|
@ -613,7 +613,7 @@ static void report_current_position(); |
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE) |
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE) |
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_delta", current_position); |
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_delta", current_position); |
|
|
#endif |
|
|
#endif |
|
|
calculate_delta(current_position); |
|
|
inverse_kinematics(current_position); |
|
|
planner.set_position_mm(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]); |
|
|
planner.set_position_mm(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]); |
|
|
} |
|
|
} |
|
|
#define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_delta() |
|
|
#define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_delta() |
|
@ -1528,7 +1528,7 @@ static void set_axis_is_at_home(AxisEnum axis) { |
|
|
* Works out real Homeposition angles using inverse kinematics, |
|
|
* Works out real Homeposition angles using inverse kinematics, |
|
|
* and calculates homing offset using forward kinematics |
|
|
* and calculates homing offset using forward kinematics |
|
|
*/ |
|
|
*/ |
|
|
calculate_delta(homeposition); |
|
|
inverse_kinematics(homeposition); |
|
|
|
|
|
|
|
|
// SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
|
|
|
// SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
|
|
|
// SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
|
|
|
// SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
|
|
@ -1540,7 +1540,7 @@ static void set_axis_is_at_home(AxisEnum axis) { |
|
|
// SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
|
|
|
// SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
|
|
|
// SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
|
|
|
// SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
|
|
|
|
|
|
|
|
|
calculate_SCARA_forward_Transform(delta); |
|
|
forward_kinematics_SCARA(delta); |
|
|
|
|
|
|
|
|
// SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
|
|
|
// SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
|
|
|
// SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
|
|
|
// SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
|
|
@ -1658,7 +1658,7 @@ inline void set_destination_to_current() { memcpy(destination, current_position, |
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_move_to_destination_raw", destination); |
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_move_to_destination_raw", destination); |
|
|
#endif |
|
|
#endif |
|
|
refresh_cmd_timeout(); |
|
|
refresh_cmd_timeout(); |
|
|
calculate_delta(destination); |
|
|
inverse_kinematics(destination); |
|
|
planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], MMM_TO_MMS_SCALED(feedrate_mm_m), active_extruder); |
|
|
planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], MMM_TO_MMS_SCALED(feedrate_mm_m), active_extruder); |
|
|
set_current_to_destination(); |
|
|
set_current_to_destination(); |
|
|
} |
|
|
} |
|
@ -5886,7 +5886,7 @@ inline void gcode_M303() { |
|
|
//gcode_get_destination(); // For X Y Z E F
|
|
|
//gcode_get_destination(); // For X Y Z E F
|
|
|
delta[X_AXIS] = delta_x; |
|
|
delta[X_AXIS] = delta_x; |
|
|
delta[Y_AXIS] = delta_y; |
|
|
delta[Y_AXIS] = delta_y; |
|
|
calculate_SCARA_forward_Transform(delta); |
|
|
forward_kinematics_SCARA(delta); |
|
|
destination[X_AXIS] = delta[X_AXIS] / axis_scaling[X_AXIS]; |
|
|
destination[X_AXIS] = delta[X_AXIS] / axis_scaling[X_AXIS]; |
|
|
destination[Y_AXIS] = delta[Y_AXIS] / axis_scaling[Y_AXIS]; |
|
|
destination[Y_AXIS] = delta[Y_AXIS] / axis_scaling[Y_AXIS]; |
|
|
prepare_move_to_destination(); |
|
|
prepare_move_to_destination(); |
|
@ -6275,7 +6275,7 @@ inline void gcode_M503() { |
|
|
|
|
|
|
|
|
// Define runplan for move axes
|
|
|
// Define runplan for move axes
|
|
|
#if ENABLED(DELTA) |
|
|
#if ENABLED(DELTA) |
|
|
#define RUNPLAN(RATE_MM_S) calculate_delta(destination); \ |
|
|
#define RUNPLAN(RATE_MM_S) inverse_kinematics(destination); \ |
|
|
planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], RATE_MM_S, active_extruder); |
|
|
planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], RATE_MM_S, active_extruder); |
|
|
#else |
|
|
#else |
|
|
#define RUNPLAN(RATE_MM_S) line_to_destination(MMS_TO_MMM(RATE_MM_S)); |
|
|
#define RUNPLAN(RATE_MM_S) line_to_destination(MMS_TO_MMM(RATE_MM_S)); |
|
@ -6397,7 +6397,7 @@ inline void gcode_M503() { |
|
|
|
|
|
|
|
|
#if ENABLED(DELTA) |
|
|
#if ENABLED(DELTA) |
|
|
// Move XYZ to starting position, then E
|
|
|
// Move XYZ to starting position, then E
|
|
|
calculate_delta(lastpos); |
|
|
inverse_kinematics(lastpos); |
|
|
planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder); |
|
|
planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder); |
|
|
planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder); |
|
|
planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder); |
|
|
#else |
|
|
#else |
|
@ -7737,7 +7737,7 @@ void clamp_to_software_endstops(float target[3]) { |
|
|
delta_diagonal_rod_2_tower_3 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_3); |
|
|
delta_diagonal_rod_2_tower_3 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_3); |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
void calculate_delta(float cartesian[3]) { |
|
|
void inverse_kinematics(float cartesian[3]) { |
|
|
|
|
|
|
|
|
delta[TOWER_1] = sqrt(delta_diagonal_rod_2_tower_1 |
|
|
delta[TOWER_1] = sqrt(delta_diagonal_rod_2_tower_1 |
|
|
- sq(delta_tower1_x - cartesian[X_AXIS]) |
|
|
- sq(delta_tower1_x - cartesian[X_AXIS]) |
|
@ -7764,14 +7764,14 @@ void clamp_to_software_endstops(float target[3]) { |
|
|
|
|
|
|
|
|
float delta_safe_distance_from_top() { |
|
|
float delta_safe_distance_from_top() { |
|
|
float cartesian[3] = { 0 }; |
|
|
float cartesian[3] = { 0 }; |
|
|
calculate_delta(cartesian); |
|
|
inverse_kinematics(cartesian); |
|
|
float distance = delta[TOWER_3]; |
|
|
float distance = delta[TOWER_3]; |
|
|
cartesian[Y_AXIS] = DELTA_PRINTABLE_RADIUS; |
|
|
cartesian[Y_AXIS] = DELTA_PRINTABLE_RADIUS; |
|
|
calculate_delta(cartesian); |
|
|
inverse_kinematics(cartesian); |
|
|
return abs(distance - delta[TOWER_3]); |
|
|
return abs(distance - delta[TOWER_3]); |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
void forwardKinematics(float z1, float z2, float z3) { |
|
|
void forward_kinematics_DELTA(float z1, float z2, float z3) { |
|
|
//As discussed in Wikipedia "Trilateration"
|
|
|
//As discussed in Wikipedia "Trilateration"
|
|
|
//we are establishing a new coordinate
|
|
|
//we are establishing a new coordinate
|
|
|
//system in the plane of the three carriage points.
|
|
|
//system in the plane of the three carriage points.
|
|
@ -7840,12 +7840,12 @@ void clamp_to_software_endstops(float target[3]) { |
|
|
cartesian_position[Z_AXIS] = z1 + ex[2]*Xnew + ey[2]*Ynew - ez[2]*Znew; |
|
|
cartesian_position[Z_AXIS] = z1 + ex[2]*Xnew + ey[2]*Ynew - ez[2]*Znew; |
|
|
}; |
|
|
}; |
|
|
|
|
|
|
|
|
void forwardKinematics(float point[3]) { |
|
|
void forward_kinematics_DELTA(float point[3]) { |
|
|
forwardKinematics(point[X_AXIS], point[Y_AXIS], point[Z_AXIS]); |
|
|
forward_kinematics_DELTA(point[X_AXIS], point[Y_AXIS], point[Z_AXIS]); |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
void set_cartesian_from_steppers() { |
|
|
void set_cartesian_from_steppers() { |
|
|
forwardKinematics(stepper.get_axis_position_mm(X_AXIS), |
|
|
forward_kinematics_DELTA(stepper.get_axis_position_mm(X_AXIS), |
|
|
stepper.get_axis_position_mm(Y_AXIS), |
|
|
stepper.get_axis_position_mm(Y_AXIS), |
|
|
stepper.get_axis_position_mm(Z_AXIS)); |
|
|
stepper.get_axis_position_mm(Z_AXIS)); |
|
|
} |
|
|
} |
|
@ -7973,7 +7973,7 @@ void mesh_line_to_destination(float fr_mm_m, uint8_t x_splits = 0xff, uint8_t y_ |
|
|
|
|
|
|
|
|
#if ENABLED(DELTA) || ENABLED(SCARA) |
|
|
#if ENABLED(DELTA) || ENABLED(SCARA) |
|
|
|
|
|
|
|
|
inline bool prepare_delta_move_to(float target[NUM_AXIS]) { |
|
|
inline bool prepare_kinematic_move_to(float target[NUM_AXIS]) { |
|
|
float difference[NUM_AXIS]; |
|
|
float difference[NUM_AXIS]; |
|
|
for (int8_t i = 0; i < NUM_AXIS; i++) difference[i] = target[i] - current_position[i]; |
|
|
for (int8_t i = 0; i < NUM_AXIS; i++) difference[i] = target[i] - current_position[i]; |
|
|
|
|
|
|
|
@ -7996,14 +7996,14 @@ void mesh_line_to_destination(float fr_mm_m, uint8_t x_splits = 0xff, uint8_t y_ |
|
|
for (int8_t i = 0; i < NUM_AXIS; i++) |
|
|
for (int8_t i = 0; i < NUM_AXIS; i++) |
|
|
target[i] = current_position[i] + difference[i] * fraction; |
|
|
target[i] = current_position[i] + difference[i] * fraction; |
|
|
|
|
|
|
|
|
calculate_delta(target); |
|
|
inverse_kinematics(target); |
|
|
|
|
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_FEATURE) |
|
|
#if ENABLED(AUTO_BED_LEVELING_FEATURE) |
|
|
if (!bed_leveling_in_progress) adjust_delta(target); |
|
|
if (!bed_leveling_in_progress) adjust_delta(target); |
|
|
#endif |
|
|
#endif |
|
|
|
|
|
|
|
|
//DEBUG_POS("prepare_delta_move_to", target);
|
|
|
//DEBUG_POS("prepare_kinematic_move_to", target);
|
|
|
//DEBUG_POS("prepare_delta_move_to", delta);
|
|
|
//DEBUG_POS("prepare_kinematic_move_to", delta);
|
|
|
|
|
|
|
|
|
planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], _feedrate_mm_s, active_extruder); |
|
|
planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], _feedrate_mm_s, active_extruder); |
|
|
} |
|
|
} |
|
@ -8012,10 +8012,6 @@ void mesh_line_to_destination(float fr_mm_m, uint8_t x_splits = 0xff, uint8_t y_ |
|
|
|
|
|
|
|
|
#endif // DELTA || SCARA
|
|
|
#endif // DELTA || SCARA
|
|
|
|
|
|
|
|
|
#if ENABLED(SCARA) |
|
|
|
|
|
inline bool prepare_scara_move_to(float target[NUM_AXIS]) { return prepare_delta_move_to(target); } |
|
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
|
|
#if ENABLED(DUAL_X_CARRIAGE) |
|
|
#if ENABLED(DUAL_X_CARRIAGE) |
|
|
|
|
|
|
|
|
inline bool prepare_move_to_destination_dualx() { |
|
|
inline bool prepare_move_to_destination_dualx() { |
|
@ -8114,10 +8110,8 @@ void prepare_move_to_destination() { |
|
|
prevent_dangerous_extrude(current_position[E_AXIS], destination[E_AXIS]); |
|
|
prevent_dangerous_extrude(current_position[E_AXIS], destination[E_AXIS]); |
|
|
#endif |
|
|
#endif |
|
|
|
|
|
|
|
|
#if ENABLED(SCARA) |
|
|
#if ENABLED(DELTA) || ENABLED(SCARA) |
|
|
if (!prepare_scara_move_to(destination)) return; |
|
|
if (!prepare_kinematic_move_to(destination)) return; |
|
|
#elif ENABLED(DELTA) |
|
|
|
|
|
if (!prepare_delta_move_to(destination)) return; |
|
|
|
|
|
#else |
|
|
#else |
|
|
#if ENABLED(DUAL_X_CARRIAGE) |
|
|
#if ENABLED(DUAL_X_CARRIAGE) |
|
|
if (!prepare_move_to_destination_dualx()) return; |
|
|
if (!prepare_move_to_destination_dualx()) return; |
|
@ -8253,7 +8247,7 @@ void prepare_move_to_destination() { |
|
|
clamp_to_software_endstops(arc_target); |
|
|
clamp_to_software_endstops(arc_target); |
|
|
|
|
|
|
|
|
#if ENABLED(DELTA) || ENABLED(SCARA) |
|
|
#if ENABLED(DELTA) || ENABLED(SCARA) |
|
|
calculate_delta(arc_target); |
|
|
inverse_kinematics(arc_target); |
|
|
#if ENABLED(AUTO_BED_LEVELING_FEATURE) |
|
|
#if ENABLED(AUTO_BED_LEVELING_FEATURE) |
|
|
adjust_delta(arc_target); |
|
|
adjust_delta(arc_target); |
|
|
#endif |
|
|
#endif |
|
@ -8265,7 +8259,7 @@ void prepare_move_to_destination() { |
|
|
|
|
|
|
|
|
// Ensure last segment arrives at target location.
|
|
|
// Ensure last segment arrives at target location.
|
|
|
#if ENABLED(DELTA) || ENABLED(SCARA) |
|
|
#if ENABLED(DELTA) || ENABLED(SCARA) |
|
|
calculate_delta(target); |
|
|
inverse_kinematics(target); |
|
|
#if ENABLED(AUTO_BED_LEVELING_FEATURE) |
|
|
#if ENABLED(AUTO_BED_LEVELING_FEATURE) |
|
|
adjust_delta(target); |
|
|
adjust_delta(target); |
|
|
#endif |
|
|
#endif |
|
@ -8333,7 +8327,7 @@ void prepare_move_to_destination() { |
|
|
|
|
|
|
|
|
#if ENABLED(SCARA) |
|
|
#if ENABLED(SCARA) |
|
|
|
|
|
|
|
|
void calculate_SCARA_forward_Transform(float f_scara[3]) { |
|
|
void forward_kinematics_SCARA(float f_scara[3]) { |
|
|
// Perform forward kinematics, and place results in delta[3]
|
|
|
// Perform forward kinematics, and place results in delta[3]
|
|
|
// The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
|
|
|
// The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
|
|
|
|
|
|
|
|
@ -8359,10 +8353,11 @@ void prepare_move_to_destination() { |
|
|
//SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
|
|
|
//SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
|
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
void calculate_delta(float cartesian[3]) { |
|
|
void inverse_kinematics(float cartesian[3]) { |
|
|
//reverse kinematics.
|
|
|
// Inverse kinematics.
|
|
|
// Perform reversed kinematics, and place results in delta[3]
|
|
|
// Perform SCARA IK and place results in delta[3].
|
|
|
// The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
|
|
|
// The maths and first version were done by QHARLEY.
|
|
|
|
|
|
// Integrated, tweaked by Joachim Cerny in June 2014.
|
|
|
|
|
|
|
|
|
float SCARA_pos[2]; |
|
|
float SCARA_pos[2]; |
|
|
static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi; |
|
|
static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi; |
|
|