|
// For AT90USB targets use the UART for BT interfacing
|
|
|
|
#if defined(USBCON) && ENABLED(BLUETOOTH) |
|
|
|
HardwareSerial bluetoothSerial; |
|
|
|
#endif |
|
|
|