|
|
@ -3397,6 +3397,8 @@ inline void gcode_G28() { |
|
|
|
|
|
|
|
bed_leveling_in_progress = true; |
|
|
|
|
|
|
|
float xProbe, yProbe, measured_z = 0; |
|
|
|
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_GRID) |
|
|
|
|
|
|
|
// probe at the points of a lattice grid
|
|
|
@ -3434,7 +3436,7 @@ inline void gcode_G28() { |
|
|
|
bool zig = auto_bed_leveling_grid_points & 1; //always end at [RIGHT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION]
|
|
|
|
|
|
|
|
for (uint8_t yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) { |
|
|
|
float yBase = front_probe_bed_position + yGridSpacing * yCount, |
|
|
|
float yBase = front_probe_bed_position + yGridSpacing * yCount; |
|
|
|
yProbe = floor(yBase + (yBase < 0 ? 0 : 0.5)); |
|
|
|
int8_t xStart, xStop, xInc; |
|
|
|
|
|
|
@ -3452,7 +3454,7 @@ inline void gcode_G28() { |
|
|
|
zig = !zig; |
|
|
|
|
|
|
|
for (int8_t xCount = xStart; xCount != xStop; xCount += xInc) { |
|
|
|
float xBase = left_probe_bed_position + xGridSpacing * xCount, |
|
|
|
float xBase = left_probe_bed_position + xGridSpacing * xCount; |
|
|
|
xProbe = floor(xBase + (xBase < 0 ? 0 : 0.5)); |
|
|
|
|
|
|
|
#if ENABLED(DELTA) |
|
|
@ -3497,12 +3499,12 @@ inline void gcode_G28() { |
|
|
|
vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, 0) |
|
|
|
}; |
|
|
|
|
|
|
|
for (uint8_t i = 0; i < 3; ++i) |
|
|
|
points[i].z = probe_pt( |
|
|
|
LOGICAL_X_POSITION(points[i].x), |
|
|
|
LOGICAL_Y_POSITION(points[i].y), |
|
|
|
stow_probe_after_each, verbose_level |
|
|
|
); |
|
|
|
for (uint8_t i = 0; i < 3; ++i) { |
|
|
|
// Retain the last probe position
|
|
|
|
xProbe = LOGICAL_X_POSITION(points[i].x); |
|
|
|
yProbe = LOGICAL_Y_POSITION(points[i].y); |
|
|
|
measured_z = points[i].z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level); |
|
|
|
} |
|
|
|
|
|
|
|
if (!dryrun) { |
|
|
|
vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal(); |
|
|
@ -3635,42 +3637,50 @@ inline void gcode_G28() { |
|
|
|
// Correct the current XYZ position based on the tilted plane.
|
|
|
|
//
|
|
|
|
|
|
|
|
// Get the distance from the reference point to the current position
|
|
|
|
// The current XY is in sync with the planner/steppers at this point
|
|
|
|
// but the current Z is only known to the steppers.
|
|
|
|
// 1. Get the distance from the current position to the reference point.
|
|
|
|
float x_dist = RAW_CURRENT_POSITION(X_AXIS) - X_TILT_FULCRUM, |
|
|
|
y_dist = RAW_CURRENT_POSITION(Y_AXIS) - Y_TILT_FULCRUM, |
|
|
|
z_real = RAW_Z_POSITION(stepper.get_axis_position_mm(Z_AXIS)); |
|
|
|
z_real = RAW_CURRENT_POSITION(Z_AXIS), |
|
|
|
z_zero = 0; |
|
|
|
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE) |
|
|
|
if (DEBUGGING(LEVELING)) { |
|
|
|
SERIAL_ECHOPAIR("BEFORE ROTATION ... x_dist:", x_dist); |
|
|
|
SERIAL_ECHOPAIR("y_dist:", y_dist); |
|
|
|
SERIAL_ECHOPAIR("z_real:", z_real); |
|
|
|
} |
|
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("G29 uncorrected XYZ", current_position); |
|
|
|
#endif |
|
|
|
|
|
|
|
// Apply the matrix to the distance from the reference point to XY,
|
|
|
|
// and from the homed Z to the current Z.
|
|
|
|
apply_rotation_xyz(planner.bed_level_matrix, x_dist, y_dist, z_real); |
|
|
|
matrix_3x3 inverse = matrix_3x3::transpose(planner.bed_level_matrix); |
|
|
|
|
|
|
|
// 2. Apply the inverse matrix to the distance
|
|
|
|
// from the reference point to X, Y, and zero.
|
|
|
|
apply_rotation_xyz(inverse, x_dist, y_dist, z_zero); |
|
|
|
|
|
|
|
// 3. Get the matrix-based corrected Z.
|
|
|
|
// (Even if not used, get it for comparison.)
|
|
|
|
float new_z = z_real + z_zero; |
|
|
|
|
|
|
|
// 4. Use the last measured distance to the bed, if possible
|
|
|
|
if ( NEAR(current_position[X_AXIS], xProbe - (X_PROBE_OFFSET_FROM_EXTRUDER)) |
|
|
|
&& NEAR(current_position[Y_AXIS], yProbe - (Y_PROBE_OFFSET_FROM_EXTRUDER)) |
|
|
|
) { |
|
|
|
float simple_z = z_real - (measured_z - (-zprobe_zoffset)); |
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE) |
|
|
|
if (DEBUGGING(LEVELING)) { |
|
|
|
SERIAL_ECHOPAIR("AFTER ROTATION ... x_dist:", x_dist); |
|
|
|
SERIAL_ECHOPAIR("y_dist:", y_dist); |
|
|
|
SERIAL_ECHOPAIR("z_real:", z_real); |
|
|
|
SERIAL_ECHOPAIR("Z from Probe:", simple_z); |
|
|
|
SERIAL_ECHOPAIR(" Matrix:", new_z); |
|
|
|
SERIAL_ECHOLNPAIR(" Discrepancy:", simple_z - new_z); |
|
|
|
} |
|
|
|
#endif |
|
|
|
new_z = simple_z; |
|
|
|
} |
|
|
|
|
|
|
|
// Apply the rotated distance and Z to the current position
|
|
|
|
current_position[X_AXIS] = LOGICAL_X_POSITION(X_TILT_FULCRUM + x_dist); |
|
|
|
current_position[Y_AXIS] = LOGICAL_Y_POSITION(Y_TILT_FULCRUM + y_dist); |
|
|
|
current_position[Z_AXIS] = LOGICAL_Z_POSITION(z_real); |
|
|
|
// 5. The rotated XY and corrected Z are now current_position
|
|
|
|
current_position[X_AXIS] = LOGICAL_X_POSITION(x_dist) + X_TILT_FULCRUM; |
|
|
|
current_position[Y_AXIS] = LOGICAL_Y_POSITION(y_dist) + Y_TILT_FULCRUM; |
|
|
|
current_position[Z_AXIS] = LOGICAL_Z_POSITION(new_z); |
|
|
|
|
|
|
|
SYNC_PLAN_POSITION_KINEMATIC(); |
|
|
|
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE) |
|
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("> corrected XYZ in G29", current_position); |
|
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("G29 corrected XYZ", current_position); |
|
|
|
#endif |
|
|
|
} |
|
|
|
|
|
|
@ -7962,8 +7972,8 @@ void set_current_from_steppers_for_axis(AxisEnum axis) { |
|
|
|
LOOP_XYZE(i) difference[i] = target[i] - current_position[i]; |
|
|
|
|
|
|
|
float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS])); |
|
|
|
if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]); |
|
|
|
if (cartesian_mm < 0.000001) return false; |
|
|
|
if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = abs(difference[E_AXIS]); |
|
|
|
if (UNEAR_ZERO(cartesian_mm)) return false; |
|
|
|
float _feedrate_mm_s = MMS_SCALED(feedrate_mm_s); |
|
|
|
float seconds = cartesian_mm / _feedrate_mm_s; |
|
|
|
int steps = max(1, int(delta_segments_per_second * seconds)); |
|
|
|