Browse Source

Invariant get_pid_output with HOTENDS < 2

pull/1/head
Scott Lahteine 9 years ago
parent
commit
b72238f406
  1. 84
      Marlin/temperature.cpp
  2. 27
      Marlin/temperature.h

84
Marlin/temperature.cpp

@ -514,88 +514,86 @@ void Temperature::min_temp_error(uint8_t e) {
}
float Temperature::get_pid_output(int e) {
#if HOTENDS == 1
UNUSED(e);
#define _HOTEND_TEST true
#define _HOTEND_EXTRUDER active_extruder
#else
#define _HOTEND_TEST e == active_extruder
#define _HOTEND_EXTRUDER e
#endif
float pid_output;
#if ENABLED(PIDTEMP)
#if DISABLED(PID_OPENLOOP)
pid_error[e] = target_temperature[e] - current_temperature[e];
dTerm[e] = K2 * PID_PARAM(Kd, e) * (current_temperature[e] - temp_dState[e]) + K1 * dTerm[e];
temp_dState[e] = current_temperature[e];
if (pid_error[e] > PID_FUNCTIONAL_RANGE) {
pid_error[HOTEND_INDEX] = target_temperature[HOTEND_INDEX] - current_temperature[HOTEND_INDEX];
dTerm[HOTEND_INDEX] = K2 * PID_PARAM(Kd, HOTEND_INDEX) * (current_temperature[HOTEND_INDEX] - temp_dState[HOTEND_INDEX]) + K1 * dTerm[HOTEND_INDEX];
temp_dState[HOTEND_INDEX] = current_temperature[HOTEND_INDEX];
if (pid_error[HOTEND_INDEX] > PID_FUNCTIONAL_RANGE) {
pid_output = BANG_MAX;
pid_reset[e] = true;
pid_reset[HOTEND_INDEX] = true;
}
else if (pid_error[e] < -(PID_FUNCTIONAL_RANGE) || target_temperature[e] == 0) {
else if (pid_error[HOTEND_INDEX] < -(PID_FUNCTIONAL_RANGE) || target_temperature[HOTEND_INDEX] == 0) {
pid_output = 0;
pid_reset[e] = true;
pid_reset[HOTEND_INDEX] = true;
}
else {
if (pid_reset[e]) {
temp_iState[e] = 0.0;
pid_reset[e] = false;
if (pid_reset[HOTEND_INDEX]) {
temp_iState[HOTEND_INDEX] = 0.0;
pid_reset[HOTEND_INDEX] = false;
}
pTerm[e] = PID_PARAM(Kp, e) * pid_error[e];
temp_iState[e] += pid_error[e];
temp_iState[e] = constrain(temp_iState[e], temp_iState_min[e], temp_iState_max[e]);
iTerm[e] = PID_PARAM(Ki, e) * temp_iState[e];
pTerm[HOTEND_INDEX] = PID_PARAM(Kp, HOTEND_INDEX) * pid_error[HOTEND_INDEX];
temp_iState[HOTEND_INDEX] += pid_error[HOTEND_INDEX];
temp_iState[HOTEND_INDEX] = constrain(temp_iState[HOTEND_INDEX], temp_iState_min[HOTEND_INDEX], temp_iState_max[HOTEND_INDEX]);
iTerm[HOTEND_INDEX] = PID_PARAM(Ki, HOTEND_INDEX) * temp_iState[HOTEND_INDEX];
pid_output = pTerm[e] + iTerm[e] - dTerm[e];
#if ENABLED(SINGLENOZZLE)
#define _NOZZLE_TEST true
#define _NOZZLE_EXTRUDER active_extruder
#define _CTERM_INDEX 0
#else
#define _NOZZLE_TEST e == active_extruder
#define _NOZZLE_EXTRUDER e
#define _CTERM_INDEX e
#endif
pid_output = pTerm[HOTEND_INDEX] + iTerm[HOTEND_INDEX] - dTerm[HOTEND_INDEX];
#if ENABLED(PID_ADD_EXTRUSION_RATE)
cTerm[_CTERM_INDEX] = 0;
if (_NOZZLE_TEST) {
cTerm[HOTEND_INDEX] = 0;
if (_HOTEND_TEST) {
long e_position = stepper.position(E_AXIS);
if (e_position > last_position[_NOZZLE_EXTRUDER]) {
lpq[lpq_ptr++] = e_position - last_position[_NOZZLE_EXTRUDER];
last_position[_NOZZLE_EXTRUDER] = e_position;
if (e_position > last_position[_HOTEND_EXTRUDER]) {
lpq[lpq_ptr++] = e_position - last_position[_HOTEND_EXTRUDER];
last_position[_HOTEND_EXTRUDER] = e_position;
}
else {
lpq[lpq_ptr++] = 0;
}
if (lpq_ptr >= lpq_len) lpq_ptr = 0;
cTerm[_CTERM_INDEX] = (lpq[lpq_ptr] / planner.axis_steps_per_mm[E_AXIS]) * PID_PARAM(Kc, e);
pid_output += cTerm[e];
cTerm[HOTEND_INDEX] = (lpq[lpq_ptr] / planner.axis_steps_per_mm[E_AXIS]) * PID_PARAM(Kc, HOTEND_INDEX);
pid_output += cTerm[HOTEND_INDEX];
}
#endif //PID_ADD_EXTRUSION_RATE
if (pid_output > PID_MAX) {
if (pid_error[e] > 0) temp_iState[e] -= pid_error[e]; // conditional un-integration
if (pid_error[HOTEND_INDEX] > 0) temp_iState[HOTEND_INDEX] -= pid_error[HOTEND_INDEX]; // conditional un-integration
pid_output = PID_MAX;
}
else if (pid_output < 0) {
if (pid_error[e] < 0) temp_iState[e] -= pid_error[e]; // conditional un-integration
if (pid_error[HOTEND_INDEX] < 0) temp_iState[HOTEND_INDEX] -= pid_error[HOTEND_INDEX]; // conditional un-integration
pid_output = 0;
}
}
#else
pid_output = constrain(target_temperature[e], 0, PID_MAX);
pid_output = constrain(target_temperature[HOTEND_INDEX], 0, PID_MAX);
#endif //PID_OPENLOOP
#if ENABLED(PID_DEBUG)
SERIAL_ECHO_START;
SERIAL_ECHOPAIR(MSG_PID_DEBUG, e);
SERIAL_ECHOPAIR(MSG_PID_DEBUG_INPUT, current_temperature[e]);
SERIAL_ECHOPAIR(MSG_PID_DEBUG, HOTEND_INDEX);
SERIAL_ECHOPAIR(MSG_PID_DEBUG_INPUT, current_temperature[HOTEND_INDEX]);
SERIAL_ECHOPAIR(MSG_PID_DEBUG_OUTPUT, pid_output);
SERIAL_ECHOPAIR(MSG_PID_DEBUG_PTERM, pTerm[e]);
SERIAL_ECHOPAIR(MSG_PID_DEBUG_ITERM, iTerm[e]);
SERIAL_ECHOPAIR(MSG_PID_DEBUG_DTERM, dTerm[e]);
SERIAL_ECHOPAIR(MSG_PID_DEBUG_PTERM, pTerm[HOTEND_INDEX]);
SERIAL_ECHOPAIR(MSG_PID_DEBUG_ITERM, iTerm[HOTEND_INDEX]);
SERIAL_ECHOPAIR(MSG_PID_DEBUG_DTERM, dTerm[HOTEND_INDEX]);
#if ENABLED(PID_ADD_EXTRUSION_RATE)
SERIAL_ECHOPAIR(MSG_PID_DEBUG_CTERM, cTerm[e]);
SERIAL_ECHOPAIR(MSG_PID_DEBUG_CTERM, cTerm[HOTEND_INDEX]);
#endif
SERIAL_EOL;
#endif //PID_DEBUG
#else /* PID off */
pid_output = (current_temperature[e] < target_temperature[e]) ? PID_MAX : 0;
pid_output = (current_temperature[HOTEND_INDEX] < target_temperature[HOTEND_INDEX]) ? PID_MAX : 0;
#endif
return pid_output;
@ -672,7 +670,7 @@ void Temperature::manage_heater() {
#endif
// Loop through all hotends
for (int e = 0; e < HOTENDS; e++) {
for (uint8_t e = 0; e < HOTENDS; e++) {
#if ENABLED(THERMAL_PROTECTION_HOTENDS)
thermal_runaway_protection(&thermal_runaway_state_machine[e], &thermal_runaway_timer[e], current_temperature[e], target_temperature[e], e, THERMAL_PROTECTION_PERIOD, THERMAL_PROTECTION_HYSTERESIS);

27
Marlin/temperature.h

@ -38,6 +38,16 @@
#define SOFT_PWM_SCALE 0
#endif
#if HOTENDS == 1
#define HOTEND_ARG 0
#define HOTEND_INDEX 0
#define EXTRUDER_ARG 0
#else
#define HOTEND_ARG hotend
#define HOTEND_INDEX e
#define EXTRUDER_ARG active_extruder
#endif
class Temperature {
public:
@ -112,7 +122,12 @@ class Temperature {
#if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
static float extrude_min_temp;
static bool tooColdToExtrude(uint8_t e) { return degHotend(e) < extrude_min_temp; }
static bool tooColdToExtrude(uint8_t e) {
#if HOTENDS == 1
UNUSED(e);
#endif
return degHotend(HOTEND_INDEX) < extrude_min_temp;
}
#else
static bool tooColdToExtrude(uint8_t e) { UNUSED(e); return false; }
#endif
@ -230,12 +245,6 @@ class Temperature {
//inline so that there is no performance decrease.
//deg=degreeCelsius
#if HOTENDS == 1
#define HOTEND_ARG 0
#else
#define HOTEND_ARG hotend
#endif
static float degHotend(uint8_t hotend) {
#if HOTENDS == 1
UNUSED(hotend);
@ -329,8 +338,8 @@ class Temperature {
#if ENABLED(AUTOTEMP)
if (planner.autotemp_enabled) {
planner.autotemp_enabled = false;
if (degTargetHotend(active_extruder) > planner.autotemp_min)
setTargetHotend(0, active_extruder);
if (degTargetHotend(EXTRUDER_ARG) > planner.autotemp_min)
setTargetHotend(0, EXTRUDER_ARG);
}
#endif
}

Loading…
Cancel
Save