|
|
@ -28,12 +28,14 @@ |
|
|
|
* Derived from Grbl |
|
|
|
* Copyright (c) 2009-2011 Simen Svale Skogsrud |
|
|
|
* |
|
|
|
* The ring buffer implementation gleaned from the wiring_serial library by David A. Mellis. |
|
|
|
* Ring buffer gleaned from wiring_serial library by David A. Mellis. |
|
|
|
* |
|
|
|
* Fast inverse function needed for Bézier interpolation for AVR |
|
|
|
* was designed, written and tested by Eduardo José Tagle, April 2018. |
|
|
|
* |
|
|
|
* Reasoning behind the mathematics in this module (in the key of 'Mathematica'): |
|
|
|
* Planner mathematics (Mathematica-style): |
|
|
|
* |
|
|
|
* s == speed, a == acceleration, t == time, d == distance |
|
|
|
* Where: s == speed, a == acceleration, t == time, d == distance |
|
|
|
* |
|
|
|
* Basic definitions: |
|
|
|
* Speed[s_, a_, t_] := s + (a*t) |
|
|
@ -41,7 +43,7 @@ |
|
|
|
* |
|
|
|
* Distance to reach a specific speed with a constant acceleration: |
|
|
|
* Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t] |
|
|
|
* d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance() |
|
|
|
* d -> (m^2 - s^2) / (2 a) |
|
|
|
* |
|
|
|
* Speed after a given distance of travel with constant acceleration: |
|
|
|
* Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t] |
|
|
@ -49,17 +51,18 @@ |
|
|
|
* |
|
|
|
* DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2] |
|
|
|
* |
|
|
|
* When to start braking (di) to reach a specified destination speed (s2) after accelerating |
|
|
|
* from initial speed s1 without ever stopping at a plateau: |
|
|
|
* When to start braking (di) to reach a specified destination speed (s2) after |
|
|
|
* acceleration from initial speed s1 without ever reaching a plateau: |
|
|
|
* Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di] |
|
|
|
* di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance() |
|
|
|
* di -> (2 a d - s1^2 + s2^2)/(4 a) |
|
|
|
* |
|
|
|
* IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a) |
|
|
|
* We note, as an optimization, that if we have already calculated an |
|
|
|
* acceleration distance d1 from s1 to m and a deceration distance d2 |
|
|
|
* from m to s2 then |
|
|
|
* |
|
|
|
* -- |
|
|
|
* |
|
|
|
* The fast inverse function needed for Bézier interpolation for AVR |
|
|
|
* was designed, written and tested by Eduardo José Tagle on April/2018 |
|
|
|
* d1 -> (m^2 - s1^2) / (2 a) |
|
|
|
* d2 -> (m^2 - s2^2) / (2 a) |
|
|
|
* di -> (d + d1 - d2) / 2 |
|
|
|
*/ |
|
|
|
|
|
|
|
#include "planner.h" |
|
|
@ -211,7 +214,7 @@ xyze_long_t Planner::position{0}; |
|
|
|
uint32_t Planner::acceleration_long_cutoff; |
|
|
|
|
|
|
|
xyze_float_t Planner::previous_speed; |
|
|
|
float Planner::previous_nominal_speed_sqr; |
|
|
|
float Planner::previous_nominal_speed; |
|
|
|
|
|
|
|
#if ENABLED(DISABLE_INACTIVE_EXTRUDER) |
|
|
|
last_move_t Planner::g_uc_extruder_last_move[E_STEPPERS] = { 0 }; |
|
|
@ -220,7 +223,7 @@ float Planner::previous_nominal_speed_sqr; |
|
|
|
#ifdef XY_FREQUENCY_LIMIT |
|
|
|
int8_t Planner::xy_freq_limit_hz = XY_FREQUENCY_LIMIT; |
|
|
|
float Planner::xy_freq_min_speed_factor = (XY_FREQUENCY_MIN_PERCENT) * 0.01f; |
|
|
|
int32_t Planner::xy_freq_min_interval_us = LROUND(1000000.0 / (XY_FREQUENCY_LIMIT)); |
|
|
|
int32_t Planner::xy_freq_min_interval_us = LROUND(1000000.0f / (XY_FREQUENCY_LIMIT)); |
|
|
|
#endif |
|
|
|
|
|
|
|
#if ENABLED(LIN_ADVANCE) |
|
|
@ -250,7 +253,7 @@ void Planner::init() { |
|
|
|
TERN_(HAS_POSITION_FLOAT, position_float.reset()); |
|
|
|
TERN_(IS_KINEMATIC, position_cart.reset()); |
|
|
|
previous_speed.reset(); |
|
|
|
previous_nominal_speed_sqr = 0; |
|
|
|
previous_nominal_speed = 0; |
|
|
|
TERN_(ABL_PLANAR, bed_level_matrix.set_to_identity()); |
|
|
|
clear_block_buffer(); |
|
|
|
delay_before_delivering = 0; |
|
|
@ -786,41 +789,48 @@ void Planner::calculate_trapezoid_for_block(block_t * const block, const_float_t |
|
|
|
NOLESS(final_rate, uint32_t(MINIMAL_STEP_RATE)); |
|
|
|
|
|
|
|
#if ENABLED(S_CURVE_ACCELERATION) |
|
|
|
uint32_t cruise_rate = initial_rate; |
|
|
|
// If we have some plateau time, the cruise rate will be the nominal rate
|
|
|
|
uint32_t cruise_rate = block->nominal_rate; |
|
|
|
#endif |
|
|
|
|
|
|
|
const int32_t accel = block->acceleration_steps_per_s2; |
|
|
|
|
|
|
|
// Steps required for acceleration, deceleration to/from nominal rate
|
|
|
|
uint32_t accelerate_steps = CEIL(estimate_acceleration_distance(initial_rate, block->nominal_rate, accel)), |
|
|
|
decelerate_steps = FLOOR(estimate_acceleration_distance(block->nominal_rate, final_rate, -accel)); |
|
|
|
// Steps between acceleration and deceleration, if any
|
|
|
|
int32_t plateau_steps = block->step_event_count - accelerate_steps - decelerate_steps; |
|
|
|
|
|
|
|
// Does accelerate_steps + decelerate_steps exceed step_event_count?
|
|
|
|
// Then we can't possibly reach the nominal rate, there will be no cruising.
|
|
|
|
// Use intersection_distance() to calculate accel / braking time in order to
|
|
|
|
// reach the final_rate exactly at the end of this block.
|
|
|
|
if (plateau_steps < 0) { |
|
|
|
const float accelerate_steps_float = CEIL(intersection_distance(initial_rate, final_rate, accel, block->step_event_count)); |
|
|
|
accelerate_steps = _MIN(uint32_t(_MAX(accelerate_steps_float, 0)), block->step_event_count); |
|
|
|
decelerate_steps = block->step_event_count - accelerate_steps; |
|
|
|
plateau_steps = 0; |
|
|
|
|
|
|
|
#if ENABLED(S_CURVE_ACCELERATION) |
|
|
|
// We won't reach the cruising rate. Let's calculate the speed we will reach
|
|
|
|
cruise_rate = final_speed(initial_rate, accel, accelerate_steps); |
|
|
|
#endif |
|
|
|
// Steps for acceleration, plateau and deceleration
|
|
|
|
int32_t plateau_steps = block->step_event_count; |
|
|
|
uint32_t accelerate_steps = 0, |
|
|
|
decelerate_steps = 0; |
|
|
|
|
|
|
|
if (accel != 0) { |
|
|
|
// Steps required for acceleration, deceleration to/from nominal rate
|
|
|
|
const float nominal_rate_sq = sq(float(block->nominal_rate)); |
|
|
|
float accelerate_steps_float = (nominal_rate_sq - sq(float(initial_rate))) * (0.5f / accel); |
|
|
|
accelerate_steps = CEIL(accelerate_steps_float); |
|
|
|
const float decelerate_steps_float = (nominal_rate_sq - sq(float(final_rate))) * (0.5f / accel); |
|
|
|
decelerate_steps = decelerate_steps_float; |
|
|
|
|
|
|
|
// Steps between acceleration and deceleration, if any
|
|
|
|
plateau_steps -= accelerate_steps + decelerate_steps; |
|
|
|
|
|
|
|
// Does accelerate_steps + decelerate_steps exceed step_event_count?
|
|
|
|
// Then we can't possibly reach the nominal rate, there will be no cruising.
|
|
|
|
// Calculate accel / braking time in order to reach the final_rate exactly
|
|
|
|
// at the end of this block.
|
|
|
|
if (plateau_steps < 0) { |
|
|
|
accelerate_steps_float = CEIL((block->step_event_count + accelerate_steps_float - decelerate_steps_float) * 0.5f); |
|
|
|
accelerate_steps = _MIN(uint32_t(_MAX(accelerate_steps_float, 0)), block->step_event_count); |
|
|
|
decelerate_steps = block->step_event_count - accelerate_steps; |
|
|
|
|
|
|
|
#if ENABLED(S_CURVE_ACCELERATION) |
|
|
|
// We won't reach the cruising rate. Let's calculate the speed we will reach
|
|
|
|
cruise_rate = final_speed(initial_rate, accel, accelerate_steps); |
|
|
|
#endif |
|
|
|
} |
|
|
|
} |
|
|
|
#if ENABLED(S_CURVE_ACCELERATION) |
|
|
|
else // We have some plateau time, so the cruise rate will be the nominal rate
|
|
|
|
cruise_rate = block->nominal_rate; |
|
|
|
#endif |
|
|
|
|
|
|
|
#if ENABLED(S_CURVE_ACCELERATION) |
|
|
|
// Jerk controlled speed requires to express speed versus time, NOT steps
|
|
|
|
uint32_t acceleration_time = ((float)(cruise_rate - initial_rate) / accel) * (STEPPER_TIMER_RATE), |
|
|
|
deceleration_time = ((float)(cruise_rate - final_rate) / accel) * (STEPPER_TIMER_RATE), |
|
|
|
uint32_t acceleration_time = (float(cruise_rate - initial_rate) / accel) * (STEPPER_TIMER_RATE), |
|
|
|
deceleration_time = (float(cruise_rate - final_rate) / accel) * (STEPPER_TIMER_RATE), |
|
|
|
// And to offload calculations from the ISR, we also calculate the inverse of those times here
|
|
|
|
acceleration_time_inverse = get_period_inverse(acceleration_time), |
|
|
|
deceleration_time_inverse = get_period_inverse(deceleration_time); |
|
|
@ -1175,7 +1185,7 @@ void Planner::recalculate_trapezoids(TERN_(HINTS_SAFE_EXIT_SPEED, const_float_t |
|
|
|
|
|
|
|
// Go from the tail (currently executed block) to the first block, without including it)
|
|
|
|
block_t *block = nullptr, *next = nullptr; |
|
|
|
float current_entry_speed = 0.0, next_entry_speed = 0.0; |
|
|
|
float current_entry_speed = 0.0f, next_entry_speed = 0.0f; |
|
|
|
while (block_index != head_block_index) { |
|
|
|
|
|
|
|
next = &block_buffer[block_index]; |
|
|
@ -1199,13 +1209,12 @@ void Planner::recalculate_trapezoids(TERN_(HINTS_SAFE_EXIT_SPEED, const_float_t |
|
|
|
// Block is not BUSY, we won the race against the Stepper ISR:
|
|
|
|
|
|
|
|
// NOTE: Entry and exit factors always > 0 by all previous logic operations.
|
|
|
|
const float current_nominal_speed = SQRT(block->nominal_speed_sqr), |
|
|
|
nomr = 1.0f / current_nominal_speed; |
|
|
|
const float nomr = 1.0f / block->nominal_speed; |
|
|
|
calculate_trapezoid_for_block(block, current_entry_speed * nomr, next_entry_speed * nomr); |
|
|
|
#if ENABLED(LIN_ADVANCE) |
|
|
|
if (block->use_advance_lead) { |
|
|
|
const float comp = block->e_D_ratio * extruder_advance_K[active_extruder] * settings.axis_steps_per_mm[E_AXIS]; |
|
|
|
block->max_adv_steps = current_nominal_speed * comp; |
|
|
|
block->max_adv_steps = block->nominal_speed * comp; |
|
|
|
block->final_adv_steps = next_entry_speed * comp; |
|
|
|
} |
|
|
|
#endif |
|
|
@ -1240,13 +1249,12 @@ void Planner::recalculate_trapezoids(TERN_(HINTS_SAFE_EXIT_SPEED, const_float_t |
|
|
|
if (!stepper.is_block_busy(block)) { |
|
|
|
// Block is not BUSY, we won the race against the Stepper ISR:
|
|
|
|
|
|
|
|
const float current_nominal_speed = SQRT(block->nominal_speed_sqr), |
|
|
|
nomr = 1.0f / current_nominal_speed; |
|
|
|
const float nomr = 1.0f / block->nominal_speed; |
|
|
|
calculate_trapezoid_for_block(block, current_entry_speed * nomr, next_entry_speed * nomr); |
|
|
|
#if ENABLED(LIN_ADVANCE) |
|
|
|
if (block->use_advance_lead) { |
|
|
|
const float comp = block->e_D_ratio * extruder_advance_K[active_extruder] * settings.axis_steps_per_mm[E_AXIS]; |
|
|
|
block->max_adv_steps = current_nominal_speed * comp; |
|
|
|
block->max_adv_steps = block->nominal_speed * comp; |
|
|
|
block->final_adv_steps = next_entry_speed * comp; |
|
|
|
} |
|
|
|
#endif |
|
|
@ -1290,14 +1298,10 @@ void Planner::recalculate(TERN_(HINTS_SAFE_EXIT_SPEED, const_float_t safe_exit_s |
|
|
|
#define FAN_SET(F) do{ kickstart_fan(fan_speed, ms, F); _FAN_SET(F); }while(0) |
|
|
|
|
|
|
|
const millis_t ms = millis(); |
|
|
|
TERN_(HAS_FAN0, FAN_SET(0)); |
|
|
|
TERN_(HAS_FAN1, FAN_SET(1)); |
|
|
|
TERN_(HAS_FAN2, FAN_SET(2)); |
|
|
|
TERN_(HAS_FAN3, FAN_SET(3)); |
|
|
|
TERN_(HAS_FAN4, FAN_SET(4)); |
|
|
|
TERN_(HAS_FAN5, FAN_SET(5)); |
|
|
|
TERN_(HAS_FAN6, FAN_SET(6)); |
|
|
|
TERN_(HAS_FAN7, FAN_SET(7)); |
|
|
|
TERN_(HAS_FAN0, FAN_SET(0)); TERN_(HAS_FAN1, FAN_SET(1)); |
|
|
|
TERN_(HAS_FAN2, FAN_SET(2)); TERN_(HAS_FAN3, FAN_SET(3)); |
|
|
|
TERN_(HAS_FAN4, FAN_SET(4)); TERN_(HAS_FAN5, FAN_SET(5)); |
|
|
|
TERN_(HAS_FAN6, FAN_SET(6)); TERN_(HAS_FAN7, FAN_SET(7)); |
|
|
|
} |
|
|
|
|
|
|
|
#if FAN_KICKSTART_TIME |
|
|
@ -1485,7 +1489,7 @@ void Planner::check_axes_activity() { |
|
|
|
for (uint8_t b = block_buffer_tail; b != block_buffer_head; b = next_block_index(b)) { |
|
|
|
const block_t * const block = &block_buffer[b]; |
|
|
|
if (NUM_AXIS_GANG(block->steps.x, || block->steps.y, || block->steps.z, || block->steps.i, || block->steps.j, || block->steps.k, || block->steps.u, || block->steps.v, || block->steps.w)) { |
|
|
|
const float se = (float)block->steps.e / block->step_event_count * SQRT(block->nominal_speed_sqr); // mm/sec;
|
|
|
|
const float se = float(block->steps.e) / block->step_event_count * block->nominal_speed; // mm/sec
|
|
|
|
NOLESS(high, se); |
|
|
|
} |
|
|
|
} |
|
|
@ -1936,7 +1940,7 @@ bool Planner::_populate_block( |
|
|
|
#if ENABLED(MIXING_EXTRUDER) |
|
|
|
bool ignore_e = false; |
|
|
|
float collector[MIXING_STEPPERS]; |
|
|
|
mixer.refresh_collector(1.0, mixer.get_current_vtool(), collector); |
|
|
|
mixer.refresh_collector(1.0f, mixer.get_current_vtool(), collector); |
|
|
|
MIXER_STEPPER_LOOP(e) |
|
|
|
if (e_steps * collector[e] > max_e_steps) { ignore_e = true; break; } |
|
|
|
#else |
|
|
@ -2193,7 +2197,7 @@ bool Planner::_populate_block( |
|
|
|
#if SECONDARY_LINEAR_AXES >= 1 && NONE(FOAMCUTTER_XYUV, ARTICULATED_ROBOT_ARM) |
|
|
|
if (NEAR_ZERO(distance_sqr)) { |
|
|
|
// Move does not involve any primary linear axes (xyz) but might involve secondary linear axes
|
|
|
|
distance_sqr = (0.0 |
|
|
|
distance_sqr = (0.0f |
|
|
|
SECONDARY_AXIS_GANG( |
|
|
|
IF_DISABLED(AXIS4_ROTATES, + sq(steps_dist_mm.i)), |
|
|
|
IF_DISABLED(AXIS5_ROTATES, + sq(steps_dist_mm.j)), |
|
|
@ -2396,7 +2400,7 @@ bool Planner::_populate_block( |
|
|
|
if (was_enabled) stepper.wake_up(); |
|
|
|
#endif |
|
|
|
|
|
|
|
block->nominal_speed_sqr = sq(block->millimeters * inverse_secs); // (mm/sec)^2 Always > 0
|
|
|
|
block->nominal_speed = block->millimeters * inverse_secs; // (mm/sec) Always > 0
|
|
|
|
block->nominal_rate = CEIL(block->step_event_count * inverse_secs); // (step/sec) Always > 0
|
|
|
|
|
|
|
|
#if ENABLED(FILAMENT_WIDTH_SENSOR) |
|
|
@ -2492,7 +2496,7 @@ bool Planner::_populate_block( |
|
|
|
if (speed_factor < 1.0f) { |
|
|
|
current_speed *= speed_factor; |
|
|
|
block->nominal_rate *= speed_factor; |
|
|
|
block->nominal_speed_sqr = block->nominal_speed_sqr * sq(speed_factor); |
|
|
|
block->nominal_speed *= speed_factor; |
|
|
|
} |
|
|
|
|
|
|
|
// Compute and limit the acceleration rate for the trapezoid generator.
|
|
|
@ -2592,7 +2596,7 @@ bool Planner::_populate_block( |
|
|
|
if (block->use_advance_lead) { |
|
|
|
block->advance_speed = (STEPPER_TIMER_RATE) / (extruder_advance_K[active_extruder] * block->e_D_ratio * block->acceleration * settings.axis_steps_per_mm[E_AXIS_N(extruder)]); |
|
|
|
#if ENABLED(LA_DEBUG) |
|
|
|
if (extruder_advance_K[active_extruder] * block->e_D_ratio * block->acceleration * 2 < SQRT(block->nominal_speed_sqr) * block->e_D_ratio) |
|
|
|
if (extruder_advance_K[active_extruder] * block->e_D_ratio * block->acceleration * 2 < block->nominal_speed * block->e_D_ratio) |
|
|
|
SERIAL_ECHOLNPGM("More than 2 steps per eISR loop executed."); |
|
|
|
if (block->advance_speed < 200) |
|
|
|
SERIAL_ECHOLNPGM("eISR running at > 10kHz."); |
|
|
@ -2663,7 +2667,7 @@ bool Planner::_populate_block( |
|
|
|
unit_vec *= inverse_millimeters; // Use pre-calculated (1 / SQRT(x^2 + y^2 + z^2))
|
|
|
|
|
|
|
|
// Skip first block or when previous_nominal_speed is used as a flag for homing and offset cycles.
|
|
|
|
if (moves_queued && !UNEAR_ZERO(previous_nominal_speed_sqr)) { |
|
|
|
if (moves_queued && !UNEAR_ZERO(previous_nominal_speed)) { |
|
|
|
// Compute cosine of angle between previous and current path. (prev_unit_vec is negative)
|
|
|
|
// NOTE: Max junction velocity is computed without sin() or acos() by trig half angle identity.
|
|
|
|
float junction_cos_theta = LOGICAL_AXIS_GANG( |
|
|
@ -2792,7 +2796,7 @@ bool Planner::_populate_block( |
|
|
|
} |
|
|
|
|
|
|
|
// Get the lowest speed
|
|
|
|
vmax_junction_sqr = _MIN(vmax_junction_sqr, block->nominal_speed_sqr, previous_nominal_speed_sqr); |
|
|
|
vmax_junction_sqr = _MIN(vmax_junction_sqr, sq(block->nominal_speed), sq(previous_nominal_speed)); |
|
|
|
} |
|
|
|
else // Init entry speed to zero. Assume it starts from rest. Planner will correct this later.
|
|
|
|
vmax_junction_sqr = 0; |
|
|
@ -2801,27 +2805,17 @@ bool Planner::_populate_block( |
|
|
|
|
|
|
|
#endif |
|
|
|
|
|
|
|
#ifdef USE_CACHED_SQRT |
|
|
|
#define CACHED_SQRT(N, V) \ |
|
|
|
static float saved_V, N; \ |
|
|
|
if (V != saved_V) { N = SQRT(V); saved_V = V; } |
|
|
|
#else |
|
|
|
#define CACHED_SQRT(N, V) const float N = SQRT(V) |
|
|
|
#endif |
|
|
|
|
|
|
|
#if HAS_CLASSIC_JERK |
|
|
|
|
|
|
|
/**
|
|
|
|
* Adapted from Průša MKS firmware |
|
|
|
* https://github.com/prusa3d/Prusa-Firmware
|
|
|
|
*/ |
|
|
|
CACHED_SQRT(nominal_speed, block->nominal_speed_sqr); |
|
|
|
|
|
|
|
// Exit speed limited by a jerk to full halt of a previous last segment
|
|
|
|
static float previous_safe_speed; |
|
|
|
|
|
|
|
// Start with a safe speed (from which the machine may halt to stop immediately).
|
|
|
|
float safe_speed = nominal_speed; |
|
|
|
float safe_speed = block->nominal_speed; |
|
|
|
|
|
|
|
#ifndef TRAVEL_EXTRA_XYJERK |
|
|
|
#define TRAVEL_EXTRA_XYJERK 0 |
|
|
@ -2834,7 +2828,7 @@ bool Planner::_populate_block( |
|
|
|
maxj = (max_jerk[i] + (i == X_AXIS || i == Y_AXIS ? extra_xyjerk : 0.0f)); // mj : The max jerk setting for this axis
|
|
|
|
if (jerk > maxj) { // cs > mj : New current speed too fast?
|
|
|
|
if (limited) { // limited already?
|
|
|
|
const float mjerk = nominal_speed * maxj; // ns*mj
|
|
|
|
const float mjerk = block->nominal_speed * maxj; // ns*mj
|
|
|
|
if (jerk * safe_speed > mjerk) safe_speed = mjerk / jerk; // ns*mj/cs
|
|
|
|
} |
|
|
|
else { |
|
|
@ -2845,7 +2839,7 @@ bool Planner::_populate_block( |
|
|
|
} |
|
|
|
|
|
|
|
float vmax_junction; |
|
|
|
if (moves_queued && !UNEAR_ZERO(previous_nominal_speed_sqr)) { |
|
|
|
if (moves_queued && !UNEAR_ZERO(previous_nominal_speed)) { |
|
|
|
// Estimate a maximum velocity allowed at a joint of two successive segments.
|
|
|
|
// If this maximum velocity allowed is lower than the minimum of the entry / exit safe velocities,
|
|
|
|
// then the machine is not coasting anymore and the safe entry / exit velocities shall be used.
|
|
|
@ -2856,11 +2850,9 @@ bool Planner::_populate_block( |
|
|
|
|
|
|
|
// The junction velocity will be shared between successive segments. Limit the junction velocity to their minimum.
|
|
|
|
// Pick the smaller of the nominal speeds. Higher speed shall not be achieved at the junction during coasting.
|
|
|
|
CACHED_SQRT(previous_nominal_speed, previous_nominal_speed_sqr); |
|
|
|
|
|
|
|
float smaller_speed_factor = 1.0f; |
|
|
|
if (nominal_speed < previous_nominal_speed) { |
|
|
|
vmax_junction = nominal_speed; |
|
|
|
if (block->nominal_speed < previous_nominal_speed) { |
|
|
|
vmax_junction = block->nominal_speed; |
|
|
|
smaller_speed_factor = vmax_junction / previous_nominal_speed; |
|
|
|
} |
|
|
|
else |
|
|
@ -2927,11 +2919,11 @@ bool Planner::_populate_block( |
|
|
|
// block nominal speed limits both the current and next maximum junction speeds. Hence, in both
|
|
|
|
// the reverse and forward planners, the corresponding block junction speed will always be at the
|
|
|
|
// the maximum junction speed and may always be ignored for any speed reduction checks.
|
|
|
|
block->flag.set_nominal(block->nominal_speed_sqr <= v_allowable_sqr); |
|
|
|
block->flag.set_nominal(sq(block->nominal_speed) <= v_allowable_sqr); |
|
|
|
|
|
|
|
// Update previous path unit_vector and nominal speed
|
|
|
|
previous_speed = current_speed; |
|
|
|
previous_nominal_speed_sqr = block->nominal_speed_sqr; |
|
|
|
previous_nominal_speed = block->nominal_speed; |
|
|
|
|
|
|
|
position = target; // Update the position
|
|
|
|
|
|
|
@ -3268,7 +3260,7 @@ void Planner::set_machine_position_mm(const abce_pos_t &abce) { |
|
|
|
); |
|
|
|
|
|
|
|
if (has_blocks_queued()) { |
|
|
|
//previous_nominal_speed_sqr = 0.0; // Reset planner junction speeds. Assume start from rest.
|
|
|
|
//previous_nominal_speed = 0.0f; // Reset planner junction speeds. Assume start from rest.
|
|
|
|
//previous_speed.reset();
|
|
|
|
buffer_sync_block(BLOCK_BIT_SYNC_POSITION); |
|
|
|
} |
|
|
@ -3344,7 +3336,7 @@ void Planner::refresh_positioning() { |
|
|
|
inline void limit_and_warn(float &val, const AxisEnum axis, PGM_P const setting_name, const xyze_float_t &max_limit) { |
|
|
|
const uint8_t lim_axis = TERN_(HAS_EXTRUDERS, axis > E_AXIS ? E_AXIS :) axis; |
|
|
|
const float before = val; |
|
|
|
LIMIT(val, 0.1, max_limit[lim_axis]); |
|
|
|
LIMIT(val, 0.1f, max_limit[lim_axis]); |
|
|
|
if (before != val) { |
|
|
|
SERIAL_CHAR(AXIS_CHAR(lim_axis)); |
|
|
|
SERIAL_ECHOPGM(" Max "); |
|
|
|