|
|
@ -410,6 +410,8 @@ bool target_direction; |
|
|
|
|
|
|
|
void process_next_command(); |
|
|
|
|
|
|
|
void plan_arc(float target[NUM_AXIS], float *offset, uint8_t clockwise); |
|
|
|
|
|
|
|
bool setTargetedHotend(int code); |
|
|
|
|
|
|
|
void serial_echopair_P(const char *s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); } |
|
|
@ -1895,9 +1897,9 @@ inline void gcode_G0_G1() { |
|
|
|
* options for G2/G3 arc generation. In future these options may be GCode tunable. |
|
|
|
*/ |
|
|
|
void plan_arc( |
|
|
|
float *target, // Destination position
|
|
|
|
float *offset, // Center of rotation relative to current_position
|
|
|
|
uint8_t clockwise // Clockwise?
|
|
|
|
float target[NUM_AXIS], // Destination position
|
|
|
|
float *offset, // Center of rotation relative to current_position
|
|
|
|
uint8_t clockwise // Clockwise?
|
|
|
|
) { |
|
|
|
|
|
|
|
float radius = hypot(offset[X_AXIS], offset[Y_AXIS]), |
|
|
@ -1957,7 +1959,7 @@ void plan_arc( |
|
|
|
float cos_T = 1-0.5*theta_per_segment*theta_per_segment; // Small angle approximation
|
|
|
|
float sin_T = theta_per_segment; |
|
|
|
|
|
|
|
float arc_target[4]; |
|
|
|
float arc_target[NUM_AXIS]; |
|
|
|
float sin_Ti; |
|
|
|
float cos_Ti; |
|
|
|
float r_axisi; |
|
|
@ -1998,10 +2000,28 @@ void plan_arc( |
|
|
|
arc_target[E_AXIS] += extruder_per_segment; |
|
|
|
|
|
|
|
clamp_to_software_endstops(arc_target); |
|
|
|
plan_buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder); |
|
|
|
|
|
|
|
#if defined(DELTA) || defined(SCARA) |
|
|
|
calculate_delta(arc_target); |
|
|
|
#ifdef ENABLE_AUTO_BED_LEVELING |
|
|
|
adjust_delta(arc_target); |
|
|
|
#endif |
|
|
|
plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder); |
|
|
|
#else |
|
|
|
plan_buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder); |
|
|
|
#endif |
|
|
|
} |
|
|
|
|
|
|
|
// Ensure last segment arrives at target location.
|
|
|
|
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, active_extruder); |
|
|
|
#if defined(DELTA) || defined(SCARA) |
|
|
|
calculate_delta(target); |
|
|
|
#ifdef ENABLE_AUTO_BED_LEVELING |
|
|
|
adjust_delta(target); |
|
|
|
#endif |
|
|
|
plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feed_rate, active_extruder); |
|
|
|
#else |
|
|
|
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, active_extruder); |
|
|
|
#endif |
|
|
|
|
|
|
|
// As far as the parser is concerned, the position is now == target. In reality the
|
|
|
|
// motion control system might still be processing the action and the real tool position
|
|
|
@ -6074,9 +6094,9 @@ void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_ |
|
|
|
|
|
|
|
#if defined(DELTA) || defined(SCARA) |
|
|
|
|
|
|
|
inline bool prepare_move_delta() { |
|
|
|
inline bool prepare_move_delta(float target[NUM_AXIS]) { |
|
|
|
float difference[NUM_AXIS]; |
|
|
|
for (int8_t i=0; i < NUM_AXIS; i++) difference[i] = destination[i] - current_position[i]; |
|
|
|
for (int8_t i=0; i < NUM_AXIS; i++) difference[i] = target[i] - current_position[i]; |
|
|
|
|
|
|
|
float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS])); |
|
|
|
if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]); |
|
|
@ -6093,22 +6113,22 @@ void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_ |
|
|
|
float fraction = float(s) / float(steps); |
|
|
|
|
|
|
|
for (int8_t i = 0; i < NUM_AXIS; i++) |
|
|
|
destination[i] = current_position[i] + difference[i] * fraction; |
|
|
|
target[i] = current_position[i] + difference[i] * fraction; |
|
|
|
|
|
|
|
calculate_delta(destination); |
|
|
|
calculate_delta(target); |
|
|
|
|
|
|
|
#ifdef ENABLE_AUTO_BED_LEVELING |
|
|
|
adjust_delta(destination); |
|
|
|
adjust_delta(target); |
|
|
|
#endif |
|
|
|
|
|
|
|
//SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]);
|
|
|
|
//SERIAL_ECHOPGM("destination[Y_AXIS]="); SERIAL_ECHOLN(destination[Y_AXIS]);
|
|
|
|
//SERIAL_ECHOPGM("destination[Z_AXIS]="); SERIAL_ECHOLN(destination[Z_AXIS]);
|
|
|
|
//SERIAL_ECHOPGM("target[X_AXIS]="); SERIAL_ECHOLN(target[X_AXIS]);
|
|
|
|
//SERIAL_ECHOPGM("target[Y_AXIS]="); SERIAL_ECHOLN(target[Y_AXIS]);
|
|
|
|
//SERIAL_ECHOPGM("target[Z_AXIS]="); SERIAL_ECHOLN(target[Z_AXIS]);
|
|
|
|
//SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
|
|
|
|
//SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
|
|
|
|
//SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
|
|
|
|
|
|
|
|
plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], feedrate/60*feedrate_multiplier/100.0, active_extruder); |
|
|
|
plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feedrate/60*feedrate_multiplier/100.0, active_extruder); |
|
|
|
} |
|
|
|
return true; |
|
|
|
} |
|
|
@ -6116,7 +6136,7 @@ void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_ |
|
|
|
#endif // DELTA || SCARA
|
|
|
|
|
|
|
|
#ifdef SCARA |
|
|
|
inline bool prepare_move_scara() { return prepare_move_delta(); } |
|
|
|
inline bool prepare_move_scara(float target[NUM_AXIS]) { return prepare_move_delta(target); } |
|
|
|
#endif |
|
|
|
|
|
|
|
#ifdef DUAL_X_CARRIAGE |
|
|
@ -6193,9 +6213,9 @@ void prepare_move() { |
|
|
|
#endif |
|
|
|
|
|
|
|
#ifdef SCARA |
|
|
|
if (!prepare_move_scara()) return; |
|
|
|
if (!prepare_move_scara(destination)) return; |
|
|
|
#elif defined(DELTA) |
|
|
|
if (!prepare_move_delta()) return; |
|
|
|
if (!prepare_move_delta(destination)) return; |
|
|
|
#endif |
|
|
|
|
|
|
|
#ifdef DUAL_X_CARRIAGE |
|
|
|