|
|
@ -207,7 +207,7 @@ skew_factor_t Planner::skew_factor; // Initialized by settings.load() |
|
|
|
|
|
|
|
xyze_long_t Planner::position{0}; |
|
|
|
|
|
|
|
uint32_t Planner::cutoff_long; |
|
|
|
uint32_t Planner::acceleration_long_cutoff; |
|
|
|
|
|
|
|
xyze_float_t Planner::previous_speed; |
|
|
|
float Planner::previous_nominal_speed_sqr; |
|
|
@ -2271,23 +2271,22 @@ bool Planner::_populate_block(block_t * const block, bool split_move, |
|
|
|
// Compute and limit the acceleration rate for the trapezoid generator.
|
|
|
|
const float steps_per_mm = block->step_event_count * inverse_millimeters; |
|
|
|
uint32_t accel; |
|
|
|
if (!block->steps.a && !block->steps.b && !block->steps.c) { |
|
|
|
// convert to: acceleration steps/sec^2
|
|
|
|
accel = CEIL(settings.retract_acceleration * steps_per_mm); |
|
|
|
TERN_(LIN_ADVANCE, block->use_advance_lead = false); |
|
|
|
if (!block->steps.a && !block->steps.b && !block->steps.c) { // Is this a retract / recover move?
|
|
|
|
accel = CEIL(settings.retract_acceleration * steps_per_mm); // Convert to: acceleration steps/sec^2
|
|
|
|
TERN_(LIN_ADVANCE, block->use_advance_lead = false); // No linear advance for simple retract/recover
|
|
|
|
} |
|
|
|
else { |
|
|
|
#define LIMIT_ACCEL_LONG(AXIS,INDX) do{ \ |
|
|
|
if (block->steps[AXIS] && max_acceleration_steps_per_s2[AXIS+INDX] < accel) { \ |
|
|
|
const uint32_t comp = max_acceleration_steps_per_s2[AXIS+INDX] * block->step_event_count; \ |
|
|
|
if (accel * block->steps[AXIS] > comp) accel = comp / block->steps[AXIS]; \ |
|
|
|
const uint32_t max_possible = max_acceleration_steps_per_s2[AXIS+INDX] * block->step_event_count / block->steps[AXIS]; \ |
|
|
|
NOMORE(accel, max_possible); \ |
|
|
|
} \ |
|
|
|
}while(0) |
|
|
|
|
|
|
|
#define LIMIT_ACCEL_FLOAT(AXIS,INDX) do{ \ |
|
|
|
if (block->steps[AXIS] && max_acceleration_steps_per_s2[AXIS+INDX] < accel) { \ |
|
|
|
const float comp = (float)max_acceleration_steps_per_s2[AXIS+INDX] * (float)block->step_event_count; \ |
|
|
|
if ((float)accel * (float)block->steps[AXIS] > comp) accel = comp / (float)block->steps[AXIS]; \ |
|
|
|
const float max_possible = float(max_acceleration_steps_per_s2[AXIS+INDX]) * float(block->step_event_count) / float(block->steps[AXIS]); \ |
|
|
|
NOMORE(accel, max_possible); \ |
|
|
|
} \ |
|
|
|
}while(0) |
|
|
|
|
|
|
@ -2336,7 +2335,7 @@ bool Planner::_populate_block(block_t * const block, bool split_move, |
|
|
|
#endif |
|
|
|
|
|
|
|
// Limit acceleration per axis
|
|
|
|
if (block->step_event_count <= cutoff_long) { |
|
|
|
if (block->step_event_count <= acceleration_long_cutoff) { |
|
|
|
LIMIT_ACCEL_LONG(A_AXIS, 0); |
|
|
|
LIMIT_ACCEL_LONG(B_AXIS, 0); |
|
|
|
LIMIT_ACCEL_LONG(C_AXIS, 0); |
|
|
@ -2352,7 +2351,7 @@ bool Planner::_populate_block(block_t * const block, bool split_move, |
|
|
|
block->acceleration_steps_per_s2 = accel; |
|
|
|
block->acceleration = accel / steps_per_mm; |
|
|
|
#if DISABLED(S_CURVE_ACCELERATION) |
|
|
|
block->acceleration_rate = (uint32_t)(accel * (4096.0f * 4096.0f / (STEPPER_TIMER_RATE))); |
|
|
|
block->acceleration_rate = (uint32_t)(accel * (sq(4096.0f) / (STEPPER_TIMER_RATE))); |
|
|
|
#endif |
|
|
|
#if ENABLED(LIN_ADVANCE) |
|
|
|
if (block->use_advance_lead) { |
|
|
@ -3020,7 +3019,7 @@ void Planner::reset_acceleration_rates() { |
|
|
|
max_acceleration_steps_per_s2[i] = settings.max_acceleration_mm_per_s2[i] * settings.axis_steps_per_mm[i]; |
|
|
|
if (AXIS_CONDITION) NOLESS(highest_rate, max_acceleration_steps_per_s2[i]); |
|
|
|
} |
|
|
|
cutoff_long = 4294967295UL / highest_rate; // 0xFFFFFFFFUL
|
|
|
|
acceleration_long_cutoff = 4294967295UL / highest_rate; // 0xFFFFFFFFUL
|
|
|
|
TERN_(HAS_LINEAR_E_JERK, recalculate_max_e_jerk()); |
|
|
|
} |
|
|
|
|
|
|
|