|
@ -1887,148 +1887,6 @@ inline void gcode_G0_G1() { |
|
|
} |
|
|
} |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
|
* Plan an arc in 2 dimensions |
|
|
|
|
|
* |
|
|
|
|
|
* The arc is approximated by generating many small linear segments. |
|
|
|
|
|
* The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm) |
|
|
|
|
|
* Arcs should only be made relatively large (over 5mm), as larger arcs with |
|
|
|
|
|
* larger segments will tend to be more efficient. Your slicer should have |
|
|
|
|
|
* options for G2/G3 arc generation. In future these options may be GCode tunable. |
|
|
|
|
|
*/ |
|
|
|
|
|
void plan_arc( |
|
|
|
|
|
float target[NUM_AXIS], // Destination position
|
|
|
|
|
|
float *offset, // Center of rotation relative to current_position
|
|
|
|
|
|
uint8_t clockwise // Clockwise?
|
|
|
|
|
|
) { |
|
|
|
|
|
|
|
|
|
|
|
float radius = hypot(offset[X_AXIS], offset[Y_AXIS]), |
|
|
|
|
|
center_axis0 = current_position[X_AXIS] + offset[X_AXIS], |
|
|
|
|
|
center_axis1 = current_position[Y_AXIS] + offset[Y_AXIS], |
|
|
|
|
|
linear_travel = target[Z_AXIS] - current_position[Z_AXIS], |
|
|
|
|
|
extruder_travel = target[E_AXIS] - current_position[E_AXIS], |
|
|
|
|
|
r_axis0 = -offset[X_AXIS], // Radius vector from center to current location
|
|
|
|
|
|
r_axis1 = -offset[Y_AXIS], |
|
|
|
|
|
rt_axis0 = target[X_AXIS] - center_axis0, |
|
|
|
|
|
rt_axis1 = target[Y_AXIS] - center_axis1; |
|
|
|
|
|
|
|
|
|
|
|
// CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
|
|
|
|
|
|
float angular_travel = atan2(r_axis0*rt_axis1-r_axis1*rt_axis0, r_axis0*rt_axis0+r_axis1*rt_axis1); |
|
|
|
|
|
if (angular_travel < 0) { angular_travel += RADIANS(360); } |
|
|
|
|
|
if (clockwise) { angular_travel -= RADIANS(360); } |
|
|
|
|
|
|
|
|
|
|
|
// Make a circle if the angular rotation is 0
|
|
|
|
|
|
if (current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS] && angular_travel == 0) |
|
|
|
|
|
angular_travel += RADIANS(360); |
|
|
|
|
|
|
|
|
|
|
|
float mm_of_travel = hypot(angular_travel*radius, fabs(linear_travel)); |
|
|
|
|
|
if (mm_of_travel < 0.001) { return; } |
|
|
|
|
|
uint16_t segments = floor(mm_of_travel / MM_PER_ARC_SEGMENT); |
|
|
|
|
|
if (segments == 0) segments = 1; |
|
|
|
|
|
|
|
|
|
|
|
float theta_per_segment = angular_travel/segments; |
|
|
|
|
|
float linear_per_segment = linear_travel/segments; |
|
|
|
|
|
float extruder_per_segment = extruder_travel/segments; |
|
|
|
|
|
|
|
|
|
|
|
/* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
|
|
|
|
|
|
and phi is the angle of rotation. Based on the solution approach by Jens Geisler. |
|
|
|
|
|
r_T = [cos(phi) -sin(phi); |
|
|
|
|
|
sin(phi) cos(phi] * r ; |
|
|
|
|
|
|
|
|
|
|
|
For arc generation, the center of the circle is the axis of rotation and the radius vector is |
|
|
|
|
|
defined from the circle center to the initial position. Each line segment is formed by successive |
|
|
|
|
|
vector rotations. This requires only two cos() and sin() computations to form the rotation |
|
|
|
|
|
matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since |
|
|
|
|
|
all double numbers are single precision on the Arduino. (True double precision will not have |
|
|
|
|
|
round off issues for CNC applications.) Single precision error can accumulate to be greater than |
|
|
|
|
|
tool precision in some cases. Therefore, arc path correction is implemented. |
|
|
|
|
|
|
|
|
|
|
|
Small angle approximation may be used to reduce computation overhead further. This approximation |
|
|
|
|
|
holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words, |
|
|
|
|
|
theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large |
|
|
|
|
|
to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for |
|
|
|
|
|
numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an |
|
|
|
|
|
issue for CNC machines with the single precision Arduino calculations. |
|
|
|
|
|
|
|
|
|
|
|
This approximation also allows plan_arc to immediately insert a line segment into the planner |
|
|
|
|
|
without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied |
|
|
|
|
|
a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead. |
|
|
|
|
|
This is important when there are successive arc motions. |
|
|
|
|
|
*/ |
|
|
|
|
|
// Vector rotation matrix values
|
|
|
|
|
|
float cos_T = 1-0.5*theta_per_segment*theta_per_segment; // Small angle approximation
|
|
|
|
|
|
float sin_T = theta_per_segment; |
|
|
|
|
|
|
|
|
|
|
|
float arc_target[NUM_AXIS]; |
|
|
|
|
|
float sin_Ti; |
|
|
|
|
|
float cos_Ti; |
|
|
|
|
|
float r_axisi; |
|
|
|
|
|
uint16_t i; |
|
|
|
|
|
int8_t count = 0; |
|
|
|
|
|
|
|
|
|
|
|
// Initialize the linear axis
|
|
|
|
|
|
arc_target[Z_AXIS] = current_position[Z_AXIS]; |
|
|
|
|
|
|
|
|
|
|
|
// Initialize the extruder axis
|
|
|
|
|
|
arc_target[E_AXIS] = current_position[E_AXIS]; |
|
|
|
|
|
|
|
|
|
|
|
float feed_rate = feedrate*feedrate_multiplier/60/100.0; |
|
|
|
|
|
|
|
|
|
|
|
for (i = 1; i < segments; i++) { // Increment (segments-1)
|
|
|
|
|
|
|
|
|
|
|
|
if (count < N_ARC_CORRECTION) { |
|
|
|
|
|
// Apply vector rotation matrix to previous r_axis0 / 1
|
|
|
|
|
|
r_axisi = r_axis0*sin_T + r_axis1*cos_T; |
|
|
|
|
|
r_axis0 = r_axis0*cos_T - r_axis1*sin_T; |
|
|
|
|
|
r_axis1 = r_axisi; |
|
|
|
|
|
count++; |
|
|
|
|
|
} |
|
|
|
|
|
else { |
|
|
|
|
|
// Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
|
|
|
|
|
|
// Compute exact location by applying transformation matrix from initial radius vector(=-offset).
|
|
|
|
|
|
cos_Ti = cos(i*theta_per_segment); |
|
|
|
|
|
sin_Ti = sin(i*theta_per_segment); |
|
|
|
|
|
r_axis0 = -offset[X_AXIS]*cos_Ti + offset[Y_AXIS]*sin_Ti; |
|
|
|
|
|
r_axis1 = -offset[X_AXIS]*sin_Ti - offset[Y_AXIS]*cos_Ti; |
|
|
|
|
|
count = 0; |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
// Update arc_target location
|
|
|
|
|
|
arc_target[X_AXIS] = center_axis0 + r_axis0; |
|
|
|
|
|
arc_target[Y_AXIS] = center_axis1 + r_axis1; |
|
|
|
|
|
arc_target[Z_AXIS] += linear_per_segment; |
|
|
|
|
|
arc_target[E_AXIS] += extruder_per_segment; |
|
|
|
|
|
|
|
|
|
|
|
clamp_to_software_endstops(arc_target); |
|
|
|
|
|
|
|
|
|
|
|
#if defined(DELTA) || defined(SCARA) |
|
|
|
|
|
calculate_delta(arc_target); |
|
|
|
|
|
#ifdef ENABLE_AUTO_BED_LEVELING |
|
|
|
|
|
adjust_delta(arc_target); |
|
|
|
|
|
#endif |
|
|
|
|
|
plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder); |
|
|
|
|
|
#else |
|
|
|
|
|
plan_buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder); |
|
|
|
|
|
#endif |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
// Ensure last segment arrives at target location.
|
|
|
|
|
|
#if defined(DELTA) || defined(SCARA) |
|
|
|
|
|
calculate_delta(target); |
|
|
|
|
|
#ifdef ENABLE_AUTO_BED_LEVELING |
|
|
|
|
|
adjust_delta(target); |
|
|
|
|
|
#endif |
|
|
|
|
|
plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feed_rate, active_extruder); |
|
|
|
|
|
#else |
|
|
|
|
|
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, active_extruder); |
|
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
|
|
// As far as the parser is concerned, the position is now == target. In reality the
|
|
|
|
|
|
// motion control system might still be processing the action and the real tool position
|
|
|
|
|
|
// in any intermediate location.
|
|
|
|
|
|
set_current_to_destination(); |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
/**
|
|
|
* G2: Clockwise Arc |
|
|
* G2: Clockwise Arc |
|
|
* G3: Counterclockwise Arc |
|
|
* G3: Counterclockwise Arc |
|
@ -6229,6 +6087,148 @@ void prepare_move() { |
|
|
set_current_to_destination(); |
|
|
set_current_to_destination(); |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
|
* Plan an arc in 2 dimensions |
|
|
|
|
|
* |
|
|
|
|
|
* The arc is approximated by generating many small linear segments. |
|
|
|
|
|
* The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm) |
|
|
|
|
|
* Arcs should only be made relatively large (over 5mm), as larger arcs with |
|
|
|
|
|
* larger segments will tend to be more efficient. Your slicer should have |
|
|
|
|
|
* options for G2/G3 arc generation. In future these options may be GCode tunable. |
|
|
|
|
|
*/ |
|
|
|
|
|
void plan_arc( |
|
|
|
|
|
float target[NUM_AXIS], // Destination position
|
|
|
|
|
|
float *offset, // Center of rotation relative to current_position
|
|
|
|
|
|
uint8_t clockwise // Clockwise?
|
|
|
|
|
|
) { |
|
|
|
|
|
|
|
|
|
|
|
float radius = hypot(offset[X_AXIS], offset[Y_AXIS]), |
|
|
|
|
|
center_axis0 = current_position[X_AXIS] + offset[X_AXIS], |
|
|
|
|
|
center_axis1 = current_position[Y_AXIS] + offset[Y_AXIS], |
|
|
|
|
|
linear_travel = target[Z_AXIS] - current_position[Z_AXIS], |
|
|
|
|
|
extruder_travel = target[E_AXIS] - current_position[E_AXIS], |
|
|
|
|
|
r_axis0 = -offset[X_AXIS], // Radius vector from center to current location
|
|
|
|
|
|
r_axis1 = -offset[Y_AXIS], |
|
|
|
|
|
rt_axis0 = target[X_AXIS] - center_axis0, |
|
|
|
|
|
rt_axis1 = target[Y_AXIS] - center_axis1; |
|
|
|
|
|
|
|
|
|
|
|
// CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
|
|
|
|
|
|
float angular_travel = atan2(r_axis0*rt_axis1-r_axis1*rt_axis0, r_axis0*rt_axis0+r_axis1*rt_axis1); |
|
|
|
|
|
if (angular_travel < 0) { angular_travel += RADIANS(360); } |
|
|
|
|
|
if (clockwise) { angular_travel -= RADIANS(360); } |
|
|
|
|
|
|
|
|
|
|
|
// Make a circle if the angular rotation is 0
|
|
|
|
|
|
if (current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS] && angular_travel == 0) |
|
|
|
|
|
angular_travel += RADIANS(360); |
|
|
|
|
|
|
|
|
|
|
|
float mm_of_travel = hypot(angular_travel*radius, fabs(linear_travel)); |
|
|
|
|
|
if (mm_of_travel < 0.001) { return; } |
|
|
|
|
|
uint16_t segments = floor(mm_of_travel / MM_PER_ARC_SEGMENT); |
|
|
|
|
|
if (segments == 0) segments = 1; |
|
|
|
|
|
|
|
|
|
|
|
float theta_per_segment = angular_travel/segments; |
|
|
|
|
|
float linear_per_segment = linear_travel/segments; |
|
|
|
|
|
float extruder_per_segment = extruder_travel/segments; |
|
|
|
|
|
|
|
|
|
|
|
/* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
|
|
|
|
|
|
and phi is the angle of rotation. Based on the solution approach by Jens Geisler. |
|
|
|
|
|
r_T = [cos(phi) -sin(phi); |
|
|
|
|
|
sin(phi) cos(phi] * r ; |
|
|
|
|
|
|
|
|
|
|
|
For arc generation, the center of the circle is the axis of rotation and the radius vector is |
|
|
|
|
|
defined from the circle center to the initial position. Each line segment is formed by successive |
|
|
|
|
|
vector rotations. This requires only two cos() and sin() computations to form the rotation |
|
|
|
|
|
matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since |
|
|
|
|
|
all double numbers are single precision on the Arduino. (True double precision will not have |
|
|
|
|
|
round off issues for CNC applications.) Single precision error can accumulate to be greater than |
|
|
|
|
|
tool precision in some cases. Therefore, arc path correction is implemented. |
|
|
|
|
|
|
|
|
|
|
|
Small angle approximation may be used to reduce computation overhead further. This approximation |
|
|
|
|
|
holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words, |
|
|
|
|
|
theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large |
|
|
|
|
|
to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for |
|
|
|
|
|
numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an |
|
|
|
|
|
issue for CNC machines with the single precision Arduino calculations. |
|
|
|
|
|
|
|
|
|
|
|
This approximation also allows plan_arc to immediately insert a line segment into the planner |
|
|
|
|
|
without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied |
|
|
|
|
|
a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead. |
|
|
|
|
|
This is important when there are successive arc motions. |
|
|
|
|
|
*/ |
|
|
|
|
|
// Vector rotation matrix values
|
|
|
|
|
|
float cos_T = 1-0.5*theta_per_segment*theta_per_segment; // Small angle approximation
|
|
|
|
|
|
float sin_T = theta_per_segment; |
|
|
|
|
|
|
|
|
|
|
|
float arc_target[NUM_AXIS]; |
|
|
|
|
|
float sin_Ti; |
|
|
|
|
|
float cos_Ti; |
|
|
|
|
|
float r_axisi; |
|
|
|
|
|
uint16_t i; |
|
|
|
|
|
int8_t count = 0; |
|
|
|
|
|
|
|
|
|
|
|
// Initialize the linear axis
|
|
|
|
|
|
arc_target[Z_AXIS] = current_position[Z_AXIS]; |
|
|
|
|
|
|
|
|
|
|
|
// Initialize the extruder axis
|
|
|
|
|
|
arc_target[E_AXIS] = current_position[E_AXIS]; |
|
|
|
|
|
|
|
|
|
|
|
float feed_rate = feedrate*feedrate_multiplier/60/100.0; |
|
|
|
|
|
|
|
|
|
|
|
for (i = 1; i < segments; i++) { // Increment (segments-1)
|
|
|
|
|
|
|
|
|
|
|
|
if (count < N_ARC_CORRECTION) { |
|
|
|
|
|
// Apply vector rotation matrix to previous r_axis0 / 1
|
|
|
|
|
|
r_axisi = r_axis0*sin_T + r_axis1*cos_T; |
|
|
|
|
|
r_axis0 = r_axis0*cos_T - r_axis1*sin_T; |
|
|
|
|
|
r_axis1 = r_axisi; |
|
|
|
|
|
count++; |
|
|
|
|
|
} |
|
|
|
|
|
else { |
|
|
|
|
|
// Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
|
|
|
|
|
|
// Compute exact location by applying transformation matrix from initial radius vector(=-offset).
|
|
|
|
|
|
cos_Ti = cos(i*theta_per_segment); |
|
|
|
|
|
sin_Ti = sin(i*theta_per_segment); |
|
|
|
|
|
r_axis0 = -offset[X_AXIS]*cos_Ti + offset[Y_AXIS]*sin_Ti; |
|
|
|
|
|
r_axis1 = -offset[X_AXIS]*sin_Ti - offset[Y_AXIS]*cos_Ti; |
|
|
|
|
|
count = 0; |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
// Update arc_target location
|
|
|
|
|
|
arc_target[X_AXIS] = center_axis0 + r_axis0; |
|
|
|
|
|
arc_target[Y_AXIS] = center_axis1 + r_axis1; |
|
|
|
|
|
arc_target[Z_AXIS] += linear_per_segment; |
|
|
|
|
|
arc_target[E_AXIS] += extruder_per_segment; |
|
|
|
|
|
|
|
|
|
|
|
clamp_to_software_endstops(arc_target); |
|
|
|
|
|
|
|
|
|
|
|
#if defined(DELTA) || defined(SCARA) |
|
|
|
|
|
calculate_delta(arc_target); |
|
|
|
|
|
#ifdef ENABLE_AUTO_BED_LEVELING |
|
|
|
|
|
adjust_delta(arc_target); |
|
|
|
|
|
#endif |
|
|
|
|
|
plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder); |
|
|
|
|
|
#else |
|
|
|
|
|
plan_buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder); |
|
|
|
|
|
#endif |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
// Ensure last segment arrives at target location.
|
|
|
|
|
|
#if defined(DELTA) || defined(SCARA) |
|
|
|
|
|
calculate_delta(target); |
|
|
|
|
|
#ifdef ENABLE_AUTO_BED_LEVELING |
|
|
|
|
|
adjust_delta(target); |
|
|
|
|
|
#endif |
|
|
|
|
|
plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feed_rate, active_extruder); |
|
|
|
|
|
#else |
|
|
|
|
|
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, active_extruder); |
|
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
|
|
// As far as the parser is concerned, the position is now == target. In reality the
|
|
|
|
|
|
// motion control system might still be processing the action and the real tool position
|
|
|
|
|
|
// in any intermediate location.
|
|
|
|
|
|
set_current_to_destination(); |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
#if HAS_CONTROLLERFAN |
|
|
#if HAS_CONTROLLERFAN |
|
|
|
|
|
|
|
|
void controllerFan() { |
|
|
void controllerFan() { |
|
|