Browse Source

Merge pull request #7786 from Bob-the-Kuhn/2.0-compile-issue-fix

2.0.x Re-ARM compile issues - work around
pull/1/head
Bob-the-Kuhn 7 years ago
committed by GitHub
parent
commit
de05b2b309
  1. 817
      Marlin/src/HAL/HAL_LPC1768/HardwareSerial.cpp
  2. 4
      Marlin/src/HAL/HAL_LPC1768/include/arduino.h

817
Marlin/src/HAL/HAL_LPC1768/HardwareSerial.cpp

@ -35,301 +35,606 @@ volatile uint32_t UART0RxQueueWritePos = 0, UART1RxQueueWritePos = 0, UART2RxQue
volatile uint32_t UART0RxQueueReadPos = 0, UART1RxQueueReadPos = 0, UART2RxQueueReadPos = 0, UART3RxQueueReadPos = 0;
volatile uint8_t dummy;
void HardwareSerial::begin(uint32_t baudrate) {
uint32_t Fdiv, pclkdiv, pclk;
if (PortNum == 0) {
LPC_PINCON->PINSEL0 &= ~0x000000F0;
LPC_PINCON->PINSEL0 |= 0x00000050; /* RxD0 is P0.3 and TxD0 is P0.2 */
/* By default, the PCLKSELx value is zero, thus, the PCLK for
all the peripherals is 1/4 of the SystemFrequency. */
/* Bit 6~7 is for UART0 */
pclkdiv = (LPC_SC->PCLKSEL0 >> 6) & 0x03;
switch (pclkdiv) {
case 0x00:
default:
pclk = SystemCoreClock / 4;
break;
case 0x01:
pclk = SystemCoreClock;
break;
case 0x02:
pclk = SystemCoreClock / 2;
break;
case 0x03:
pclk = SystemCoreClock / 8;
break;
}
void HardwareSerial::begin(uint32_t baudrate) {
uint32_t Fdiv;
uint32_t pclkdiv, pclk;
LPC_UART0->LCR = 0x83; /* 8 bits, no Parity, 1 Stop bit */
Fdiv = ( pclk / 16 ) / baudrate ; /*baud rate */
LPC_UART0->DLM = Fdiv / 256;
LPC_UART0->DLL = Fdiv % 256;
LPC_UART0->LCR = 0x03; /* DLAB = 0 */
LPC_UART0->FCR = 0x07; /* Enable and reset TX and RX FIFO. */
if ( PortNum == 0 )
{
LPC_PINCON->PINSEL0 &= ~0x000000F0;
LPC_PINCON->PINSEL0 |= 0x00000050; /* RxD0 is P0.3 and TxD0 is P0.2 */
/* By default, the PCLKSELx value is zero, thus, the PCLK for
all the peripherals is 1/4 of the SystemFrequency. */
/* Bit 6~7 is for UART0 */
pclkdiv = (LPC_SC->PCLKSEL0 >> 6) & 0x03;
switch ( pclkdiv )
{
case 0x00:
default:
pclk = SystemCoreClock/4;
break;
case 0x01:
pclk = SystemCoreClock;
break;
case 0x02:
pclk = SystemCoreClock/2;
break;
case 0x03:
pclk = SystemCoreClock/8;
break;
}
NVIC_EnableIRQ(UART0_IRQn);
LPC_UART0->LCR = 0x83; /* 8 bits, no Parity, 1 Stop bit */
Fdiv = ( pclk / 16 ) / baudrate ; /*baud rate */
LPC_UART0->DLM = Fdiv / 256;
LPC_UART0->DLL = Fdiv % 256;
LPC_UART0->LCR = 0x03; /* DLAB = 0 */
LPC_UART0->FCR = 0x07; /* Enable and reset TX and RX FIFO. */
LPC_UART0->IER = IER_RBR | IER_THRE | IER_RLS; /* Enable UART0 interrupt */
}
else if (PortNum == 1) {
LPC_PINCON->PINSEL4 &= ~0x0000000F;
LPC_PINCON->PINSEL4 |= 0x0000000A; /* Enable RxD1 P2.1, TxD1 P2.0 */
/* By default, the PCLKSELx value is zero, thus, the PCLK for
all the peripherals is 1/4 of the SystemFrequency. */
/* Bit 8,9 are for UART1 */
pclkdiv = (LPC_SC->PCLKSEL0 >> 8) & 0x03;
switch (pclkdiv) {
case 0x00:
default:
pclk = SystemCoreClock / 4;
break;
case 0x01:
pclk = SystemCoreClock;
break;
case 0x02:
pclk = SystemCoreClock / 2;
break;
case 0x03:
pclk = SystemCoreClock / 8;
break;
}
NVIC_EnableIRQ(UART0_IRQn);
LPC_UART0->IER = IER_RBR | IER_THRE | IER_RLS; /* Enable UART0 interrupt */
}
else if ( PortNum == 1 )
{
LPC_PINCON->PINSEL4 &= ~0x0000000F;
LPC_PINCON->PINSEL4 |= 0x0000000A; /* Enable RxD1 P2.1, TxD1 P2.0 */
/* By default, the PCLKSELx value is zero, thus, the PCLK for
all the peripherals is 1/4 of the SystemFrequency. */
/* Bit 8,9 are for UART1 */
pclkdiv = (LPC_SC->PCLKSEL0 >> 8) & 0x03;
switch ( pclkdiv )
{
case 0x00:
default:
pclk = SystemCoreClock/4;
break;
case 0x01:
pclk = SystemCoreClock;
break;
case 0x02:
pclk = SystemCoreClock/2;
break;
case 0x03:
pclk = SystemCoreClock/8;
break;
}
LPC_UART1->LCR = 0x83; /* 8 bits, no Parity, 1 Stop bit */
Fdiv = ( pclk / 16 ) / baudrate ; /*baud rate */
LPC_UART1->DLM = Fdiv / 256;
LPC_UART1->DLL = Fdiv % 256;
LPC_UART1->LCR = 0x03; /* DLAB = 0 */
LPC_UART1->FCR = 0x07; /* Enable and reset TX and RX FIFO. */
NVIC_EnableIRQ(UART1_IRQn);
LPC_UART1->IER = IER_RBR | IER_THRE | IER_RLS; /* Enable UART1 interrupt */
}
else if ( PortNum == 2 )
{
//LPC_PINCON->PINSEL4 &= ~0x000F0000; /*Pinsel4 Bits 16-19*/
//LPC_PINCON->PINSEL4 |= 0x000A0000; /* RxD2 is P2.9 and TxD2 is P2.8, value 10*/
LPC_PINCON->PINSEL0 &= ~0x00F00000; /*Pinsel0 Bits 20-23*/
LPC_PINCON->PINSEL0 |= 0x00500000; /* RxD2 is P0.11 and TxD2 is P0.10, value 01*/
LPC_SC->PCONP |= 1<<24; //Enable PCUART2
/* By default, the PCLKSELx value is zero, thus, the PCLK for
all the peripherals is 1/4 of the SystemFrequency. */
/* Bit 6~7 is for UART3 */
pclkdiv = (LPC_SC->PCLKSEL1 >> 16) & 0x03;
switch ( pclkdiv )
{
case 0x00:
default:
pclk = SystemCoreClock/4;
break;
case 0x01:
pclk = SystemCoreClock;
break;
case 0x02:
pclk = SystemCoreClock/2;
break;
case 0x03:
pclk = SystemCoreClock/8;
break;
}
LPC_UART2->LCR = 0x83; /* 8 bits, no Parity, 1 Stop bit */
Fdiv = ( pclk / 16 ) / baudrate ; /*baud rate */
LPC_UART2->DLM = Fdiv / 256;
LPC_UART2->DLL = Fdiv % 256;
LPC_UART2->LCR = 0x03; /* DLAB = 0 */
LPC_UART2->FCR = 0x07; /* Enable and reset TX and RX FIFO. */
LPC_UART1->LCR = 0x83; /* 8 bits, no Parity, 1 Stop bit */
Fdiv = ( pclk / 16 ) / baudrate ; /*baud rate */
LPC_UART1->DLM = Fdiv / 256;
LPC_UART1->DLL = Fdiv % 256;
LPC_UART1->LCR = 0x03; /* DLAB = 0 */
LPC_UART1->FCR = 0x07; /* Enable and reset TX and RX FIFO. */
NVIC_EnableIRQ(UART2_IRQn);
NVIC_EnableIRQ(UART1_IRQn);
LPC_UART2->IER = IER_RBR | IER_THRE | IER_RLS; /* Enable UART3 interrupt */
}
else if ( PortNum == 3 )
{
LPC_PINCON->PINSEL0 &= ~0x0000000F;
LPC_PINCON->PINSEL0 |= 0x0000000A; /* RxD3 is P0.1 and TxD3 is P0.0 */
LPC_SC->PCONP |= 1<<4 | 1<<25; //Enable PCUART1
/* By default, the PCLKSELx value is zero, thus, the PCLK for
all the peripherals is 1/4 of the SystemFrequency. */
/* Bit 6~7 is for UART3 */
pclkdiv = (LPC_SC->PCLKSEL1 >> 18) & 0x03;
switch ( pclkdiv )
{
case 0x00:
default:
pclk = SystemCoreClock/4;
break;
case 0x01:
pclk = SystemCoreClock;
break;
case 0x02:
pclk = SystemCoreClock/2;
break;
case 0x03:
pclk = SystemCoreClock/8;
break;
}
LPC_UART3->LCR = 0x83; /* 8 bits, no Parity, 1 Stop bit */
Fdiv = ( pclk / 16 ) / baudrate ; /*baud rate */
LPC_UART3->DLM = Fdiv / 256;
LPC_UART3->DLL = Fdiv % 256;
LPC_UART3->LCR = 0x03; /* DLAB = 0 */
LPC_UART3->FCR = 0x07; /* Enable and reset TX and RX FIFO. */
LPC_UART1->IER = IER_RBR | IER_THRE | IER_RLS; /* Enable UART1 interrupt */
NVIC_EnableIRQ(UART3_IRQn);
LPC_UART3->IER = IER_RBR | IER_THRE | IER_RLS; /* Enable UART3 interrupt */
}
}
else if (PortNum == 2) {
//LPC_PINCON->PINSEL4 &= ~0x000F0000; /*Pinsel4 Bits 16-19*/
//LPC_PINCON->PINSEL4 |= 0x000A0000; /* RxD2 is P2.9 and TxD2 is P2.8, value 10*/
LPC_PINCON->PINSEL0 &= ~0x00F00000; /*Pinsel0 Bits 20-23*/
LPC_PINCON->PINSEL0 |= 0x00500000; /* RxD2 is P0.11 and TxD2 is P0.10, value 01*/
LPC_SC->PCONP |= 1 << 24; //Enable PCUART2
/* By default, the PCLKSELx value is zero, thus, the PCLK for
all the peripherals is 1/4 of the SystemFrequency. */
/* Bit 6~7 is for UART3 */
pclkdiv = (LPC_SC->PCLKSEL1 >> 16) & 0x03;
switch (pclkdiv) {
case 0x00:
default:
pclk = SystemCoreClock / 4;
break;
case 0x01:
pclk = SystemCoreClock;
break;
case 0x02:
pclk = SystemCoreClock / 2;
break;
case 0x03:
pclk = SystemCoreClock / 8;
break;
}
LPC_UART2->LCR = 0x83; /* 8 bits, no Parity, 1 Stop bit */
Fdiv = (pclk / 16) / baudrate; /*baud rate */
LPC_UART2->DLM = Fdiv >> 8;
LPC_UART2->DLL = Fdiv & 0xFF;
LPC_UART2->LCR = 0x03; /* DLAB = 0 */
LPC_UART2->FCR = 0x07; /* Enable and reset TX and RX FIFO. */
NVIC_EnableIRQ(UART2_IRQn);
int HardwareSerial::read() {
uint8_t rx;
if ( PortNum == 0 )
{
if (UART0RxQueueReadPos == UART0RxQueueWritePos)
return -1;
// Read from "head"
rx = UART0Buffer[UART0RxQueueReadPos]; // grab next byte
UART0RxQueueReadPos = (UART0RxQueueReadPos + 1) % UARTRXQUEUESIZE;
return rx;
}
if ( PortNum == 1 )
{
if (UART1RxQueueReadPos == UART1RxQueueWritePos)
return -1;
// Read from "head"
rx = UART1Buffer[UART1RxQueueReadPos]; // grab next byte
UART1RxQueueReadPos = (UART1RxQueueReadPos + 1) % UARTRXQUEUESIZE;
return rx;
}
if ( PortNum == 2 )
{
if (UART2RxQueueReadPos == UART2RxQueueWritePos)
return -1;
// Read from "head"
rx = UART2Buffer[UART2RxQueueReadPos]; // grab next byte
UART2RxQueueReadPos = (UART2RxQueueReadPos + 1) % UARTRXQUEUESIZE;
return rx;
}
if ( PortNum == 3 )
{
if (UART3RxQueueReadPos == UART3RxQueueWritePos)
return -1;
LPC_UART2->IER = IER_RBR | IER_THRE | IER_RLS; /* Enable UART3 interrupt */
// Read from "head"
rx = UART3Buffer[UART3RxQueueReadPos]; // grab next byte
UART3RxQueueReadPos = (UART3RxQueueReadPos + 1) % UARTRXQUEUESIZE;
return rx;
}
return 0;
}
else if (PortNum == 3) {
LPC_PINCON->PINSEL0 &= ~0x0000000F;
LPC_PINCON->PINSEL0 |= 0x0000000A; /* RxD3 is P0.1 and TxD3 is P0.0 */
LPC_SC->PCONP |= 1 << 4 | 1 << 25; //Enable PCUART1
/* By default, the PCLKSELx value is zero, thus, the PCLK for
all the peripherals is 1/4 of the SystemFrequency. */
/* Bit 6~7 is for UART3 */
pclkdiv = (LPC_SC->PCLKSEL1 >> 18) & 0x03;
switch (pclkdiv) {
case 0x00:
default:
pclk = SystemCoreClock / 4;
break;
case 0x01:
pclk = SystemCoreClock;
break;
case 0x02:
pclk = SystemCoreClock / 2;
break;
case 0x03:
pclk = SystemCoreClock / 8;
break;
}
LPC_UART3->LCR = 0x83; /* 8 bits, no Parity, 1 Stop bit */
Fdiv = (pclk / 16) / baudrate ; /*baud rate */
LPC_UART3->DLM = Fdiv >> 8;
LPC_UART3->DLL = Fdiv & 0xFF;
LPC_UART3->LCR = 0x03; /* DLAB = 0 */
LPC_UART3->FCR = 0x07; /* Enable and reset TX and RX FIFO. */
NVIC_EnableIRQ(UART3_IRQn);
size_t HardwareSerial::write(uint8_t send) {
if ( PortNum == 0 )
{
/* THRE status, contain valid data */
while ( !(UART0TxEmpty & 0x01) );
LPC_UART0->THR = send;
UART0TxEmpty = 0; /* not empty in the THR until it shifts out */
}
else if (PortNum == 1)
{
/* THRE status, contain valid data */
while ( !(UART1TxEmpty & 0x01) );
LPC_UART1->THR = send;
UART1TxEmpty = 0; /* not empty in the THR until it shifts out */
}
else if ( PortNum == 2 )
{
/* THRE status, contain valid data */
while ( !(UART2TxEmpty & 0x01) );
LPC_UART2->THR = send;
UART2TxEmpty = 0; /* not empty in the THR until it shifts out */
LPC_UART3->IER = IER_RBR | IER_THRE | IER_RLS; /* Enable UART3 interrupt */
}
else if ( PortNum == 3 )
{
/* THRE status, contain valid data */
while ( !(UART3TxEmpty & 0x01) );
LPC_UART3->THR = send;
UART3TxEmpty = 0; /* not empty in the THR until it shifts out */
}
return 0;
}
int HardwareSerial::available() {
if ( PortNum == 0 )
{
return (UART0RxQueueWritePos + UARTRXQUEUESIZE - UART0RxQueueReadPos) % UARTRXQUEUESIZE;
}
if ( PortNum == 1 )
{
return (UART1RxQueueWritePos + UARTRXQUEUESIZE - UART1RxQueueReadPos) % UARTRXQUEUESIZE;
}
if ( PortNum == 2 )
{
return (UART2RxQueueWritePos + UARTRXQUEUESIZE - UART2RxQueueReadPos) % UARTRXQUEUESIZE;
}
if ( PortNum == 3 )
{
return (UART3RxQueueWritePos + UARTRXQUEUESIZE - UART3RxQueueReadPos) % UARTRXQUEUESIZE;
}
return 0;
}
void HardwareSerial::flush() {
if ( PortNum == 0 )
{
UART0RxQueueWritePos = 0;
UART0RxQueueReadPos = 0;
int HardwareSerial::read() {
uint8_t rx;
if (PortNum == 0) {
if (UART0RxQueueReadPos == UART0RxQueueWritePos) return -1;
// Read from "head"
rx = UART0Buffer[UART0RxQueueReadPos]; // grab next byte
UART0RxQueueReadPos = (UART0RxQueueReadPos + 1) % UARTRXQUEUESIZE;
return rx;
}
if ( PortNum == 1 )
{
UART1RxQueueWritePos = 0;
UART1RxQueueReadPos = 0;
}
if ( PortNum == 2 )
{
UART2RxQueueWritePos = 0;
UART2RxQueueReadPos = 0;
}
if ( PortNum == 3 )
{
UART3RxQueueWritePos = 0;
UART3RxQueueReadPos = 0;
}
return;
}
if (PortNum == 1) {
if (UART1RxQueueReadPos == UART1RxQueueWritePos) return -1;
rx = UART1Buffer[UART1RxQueueReadPos];
UART1RxQueueReadPos = (UART1RxQueueReadPos + 1) % UARTRXQUEUESIZE;
return rx;
void HardwareSerial::printf(const char *format, ...) {
static char buffer[256];
va_list vArgs;
va_start(vArgs, format);
int length = vsnprintf((char *) buffer, 256, (char const *) format, vArgs);
va_end(vArgs);
if (length > 0 && length < 256) {
for (int i = 0; i < length;) {
write(buffer[i]);
++i;
}
}
}
#ifdef __cplusplus
extern "C" {
#endif
/*****************************************************************************
** Function name: UART0_IRQHandler
**
** Descriptions: UART0 interrupt handler
**
** parameters: None
** Returned value: None
**
*****************************************************************************/
void UART0_IRQHandler (void)
{
uint8_t IIRValue, LSRValue;
uint8_t Dummy = Dummy;
IIRValue = LPC_UART0->IIR;
IIRValue >>= 1; /* skip pending bit in IIR */
IIRValue &= 0x07; /* check bit 1~3, interrupt identification */
if ( IIRValue == IIR_RLS ) /* Receive Line Status */
{
LSRValue = LPC_UART0->LSR;
/* Receive Line Status */
if ( LSRValue & (LSR_OE|LSR_PE|LSR_FE|LSR_RXFE|LSR_BI) )
{
/* There are errors or break interrupt */
/* Read LSR will clear the interrupt */
UART0Status = LSRValue;
Dummy = LPC_UART0->RBR; /* Dummy read on RX to clear
interrupt, then bail out */
return;
}
if ( LSRValue & LSR_RDR ) /* Receive Data Ready */
{
/* If no error on RLS, normal ready, save into the data buffer. */
/* Note: read RBR will clear the interrupt */
if ((UART0RxQueueWritePos+1) % UARTRXQUEUESIZE != UART0RxQueueReadPos)
{
UART0Buffer[UART0RxQueueWritePos] = LPC_UART0->RBR;
UART0RxQueueWritePos = (UART0RxQueueWritePos+1) % UARTRXQUEUESIZE;
}
else
dummy = LPC_UART0->RBR;;
}
}
else if ( IIRValue == IIR_RDA ) /* Receive Data Available */
{
/* Receive Data Available */
if ((UART0RxQueueWritePos+1) % UARTRXQUEUESIZE != UART0RxQueueReadPos)
{
UART0Buffer[UART0RxQueueWritePos] = LPC_UART0->RBR;
UART0RxQueueWritePos = (UART0RxQueueWritePos+1) % UARTRXQUEUESIZE;
}
else
dummy = LPC_UART1->RBR;;
}
if (PortNum == 2) {
if (UART2RxQueueReadPos == UART2RxQueueWritePos) return -1;
rx = UART2Buffer[UART2RxQueueReadPos];
UART2RxQueueReadPos = (UART2RxQueueReadPos + 1) % UARTRXQUEUESIZE;
return rx;
else if ( IIRValue == IIR_CTI ) /* Character timeout indicator */
{
/* Character Time-out indicator */
UART0Status |= 0x100; /* Bit 9 as the CTI error */
}
if (PortNum == 3) {
if (UART3RxQueueReadPos == UART3RxQueueWritePos) return -1;
rx = UART3Buffer[UART3RxQueueReadPos];
UART3RxQueueReadPos = (UART3RxQueueReadPos + 1) % UARTRXQUEUESIZE;
return rx;
else if ( IIRValue == IIR_THRE ) /* THRE, transmit holding register empty */
{
/* THRE interrupt */
LSRValue = LPC_UART0->LSR; /* Check status in the LSR to see if
valid data in U0THR or not */
if ( LSRValue & LSR_THRE )
{
UART0TxEmpty = 1;
}
else
{
UART0TxEmpty = 0;
}
}
return 0;
}
size_t HardwareSerial::write(uint8_t send) {
if (PortNum == 0) {
/* THRE status, contain valid data */
while (!(UART0TxEmpty & 0x01));
LPC_UART0->THR = send;
UART0TxEmpty = 0; /* not empty in the THR until it shifts out */
/*****************************************************************************
** Function name: UART1_IRQHandler
**
** Descriptions: UART1 interrupt handler
**
** parameters: None
** Returned value: None
**
*****************************************************************************/
void UART1_IRQHandler (void)
{
uint8_t IIRValue, LSRValue;
uint8_t Dummy = Dummy;
IIRValue = LPC_UART1->IIR;
IIRValue >>= 1; /* skip pending bit in IIR */
IIRValue &= 0x07; /* check bit 1~3, interrupt identification */
if ( IIRValue == IIR_RLS ) /* Receive Line Status */
{
LSRValue = LPC_UART1->LSR;
/* Receive Line Status */
if ( LSRValue & (LSR_OE|LSR_PE|LSR_FE|LSR_RXFE|LSR_BI) )
{
/* There are errors or break interrupt */
/* Read LSR will clear the interrupt */
UART1Status = LSRValue;
Dummy = LPC_UART1->RBR; /* Dummy read on RX to clear
interrupt, then bail out */
return;
}
if ( LSRValue & LSR_RDR ) /* Receive Data Ready */
{
/* If no error on RLS, normal ready, save into the data buffer. */
/* Note: read RBR will clear the interrupt */
if ((UART1RxQueueWritePos+1) % UARTRXQUEUESIZE != UART1RxQueueReadPos)
{
UART1Buffer[UART1RxQueueWritePos] = LPC_UART1->RBR;
UART1RxQueueWritePos =(UART1RxQueueWritePos+1) % UARTRXQUEUESIZE;
}
else
dummy = LPC_UART1->RBR;;
}
}
else if (PortNum == 1) {
while (!(UART1TxEmpty & 0x01));
LPC_UART1->THR = send;
UART1TxEmpty = 0;
else if ( IIRValue == IIR_RDA ) /* Receive Data Available */
{
/* Receive Data Available */
if ((UART1RxQueueWritePos+1) % UARTRXQUEUESIZE != UART1RxQueueReadPos)
{
UART1Buffer[UART1RxQueueWritePos] = LPC_UART1->RBR;
UART1RxQueueWritePos = (UART1RxQueueWritePos+1) % UARTRXQUEUESIZE;
}
else
dummy = LPC_UART1->RBR;;
}
else if (PortNum == 2) {
while (!(UART2TxEmpty & 0x01));
LPC_UART2->THR = send;
UART2TxEmpty = 0;
else if ( IIRValue == IIR_CTI ) /* Character timeout indicator */
{
/* Character Time-out indicator */
UART1Status |= 0x100; /* Bit 9 as the CTI error */
}
else if (PortNum == 3) {
while (!(UART3TxEmpty & 0x01));
LPC_UART3->THR = send;
UART3TxEmpty = 0;
else if ( IIRValue == IIR_THRE ) /* THRE, transmit holding register empty */
{
/* THRE interrupt */
LSRValue = LPC_UART1->LSR; /* Check status in the LSR to see if
valid data in U0THR or not */
if ( LSRValue & LSR_THRE )
{
UART1TxEmpty = 1;
}
else
{
UART1TxEmpty = 0;
}
}
return 0;
}
int HardwareSerial::available() {
if (PortNum == 0)
return (UART0RxQueueWritePos + UARTRXQUEUESIZE - UART0RxQueueReadPos) % UARTRXQUEUESIZE;
if (PortNum == 1)
return (UART1RxQueueWritePos + UARTRXQUEUESIZE - UART1RxQueueReadPos) % UARTRXQUEUESIZE;
if (PortNum == 2)
return (UART2RxQueueWritePos + UARTRXQUEUESIZE - UART2RxQueueReadPos) % UARTRXQUEUESIZE;
if (PortNum == 3)
return (UART3RxQueueWritePos + UARTRXQUEUESIZE - UART3RxQueueReadPos) % UARTRXQUEUESIZE;
return 0;
}
/*****************************************************************************
** Function name: UART2_IRQHandler
**
** Descriptions: UART2 interrupt handler
**
** parameters: None
** Returned value: None
**
*****************************************************************************/
void UART2_IRQHandler (void)
{
uint8_t IIRValue, LSRValue;
uint8_t Dummy = Dummy;
void HardwareSerial::flush() {
if (PortNum == 0)
UART0RxQueueWritePos = UART0RxQueueReadPos = 0;
if (PortNum == 1)
UART1RxQueueWritePos = UART1RxQueueReadPos = 0;
if (PortNum == 2)
UART2RxQueueWritePos = UART2RxQueueReadPos = 0;
if (PortNum == 3)
UART3RxQueueWritePos = UART3RxQueueReadPos = 0;
}
IIRValue = LPC_UART2->IIR;
void HardwareSerial::printf(const char *format, ...) {
static char buffer[256];
va_list vArgs;
va_start(vArgs, format);
int length = vsnprintf((char *) buffer, 256, (char const *) format, vArgs);
va_end(vArgs);
if (length > 0 && length < 256)
for (int i = 0; i < length; ++i)
write(buffer[i]);
IIRValue >>= 1; /* skip pending bit in IIR */
IIRValue &= 0x07; /* check bit 1~3, interrupt identification */
if ( IIRValue == IIR_RLS ) /* Receive Line Status */
{
LSRValue = LPC_UART2->LSR;
/* Receive Line Status */
if ( LSRValue & (LSR_OE|LSR_PE|LSR_FE|LSR_RXFE|LSR_BI) )
{
/* There are errors or break interrupt */
/* Read LSR will clear the interrupt */
UART2Status = LSRValue;
Dummy = LPC_UART2->RBR; /* Dummy read on RX to clear
interrupt, then bail out */
return;
}
if ( LSRValue & LSR_RDR ) /* Receive Data Ready */
{
/* If no error on RLS, normal ready, save into the data buffer. */
/* Note: read RBR will clear the interrupt */
if ((UART2RxQueueWritePos+1) % UARTRXQUEUESIZE != UART2RxQueueReadPos)
{
UART2Buffer[UART2RxQueueWritePos] = LPC_UART2->RBR;
UART2RxQueueWritePos = (UART2RxQueueWritePos+1) % UARTRXQUEUESIZE;
}
}
}
else if ( IIRValue == IIR_RDA ) /* Receive Data Available */
{
/* Receive Data Available */
if ((UART2RxQueueWritePos+1) % UARTRXQUEUESIZE != UART2RxQueueReadPos)
{
UART2Buffer[UART2RxQueueWritePos] = LPC_UART2->RBR;
UART2RxQueueWritePos = (UART2RxQueueWritePos+1) % UARTRXQUEUESIZE;
}
else
dummy = LPC_UART2->RBR;;
}
else if ( IIRValue == IIR_CTI ) /* Character timeout indicator */
{
/* Character Time-out indicator */
UART2Status |= 0x100; /* Bit 9 as the CTI error */
}
else if ( IIRValue == IIR_THRE ) /* THRE, transmit holding register empty */
{
/* THRE interrupt */
LSRValue = LPC_UART2->LSR; /* Check status in the LSR to see if
valid data in U0THR or not */
if ( LSRValue & LSR_THRE )
{
UART2TxEmpty = 1;
}
else
{
UART2TxEmpty = 0;
}
}
}
/*****************************************************************************
** Function name: UARTn_IRQHandler
** Function name: UART3_IRQHandler
**
** Descriptions: UARTn interrupt handler
** Descriptions: UART0 interrupt handler
**
** parameters: None
** Returned value: None
** parameters: None
** Returned value: None
**
*****************************************************************************/
#define DEFINE_UART_HANDLER(NUM) \
void UART3_IRQHandler(void) { \
uint8_t IIRValue, LSRValue; \
uint8_t Dummy = Dummy; \
IIRValue = LPC_UART ##NUM## ->IIR; \
IIRValue >>= 1; \
IIRValue &= 0x07; \
switch (IIRValue) { \
case IIR_RLS: \
LSRValue = LPC_UART ##NUM## ->LSR; \
if (LSRValue & (LSR_OE|LSR_PE|LSR_FE|LSR_RXFE|LSR_BI)) { \
UART ##NUM## Status = LSRValue; \
Dummy = LPC_UART ##NUM## ->RBR; \
return; \
} \
if (LSRValue & LSR_RDR) { \
if ((UART ##NUM## RxQueueWritePos+1) % UARTRXQUEUESIZE != UART ##NUM## RxQueueReadPos) { \
UART ##NUM## Buffer[UART ##NUM## RxQueueWritePos] = LPC_UART ##NUM## ->RBR; \
UART ##NUM## RxQueueWritePos = (UART ##NUM## RxQueueWritePos+1) % UARTRXQUEUESIZE; \
} \
} \
break; \
case IIR_RDA: \
if ((UART ##NUM## RxQueueWritePos+1) % UARTRXQUEUESIZE != UART ##NUM## RxQueueReadPos) { \
UART ##NUM## Buffer[UART ##NUM## RxQueueWritePos] = LPC_UART ##NUM## ->RBR; \
UART ##NUM## RxQueueWritePos = (UART ##NUM## RxQueueWritePos+1) % UARTRXQUEUESIZE; \
} \
else \
dummy = LPC_UART ##NUM## ->RBR;; \
break; \
case IIR_CTI: \
UART ##NUM## Status |= 0x100; \
break; \
case IIR_THRE: \
LSRValue = LPC_UART ##NUM## ->LSR; \
UART ##NUM## TxEmpty = (LSRValue & LSR_THRE) ? 1 : 0; \
break; \
} \
} \
typedef void _uart_ ## NUM
void UART3_IRQHandler (void)
{
uint8_t IIRValue, LSRValue;
uint8_t Dummy = Dummy;
#ifdef __cplusplus
extern "C" {
#endif
IIRValue = LPC_UART3->IIR;
DEFINE_UART_HANDLER(0);
DEFINE_UART_HANDLER(1);
DEFINE_UART_HANDLER(2);
DEFINE_UART_HANDLER(3);
IIRValue >>= 1; /* skip pending bit in IIR */
IIRValue &= 0x07; /* check bit 1~3, interrupt identification */
if ( IIRValue == IIR_RLS ) /* Receive Line Status */
{
LSRValue = LPC_UART3->LSR;
/* Receive Line Status */
if ( LSRValue & (LSR_OE|LSR_PE|LSR_FE|LSR_RXFE|LSR_BI) )
{
/* There are errors or break interrupt */
/* Read LSR will clear the interrupt */
UART3Status = LSRValue;
Dummy = LPC_UART3->RBR; /* Dummy read on RX to clear
interrupt, then bail out */
return;
}
if ( LSRValue & LSR_RDR ) /* Receive Data Ready */
{
/* If no error on RLS, normal ready, save into the data buffer. */
/* Note: read RBR will clear the interrupt */
if ((UART3RxQueueWritePos+1) % UARTRXQUEUESIZE != UART3RxQueueReadPos)
{
UART3Buffer[UART3RxQueueWritePos] = LPC_UART3->RBR;
UART3RxQueueWritePos = (UART3RxQueueWritePos+1) % UARTRXQUEUESIZE;
}
}
}
else if ( IIRValue == IIR_RDA ) /* Receive Data Available */
{
/* Receive Data Available */
if ((UART3RxQueueWritePos+1) % UARTRXQUEUESIZE != UART3RxQueueReadPos)
{
UART3Buffer[UART3RxQueueWritePos] = LPC_UART3->RBR;
UART3RxQueueWritePos = (UART3RxQueueWritePos+1) % UARTRXQUEUESIZE;
}
else
dummy = LPC_UART3->RBR;;
}
else if ( IIRValue == IIR_CTI ) /* Character timeout indicator */
{
/* Character Time-out indicator */
UART3Status |= 0x100; /* Bit 9 as the CTI error */
}
else if ( IIRValue == IIR_THRE ) /* THRE, transmit holding register empty */
{
/* THRE interrupt */
LSRValue = LPC_UART3->LSR; /* Check status in the LSR to see if
valid data in U0THR or not */
if ( LSRValue & LSR_THRE )
{
UART3TxEmpty = 1;
}
else
{
UART3TxEmpty = 0;
}
}
}
#ifdef __cplusplus
}
}
#endif
#endif // TARGET_LPC1768

4
Marlin/src/HAL/HAL_LPC1768/include/arduino.h

@ -101,9 +101,9 @@ uint32_t millis();
//IO functions
void pinMode(uint8_t, uint8_t);
void digitalWrite(uint8_t, uint8_t);
int digitalRead(uint8_t);
bool digitalRead(uint8_t);
void analogWrite(uint8_t, int);
int analogRead(uint8_t);
uint16_t analogRead(uint8_t);
// EEPROM
void eeprom_write_byte(unsigned char *pos, unsigned char value);

Loading…
Cancel
Save