|
|
@ -23,93 +23,42 @@ |
|
|
|
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_UBL) |
|
|
|
|
|
|
|
#include "../bedlevel.h" |
|
|
|
#include "../../../module/planner.h" |
|
|
|
#include "../../../module/stepper.h" |
|
|
|
#include "../../../module/motion.h" |
|
|
|
#include "../bedlevel.h" |
|
|
|
#include "../../../module/planner.h" |
|
|
|
#include "../../../module/stepper.h" |
|
|
|
#include "../../../module/motion.h" |
|
|
|
|
|
|
|
#if ENABLED(DELTA) |
|
|
|
#if ENABLED(DELTA) |
|
|
|
#include "../../../module/delta.h" |
|
|
|
#endif |
|
|
|
|
|
|
|
#include "../../../Marlin.h" |
|
|
|
#include <math.h> |
|
|
|
#endif |
|
|
|
|
|
|
|
extern float destination[XYZE]; |
|
|
|
#include "../../../Marlin.h" |
|
|
|
#include <math.h> |
|
|
|
|
|
|
|
#if AVR_AT90USB1286_FAMILY // Teensyduino & Printrboard IDE extensions have compile errors without this
|
|
|
|
#if AVR_AT90USB1286_FAMILY // Teensyduino & Printrboard IDE extensions have compile errors without this
|
|
|
|
inline void set_current_from_destination() { COPY(current_position, destination); } |
|
|
|
#else |
|
|
|
#else |
|
|
|
extern void set_current_from_destination(); |
|
|
|
#endif |
|
|
|
#endif |
|
|
|
|
|
|
|
static void debug_echo_axis(const AxisEnum axis) { |
|
|
|
if (current_position[axis] == destination[axis]) |
|
|
|
SERIAL_ECHOPGM("-------------"); |
|
|
|
else |
|
|
|
SERIAL_ECHO_F(destination[X_AXIS], 6); |
|
|
|
} |
|
|
|
#if !UBL_SEGMENTED |
|
|
|
|
|
|
|
void debug_current_and_destination(const char *title) { |
|
|
|
|
|
|
|
// if the title message starts with a '!' it is so important, we are going to
|
|
|
|
// ignore the status of the g26_debug_flag
|
|
|
|
if (*title != '!' && !g26_debug_flag) return; |
|
|
|
|
|
|
|
const float de = destination[E_AXIS] - current_position[E_AXIS]; |
|
|
|
|
|
|
|
if (de == 0.0) return; // Printing moves only
|
|
|
|
|
|
|
|
const float dx = destination[X_AXIS] - current_position[X_AXIS], |
|
|
|
dy = destination[Y_AXIS] - current_position[Y_AXIS], |
|
|
|
xy_dist = HYPOT(dx, dy); |
|
|
|
|
|
|
|
if (xy_dist == 0.0) return; |
|
|
|
|
|
|
|
SERIAL_ECHOPGM(" fpmm="); |
|
|
|
const float fpmm = de / xy_dist; |
|
|
|
SERIAL_ECHO_F(fpmm, 6); |
|
|
|
|
|
|
|
SERIAL_ECHOPGM(" current=( "); |
|
|
|
SERIAL_ECHO_F(current_position[X_AXIS], 6); |
|
|
|
SERIAL_ECHOPGM(", "); |
|
|
|
SERIAL_ECHO_F(current_position[Y_AXIS], 6); |
|
|
|
SERIAL_ECHOPGM(", "); |
|
|
|
SERIAL_ECHO_F(current_position[Z_AXIS], 6); |
|
|
|
SERIAL_ECHOPGM(", "); |
|
|
|
SERIAL_ECHO_F(current_position[E_AXIS], 6); |
|
|
|
SERIAL_ECHOPGM(" ) destination=( "); |
|
|
|
debug_echo_axis(X_AXIS); |
|
|
|
SERIAL_ECHOPGM(", "); |
|
|
|
debug_echo_axis(Y_AXIS); |
|
|
|
SERIAL_ECHOPGM(", "); |
|
|
|
debug_echo_axis(Z_AXIS); |
|
|
|
SERIAL_ECHOPGM(", "); |
|
|
|
debug_echo_axis(E_AXIS); |
|
|
|
SERIAL_ECHOPGM(" ) "); |
|
|
|
SERIAL_ECHO(title); |
|
|
|
SERIAL_EOL(); |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
void unified_bed_leveling::line_to_destination_cartesian(const float &feed_rate, uint8_t extruder) { |
|
|
|
void unified_bed_leveling::line_to_destination_cartesian(const float &feed_rate, const uint8_t extruder) { |
|
|
|
/**
|
|
|
|
* Much of the nozzle movement will be within the same cell. So we will do as little computation |
|
|
|
* as possible to determine if this is the case. If this move is within the same cell, we will |
|
|
|
* just do the required Z-Height correction, call the Planner's buffer_line() routine, and leave |
|
|
|
*/ |
|
|
|
const float start[XYZE] = { |
|
|
|
current_position[X_AXIS], |
|
|
|
current_position[Y_AXIS], |
|
|
|
current_position[Z_AXIS], |
|
|
|
current_position[E_AXIS] |
|
|
|
}, |
|
|
|
end[XYZE] = { |
|
|
|
destination[X_AXIS], |
|
|
|
destination[Y_AXIS], |
|
|
|
destination[Z_AXIS], |
|
|
|
destination[E_AXIS] |
|
|
|
}; |
|
|
|
#if ENABLED(SKEW_CORRECTION) |
|
|
|
// For skew correction just adjust the destination point and we're done
|
|
|
|
float start[XYZE] = { current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS] }, |
|
|
|
end[XYZE] = { destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS] }; |
|
|
|
planner.skew(start[X_AXIS], start[Y_AXIS], start[Z_AXIS]); |
|
|
|
planner.skew(end[X_AXIS], end[Y_AXIS], end[Z_AXIS]); |
|
|
|
#else |
|
|
|
const float (&start)[XYZE] = current_position, |
|
|
|
(&end)[XYZE] = destination; |
|
|
|
#endif |
|
|
|
|
|
|
|
const int cell_start_xi = get_cell_index_x(start[X_AXIS]), |
|
|
|
cell_start_yi = get_cell_index_y(start[Y_AXIS]), |
|
|
@ -117,13 +66,13 @@ |
|
|
|
cell_dest_yi = get_cell_index_y(end[Y_AXIS]); |
|
|
|
|
|
|
|
if (g26_debug_flag) { |
|
|
|
SERIAL_ECHOPAIR(" ubl.line_to_destination(xe=", end[X_AXIS]); |
|
|
|
SERIAL_ECHOPAIR(", ye=", end[Y_AXIS]); |
|
|
|
SERIAL_ECHOPAIR(", ze=", end[Z_AXIS]); |
|
|
|
SERIAL_ECHOPAIR(", ee=", end[E_AXIS]); |
|
|
|
SERIAL_ECHOPAIR(" ubl.line_to_destination_cartesian(xe=", destination[X_AXIS]); |
|
|
|
SERIAL_ECHOPAIR(", ye=", destination[Y_AXIS]); |
|
|
|
SERIAL_ECHOPAIR(", ze=", destination[Z_AXIS]); |
|
|
|
SERIAL_ECHOPAIR(", ee=", destination[E_AXIS]); |
|
|
|
SERIAL_CHAR(')'); |
|
|
|
SERIAL_EOL(); |
|
|
|
debug_current_and_destination(PSTR("Start of ubl.line_to_destination()")); |
|
|
|
debug_current_and_destination(PSTR("Start of ubl.line_to_destination_cartesian()")); |
|
|
|
} |
|
|
|
|
|
|
|
if (cell_start_xi == cell_dest_xi && cell_start_yi == cell_dest_yi) { // if the whole move is within the same cell,
|
|
|
@ -139,11 +88,11 @@ |
|
|
|
// Note: There is no Z Correction in this case. We are off the grid and don't know what
|
|
|
|
// a reasonable correction would be.
|
|
|
|
|
|
|
|
planner._buffer_line(end[X_AXIS], end[Y_AXIS], end[Z_AXIS], end[E_AXIS], feed_rate, extruder); |
|
|
|
planner.buffer_segment(end[X_AXIS], end[Y_AXIS], end[Z_AXIS], end[E_AXIS], feed_rate, extruder); |
|
|
|
set_current_from_destination(); |
|
|
|
|
|
|
|
if (g26_debug_flag) |
|
|
|
debug_current_and_destination(PSTR("out of bounds in ubl.line_to_destination()")); |
|
|
|
debug_current_and_destination(PSTR("out of bounds in ubl.line_to_destination_cartesian()")); |
|
|
|
|
|
|
|
return; |
|
|
|
} |
|
|
@ -183,10 +132,10 @@ |
|
|
|
*/ |
|
|
|
if (isnan(z0)) z0 = 0.0; |
|
|
|
|
|
|
|
planner._buffer_line(end[X_AXIS], end[Y_AXIS], end[Z_AXIS] + z0, end[E_AXIS], feed_rate, extruder); |
|
|
|
planner.buffer_segment(end[X_AXIS], end[Y_AXIS], end[Z_AXIS] + z0, end[E_AXIS], feed_rate, extruder); |
|
|
|
|
|
|
|
if (g26_debug_flag) |
|
|
|
debug_current_and_destination(PSTR("FINAL_MOVE in ubl.line_to_destination()")); |
|
|
|
debug_current_and_destination(PSTR("FINAL_MOVE in ubl.line_to_destination_cartesian()")); |
|
|
|
|
|
|
|
set_current_from_destination(); |
|
|
|
return; |
|
|
@ -274,7 +223,7 @@ |
|
|
|
* Without this check, it is possible for the algorithm to generate a zero length move in the case |
|
|
|
* where the line is heading down and it is starting right on a Mesh Line boundary. For how often that |
|
|
|
* happens, it might be best to remove the check and always 'schedule' the move because |
|
|
|
* the planner._buffer_line() routine will filter it if that happens. |
|
|
|
* the planner.buffer_segment() routine will filter it if that happens. |
|
|
|
*/ |
|
|
|
if (ry != start[Y_AXIS]) { |
|
|
|
if (!inf_normalized_flag) { |
|
|
@ -287,12 +236,12 @@ |
|
|
|
z_position = end[Z_AXIS]; |
|
|
|
} |
|
|
|
|
|
|
|
planner._buffer_line(rx, ry, z_position + z0, e_position, feed_rate, extruder); |
|
|
|
planner.buffer_segment(rx, ry, z_position + z0, e_position, feed_rate, extruder); |
|
|
|
} //else printf("FIRST MOVE PRUNED ");
|
|
|
|
} |
|
|
|
|
|
|
|
if (g26_debug_flag) |
|
|
|
debug_current_and_destination(PSTR("vertical move done in ubl.line_to_destination()")); |
|
|
|
debug_current_and_destination(PSTR("vertical move done in ubl.line_to_destination_cartesian()")); |
|
|
|
|
|
|
|
//
|
|
|
|
// Check if we are at the final destination. Usually, we won't be, but if it is on a Y Mesh Line, we are done.
|
|
|
@ -338,7 +287,7 @@ |
|
|
|
* Without this check, it is possible for the algorithm to generate a zero length move in the case |
|
|
|
* where the line is heading left and it is starting right on a Mesh Line boundary. For how often |
|
|
|
* that happens, it might be best to remove the check and always 'schedule' the move because |
|
|
|
* the planner._buffer_line() routine will filter it if that happens. |
|
|
|
* the planner.buffer_segment() routine will filter it if that happens. |
|
|
|
*/ |
|
|
|
if (rx != start[X_AXIS]) { |
|
|
|
if (!inf_normalized_flag) { |
|
|
@ -351,12 +300,12 @@ |
|
|
|
z_position = end[Z_AXIS]; |
|
|
|
} |
|
|
|
|
|
|
|
planner._buffer_line(rx, ry, z_position + z0, e_position, feed_rate, extruder); |
|
|
|
planner.buffer_segment(rx, ry, z_position + z0, e_position, feed_rate, extruder); |
|
|
|
} //else printf("FIRST MOVE PRUNED ");
|
|
|
|
} |
|
|
|
|
|
|
|
if (g26_debug_flag) |
|
|
|
debug_current_and_destination(PSTR("horizontal move done in ubl.line_to_destination()")); |
|
|
|
debug_current_and_destination(PSTR("horizontal move done in ubl.line_to_destination_cartesian()")); |
|
|
|
|
|
|
|
if (current_position[X_AXIS] != end[X_AXIS] || current_position[Y_AXIS] != end[Y_AXIS]) |
|
|
|
goto FINAL_MOVE; |
|
|
@ -413,7 +362,7 @@ |
|
|
|
e_position = end[E_AXIS]; |
|
|
|
z_position = end[Z_AXIS]; |
|
|
|
} |
|
|
|
planner._buffer_line(rx, next_mesh_line_y, z_position + z0, e_position, feed_rate, extruder); |
|
|
|
planner.buffer_segment(rx, next_mesh_line_y, z_position + z0, e_position, feed_rate, extruder); |
|
|
|
current_yi += dyi; |
|
|
|
yi_cnt--; |
|
|
|
} |
|
|
@ -441,7 +390,7 @@ |
|
|
|
z_position = end[Z_AXIS]; |
|
|
|
} |
|
|
|
|
|
|
|
planner._buffer_line(next_mesh_line_x, ry, z_position + z0, e_position, feed_rate, extruder); |
|
|
|
planner.buffer_segment(next_mesh_line_x, ry, z_position + z0, e_position, feed_rate, extruder); |
|
|
|
current_xi += dxi; |
|
|
|
xi_cnt--; |
|
|
|
} |
|
|
@ -450,7 +399,7 @@ |
|
|
|
} |
|
|
|
|
|
|
|
if (g26_debug_flag) |
|
|
|
debug_current_and_destination(PSTR("generic move done in ubl.line_to_destination()")); |
|
|
|
debug_current_and_destination(PSTR("generic move done in ubl.line_to_destination_cartesian()")); |
|
|
|
|
|
|
|
if (current_position[X_AXIS] != end[X_AXIS] || current_position[Y_AXIS] != end[Y_AXIS]) |
|
|
|
goto FINAL_MOVE; |
|
|
@ -458,29 +407,28 @@ |
|
|
|
set_current_from_destination(); |
|
|
|
} |
|
|
|
|
|
|
|
#if UBL_DELTA |
|
|
|
|
|
|
|
// macro to inline copy exactly 4 floats, don't rely on sizeof operator
|
|
|
|
#define COPY_XYZE( target, source ) { \ |
|
|
|
target[X_AXIS] = source[X_AXIS]; \ |
|
|
|
target[Y_AXIS] = source[Y_AXIS]; \ |
|
|
|
target[Z_AXIS] = source[Z_AXIS]; \ |
|
|
|
target[E_AXIS] = source[E_AXIS]; \ |
|
|
|
} |
|
|
|
#else // UBL_SEGMENTED
|
|
|
|
|
|
|
|
#if IS_SCARA // scale the feed rate from mm/s to degrees/s
|
|
|
|
static float scara_feed_factor, scara_oldA, scara_oldB; |
|
|
|
#endif |
|
|
|
|
|
|
|
// We don't want additional apply_leveling() performed by regular buffer_line or buffer_line_kinematic,
|
|
|
|
// so we call _buffer_line directly here. Per-segmented leveling and kinematics performed first.
|
|
|
|
// so we call buffer_segment directly here. Per-segmented leveling and kinematics performed first.
|
|
|
|
|
|
|
|
inline void _O2 ubl_buffer_segment_raw(const float (&in_raw)[XYZE], const float &fr) { |
|
|
|
|
|
|
|
inline void _O2 ubl_buffer_segment_raw(const float raw[XYZE], const float &fr) { |
|
|
|
#if ENABLED(SKEW_CORRECTION) |
|
|
|
float raw[XYZE] = { in_raw[X_AXIS], in_raw[Y_AXIS], in_raw[Z_AXIS] }; |
|
|
|
planner.skew(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS]); |
|
|
|
#else |
|
|
|
const float (&raw)[XYZE] = in_raw; |
|
|
|
#endif |
|
|
|
|
|
|
|
#if ENABLED(DELTA) // apply delta inverse_kinematics
|
|
|
|
|
|
|
|
DELTA_RAW_IK(); |
|
|
|
planner._buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], raw[E_AXIS], fr, active_extruder); |
|
|
|
planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], in_raw[E_AXIS], fr, active_extruder); |
|
|
|
|
|
|
|
#elif IS_SCARA // apply scara inverse_kinematics (should be changed to save raw->logical->raw)
|
|
|
|
|
|
|
@ -493,11 +441,11 @@ |
|
|
|
scara_oldB = delta[B_AXIS]; |
|
|
|
float s_feedrate = max(adiff, bdiff) * scara_feed_factor; |
|
|
|
|
|
|
|
planner._buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], raw[E_AXIS], s_feedrate, active_extruder); |
|
|
|
planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], in_raw[E_AXIS], s_feedrate, active_extruder); |
|
|
|
|
|
|
|
#else // CARTESIAN
|
|
|
|
|
|
|
|
planner._buffer_line(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS], raw[E_AXIS], fr, active_extruder); |
|
|
|
planner.buffer_segment(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS], in_raw[E_AXIS], fr, active_extruder); |
|
|
|
|
|
|
|
#endif |
|
|
|
} |
|
|
@ -516,11 +464,11 @@ |
|
|
|
|
|
|
|
/**
|
|
|
|
* Prepare a segmented linear move for DELTA/SCARA/CARTESIAN with UBL and FADE semantics. |
|
|
|
* This calls planner._buffer_line multiple times for small incremental moves. |
|
|
|
* This calls planner.buffer_segment multiple times for small incremental moves. |
|
|
|
* Returns true if did NOT move, false if moved (requires current_position update). |
|
|
|
*/ |
|
|
|
|
|
|
|
bool _O2 unified_bed_leveling::prepare_segmented_line_to(const float rtarget[XYZE], const float &feedrate) { |
|
|
|
bool _O2 unified_bed_leveling::prepare_segmented_line_to(const float (&rtarget)[XYZE], const float &feedrate) { |
|
|
|
|
|
|
|
if (!position_is_reachable(rtarget[X_AXIS], rtarget[Y_AXIS])) // fail if moving outside reachable boundary
|
|
|
|
return true; // did not move, so current_position still accurate
|
|
|
@ -675,6 +623,6 @@ |
|
|
|
} // cell loop
|
|
|
|
} |
|
|
|
|
|
|
|
#endif // UBL_DELTA
|
|
|
|
#endif // UBL_SEGMENTED
|
|
|
|
|
|
|
|
#endif // AUTO_BED_LEVELING_UBL
|
|
|
|