|
|
@ -651,7 +651,7 @@ float soft_endstop_min[XYZ] = { X_MIN_BED, Y_MIN_BED, Z_MIN_POS }, |
|
|
|
#if ENABLED(SCARA_FEEDRATE_SCALING) |
|
|
|
// For SCARA scale the feed rate from mm/s to degrees/s
|
|
|
|
// i.e., Complete the angular vector in the given time.
|
|
|
|
if (!planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], raw[Z_AXIS], raw[E_AXIS], HYPOT(delta[A_AXIS] - oldA, delta[B_AXIS] - oldB) * inverse_secs, active_extruder)) |
|
|
|
if (!planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], raw[Z_AXIS], raw[E_AXIS], HYPOT(delta[A_AXIS] - oldA, delta[B_AXIS] - oldB) * inverse_secs, active_extruder, segment_length)) |
|
|
|
break; |
|
|
|
/*
|
|
|
|
SERIAL_ECHO(segments); |
|
|
@ -664,7 +664,7 @@ float soft_endstop_min[XYZ] = { X_MIN_BED, Y_MIN_BED, Z_MIN_POS }, |
|
|
|
#elif ENABLED(DELTA_FEEDRATE_SCALING) |
|
|
|
// For DELTA scale the feed rate from Effector mm/s to Carriage mm/s
|
|
|
|
// i.e., Complete the linear vector in the given time.
|
|
|
|
if (!planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], raw[E_AXIS], SQRT(sq(delta[A_AXIS] - oldA) + sq(delta[B_AXIS] - oldB) + sq(delta[C_AXIS] - oldC)) * inverse_secs, active_extruder)) |
|
|
|
if (!planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], raw[E_AXIS], SQRT(sq(delta[A_AXIS] - oldA) + sq(delta[B_AXIS] - oldB) + sq(delta[C_AXIS] - oldC)) * inverse_secs, active_extruder, segment_length)) |
|
|
|
break; |
|
|
|
/*
|
|
|
|
SERIAL_ECHO(segments); |
|
|
@ -689,7 +689,7 @@ float soft_endstop_min[XYZ] = { X_MIN_BED, Y_MIN_BED, Z_MIN_POS }, |
|
|
|
#if ENABLED(SCARA_FEEDRATE_SCALING) |
|
|
|
const float diff2 = HYPOT2(delta[A_AXIS] - oldA, delta[B_AXIS] - oldB); |
|
|
|
if (diff2) { |
|
|
|
planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], rtarget[Z_AXIS], rtarget[E_AXIS], SQRT(diff2) * inverse_secs, active_extruder); |
|
|
|
planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], rtarget[Z_AXIS], rtarget[E_AXIS], SQRT(diff2) * inverse_secs, active_extruder, segment_length); |
|
|
|
/*
|
|
|
|
SERIAL_ECHOPAIR("final: A=", delta[A_AXIS]); SERIAL_ECHOPAIR(" B=", delta[B_AXIS]); |
|
|
|
SERIAL_ECHOPAIR(" adiff=", delta[A_AXIS] - oldA); SERIAL_ECHOPAIR(" bdiff=", delta[B_AXIS] - oldB); |
|
|
@ -701,7 +701,7 @@ float soft_endstop_min[XYZ] = { X_MIN_BED, Y_MIN_BED, Z_MIN_POS }, |
|
|
|
#elif ENABLED(DELTA_FEEDRATE_SCALING) |
|
|
|
const float diff2 = sq(delta[A_AXIS] - oldA) + sq(delta[B_AXIS] - oldB) + sq(delta[C_AXIS] - oldC); |
|
|
|
if (diff2) { |
|
|
|
planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], rtarget[E_AXIS], SQRT(diff2) * inverse_secs, active_extruder); |
|
|
|
planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], rtarget[E_AXIS], SQRT(diff2) * inverse_secs, active_extruder, segment_length); |
|
|
|
/*
|
|
|
|
SERIAL_ECHOPAIR("final: A=", delta[A_AXIS]); SERIAL_ECHOPAIR(" B=", delta[B_AXIS]); SERIAL_ECHOPAIR(" C=", delta[C_AXIS]); |
|
|
|
SERIAL_ECHOPAIR(" adiff=", delta[A_AXIS] - oldA); SERIAL_ECHOPAIR(" bdiff=", delta[B_AXIS] - oldB); SERIAL_ECHOPAIR(" cdiff=", delta[C_AXIS] - oldC); |
|
|
|