|
|
@ -1,56 +1,56 @@ |
|
|
|
/*
|
|
|
|
planner.c - buffers movement commands and manages the acceleration profile plan |
|
|
|
Part of Grbl |
|
|
|
|
|
|
|
Copyright (c) 2009-2011 Simen Svale Skogsrud |
|
|
|
|
|
|
|
Grbl is free software: you can redistribute it and/or modify |
|
|
|
it under the terms of the GNU General Public License as published by |
|
|
|
the Free Software Foundation, either version 3 of the License, or |
|
|
|
(at your option) any later version. |
|
|
|
|
|
|
|
Grbl is distributed in the hope that it will be useful, |
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
|
|
GNU General Public License for more details. |
|
|
|
|
|
|
|
You should have received a copy of the GNU General Public License |
|
|
|
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
*/ |
|
|
|
Part of Grbl |
|
|
|
|
|
|
|
Copyright (c) 2009-2011 Simen Svale Skogsrud |
|
|
|
|
|
|
|
Grbl is free software: you can redistribute it and/or modify |
|
|
|
it under the terms of the GNU General Public License as published by |
|
|
|
the Free Software Foundation, either version 3 of the License, or |
|
|
|
(at your option) any later version. |
|
|
|
|
|
|
|
Grbl is distributed in the hope that it will be useful, |
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
|
|
GNU General Public License for more details. |
|
|
|
|
|
|
|
You should have received a copy of the GNU General Public License |
|
|
|
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
*/ |
|
|
|
|
|
|
|
/* The ring buffer implementation gleaned from the wiring_serial library by David A. Mellis. */ |
|
|
|
|
|
|
|
/*
|
|
|
|
Reasoning behind the mathematics in this module (in the key of 'Mathematica'): |
|
|
|
|
|
|
|
s == speed, a == acceleration, t == time, d == distance |
|
|
|
|
|
|
|
Basic definitions: |
|
|
|
|
|
|
|
Speed[s_, a_, t_] := s + (a*t) |
|
|
|
Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t] |
|
|
|
|
|
|
|
Distance to reach a specific speed with a constant acceleration: |
|
|
|
|
|
|
|
Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t] |
|
|
|
d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance() |
|
|
|
|
|
|
|
Speed after a given distance of travel with constant acceleration: |
|
|
|
|
|
|
|
Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t] |
|
|
|
m -> Sqrt[2 a d + s^2] |
|
|
|
|
|
|
|
DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2] |
|
|
|
|
|
|
|
When to start braking (di) to reach a specified destionation speed (s2) after accelerating |
|
|
|
from initial speed s1 without ever stopping at a plateau: |
|
|
|
|
|
|
|
Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di] |
|
|
|
di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance() |
|
|
|
Reasoning behind the mathematics in this module (in the key of 'Mathematica'): |
|
|
|
|
|
|
|
s == speed, a == acceleration, t == time, d == distance |
|
|
|
|
|
|
|
Basic definitions: |
|
|
|
|
|
|
|
Speed[s_, a_, t_] := s + (a*t) |
|
|
|
Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t] |
|
|
|
|
|
|
|
Distance to reach a specific speed with a constant acceleration: |
|
|
|
|
|
|
|
Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t] |
|
|
|
d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance() |
|
|
|
|
|
|
|
Speed after a given distance of travel with constant acceleration: |
|
|
|
|
|
|
|
Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t] |
|
|
|
m -> Sqrt[2 a d + s^2] |
|
|
|
|
|
|
|
DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2] |
|
|
|
|
|
|
|
When to start braking (di) to reach a specified destionation speed (s2) after accelerating |
|
|
|
from initial speed s1 without ever stopping at a plateau: |
|
|
|
|
|
|
|
Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di] |
|
|
|
di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance() |
|
|
|
|
|
|
|
IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a) |
|
|
|
*/ |
|
|
|
|
|
|
|
IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a) |
|
|
|
*/ |
|
|
|
|
|
|
|
#include "Marlin.h" |
|
|
|
#include "planner.h" |
|
|
|
#include "stepper.h" |
|
|
@ -83,10 +83,10 @@ static float previous_nominal_speed; // Nominal speed of previous path line segm |
|
|
|
extern volatile int extrudemultiply; // Sets extrude multiply factor (in percent)
|
|
|
|
|
|
|
|
#ifdef AUTOTEMP |
|
|
|
float autotemp_max=250; |
|
|
|
float autotemp_min=210; |
|
|
|
float autotemp_factor=0.1; |
|
|
|
bool autotemp_enabled=false; |
|
|
|
float autotemp_max=250; |
|
|
|
float autotemp_min=210; |
|
|
|
float autotemp_factor=0.1; |
|
|
|
bool autotemp_enabled=false; |
|
|
|
#endif |
|
|
|
|
|
|
|
//===========================================================================
|
|
|
@ -100,27 +100,33 @@ volatile unsigned char block_buffer_tail; // Index of the block to pro |
|
|
|
//=============================private variables ============================
|
|
|
|
//===========================================================================
|
|
|
|
#ifdef PREVENT_DANGEROUS_EXTRUDE |
|
|
|
bool allow_cold_extrude=false; |
|
|
|
bool allow_cold_extrude=false; |
|
|
|
#endif |
|
|
|
#ifdef XY_FREQUENCY_LIMIT |
|
|
|
// Used for the frequency limit
|
|
|
|
static unsigned char old_direction_bits = 0; // Old direction bits. Used for speed calculations
|
|
|
|
static long x_segment_time[3]={0,0,0}; // Segment times (in us). Used for speed calculations
|
|
|
|
static long y_segment_time[3]={0,0,0}; |
|
|
|
// Used for the frequency limit
|
|
|
|
static unsigned char old_direction_bits = 0; // Old direction bits. Used for speed calculations
|
|
|
|
static long x_segment_time[3]={ |
|
|
|
0,0,0}; // Segment times (in us). Used for speed calculations
|
|
|
|
static long y_segment_time[3]={ |
|
|
|
0,0,0}; |
|
|
|
#endif |
|
|
|
|
|
|
|
// Returns the index of the next block in the ring buffer
|
|
|
|
// NOTE: Removed modulo (%) operator, which uses an expensive divide and multiplication.
|
|
|
|
static int8_t next_block_index(int8_t block_index) { |
|
|
|
block_index++; |
|
|
|
if (block_index == BLOCK_BUFFER_SIZE) { block_index = 0; } |
|
|
|
if (block_index == BLOCK_BUFFER_SIZE) { |
|
|
|
block_index = 0; |
|
|
|
} |
|
|
|
return(block_index); |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
// Returns the index of the previous block in the ring buffer
|
|
|
|
static int8_t prev_block_index(int8_t block_index) { |
|
|
|
if (block_index == 0) { block_index = BLOCK_BUFFER_SIZE; } |
|
|
|
if (block_index == 0) { |
|
|
|
block_index = BLOCK_BUFFER_SIZE; |
|
|
|
} |
|
|
|
block_index--; |
|
|
|
return(block_index); |
|
|
|
} |
|
|
@ -134,8 +140,8 @@ static int8_t prev_block_index(int8_t block_index) { |
|
|
|
FORCE_INLINE float estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration) |
|
|
|
{ |
|
|
|
if (acceleration!=0) { |
|
|
|
return((target_rate*target_rate-initial_rate*initial_rate)/ |
|
|
|
(2.0*acceleration)); |
|
|
|
return((target_rate*target_rate-initial_rate*initial_rate)/ |
|
|
|
(2.0*acceleration)); |
|
|
|
} |
|
|
|
else { |
|
|
|
return 0.0; // acceleration was 0, set acceleration distance to 0
|
|
|
@ -149,9 +155,9 @@ FORCE_INLINE float estimate_acceleration_distance(float initial_rate, float targ |
|
|
|
|
|
|
|
FORCE_INLINE float intersection_distance(float initial_rate, float final_rate, float acceleration, float distance) |
|
|
|
{ |
|
|
|
if (acceleration!=0) { |
|
|
|
return((2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/ |
|
|
|
(4.0*acceleration) ); |
|
|
|
if (acceleration!=0) { |
|
|
|
return((2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/ |
|
|
|
(4.0*acceleration) ); |
|
|
|
} |
|
|
|
else { |
|
|
|
return 0.0; // acceleration was 0, set intersection distance to 0
|
|
|
@ -165,46 +171,50 @@ void calculate_trapezoid_for_block(block_t *block, float entry_factor, float exi |
|
|
|
unsigned long final_rate = ceil(block->nominal_rate*exit_factor); // (step/min)
|
|
|
|
|
|
|
|
// Limit minimal step rate (Otherwise the timer will overflow.)
|
|
|
|
if(initial_rate <120) {initial_rate=120; } |
|
|
|
if(final_rate < 120) {final_rate=120; } |
|
|
|
|
|
|
|
if(initial_rate <120) { |
|
|
|
initial_rate=120; |
|
|
|
} |
|
|
|
if(final_rate < 120) { |
|
|
|
final_rate=120; |
|
|
|
} |
|
|
|
|
|
|
|
long acceleration = block->acceleration_st; |
|
|
|
int32_t accelerate_steps = |
|
|
|
ceil(estimate_acceleration_distance(block->initial_rate, block->nominal_rate, acceleration)); |
|
|
|
int32_t decelerate_steps = |
|
|
|
floor(estimate_acceleration_distance(block->nominal_rate, block->final_rate, -acceleration)); |
|
|
|
|
|
|
|
|
|
|
|
// Calculate the size of Plateau of Nominal Rate.
|
|
|
|
int32_t plateau_steps = block->step_event_count-accelerate_steps-decelerate_steps; |
|
|
|
|
|
|
|
|
|
|
|
// Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
|
|
|
|
// have to use intersection_distance() to calculate when to abort acceleration and start braking
|
|
|
|
// in order to reach the final_rate exactly at the end of this block.
|
|
|
|
if (plateau_steps < 0) { |
|
|
|
accelerate_steps = ceil( |
|
|
|
intersection_distance(block->initial_rate, block->final_rate, acceleration, block->step_event_count)); |
|
|
|
intersection_distance(block->initial_rate, block->final_rate, acceleration, block->step_event_count)); |
|
|
|
accelerate_steps = max(accelerate_steps,0); // Check limits due to numerical round-off
|
|
|
|
accelerate_steps = min(accelerate_steps,block->step_event_count); |
|
|
|
plateau_steps = 0; |
|
|
|
} |
|
|
|
|
|
|
|
#ifdef ADVANCE |
|
|
|
volatile long initial_advance = block->advance*entry_factor*entry_factor; |
|
|
|
volatile long final_advance = block->advance*exit_factor*exit_factor; |
|
|
|
#endif // ADVANCE
|
|
|
|
|
|
|
|
// block->accelerate_until = accelerate_steps;
|
|
|
|
// block->decelerate_after = accelerate_steps+plateau_steps;
|
|
|
|
#ifdef ADVANCE |
|
|
|
volatile long initial_advance = block->advance*entry_factor*entry_factor; |
|
|
|
volatile long final_advance = block->advance*exit_factor*exit_factor; |
|
|
|
#endif // ADVANCE
|
|
|
|
|
|
|
|
// block->accelerate_until = accelerate_steps;
|
|
|
|
// block->decelerate_after = accelerate_steps+plateau_steps;
|
|
|
|
CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section
|
|
|
|
if(block->busy == false) { // Don't update variables if block is busy.
|
|
|
|
block->accelerate_until = accelerate_steps; |
|
|
|
block->decelerate_after = accelerate_steps+plateau_steps; |
|
|
|
block->initial_rate = initial_rate; |
|
|
|
block->final_rate = final_rate; |
|
|
|
#ifdef ADVANCE |
|
|
|
block->initial_advance = initial_advance; |
|
|
|
block->final_advance = final_advance; |
|
|
|
#endif //ADVANCE
|
|
|
|
#ifdef ADVANCE |
|
|
|
block->initial_advance = initial_advance; |
|
|
|
block->final_advance = final_advance; |
|
|
|
#endif //ADVANCE
|
|
|
|
} |
|
|
|
CRITICAL_SECTION_END; |
|
|
|
} |
|
|
@ -226,24 +236,27 @@ FORCE_INLINE float max_allowable_speed(float acceleration, float target_velocity |
|
|
|
|
|
|
|
// The kernel called by planner_recalculate() when scanning the plan from last to first entry.
|
|
|
|
void planner_reverse_pass_kernel(block_t *previous, block_t *current, block_t *next) { |
|
|
|
if(!current) { return; } |
|
|
|
|
|
|
|
if (next) { |
|
|
|
if(!current) { |
|
|
|
return; |
|
|
|
} |
|
|
|
|
|
|
|
if (next) { |
|
|
|
// If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
|
|
|
|
// If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
|
|
|
|
// check for maximum allowable speed reductions to ensure maximum possible planned speed.
|
|
|
|
if (current->entry_speed != current->max_entry_speed) { |
|
|
|
|
|
|
|
|
|
|
|
// If nominal length true, max junction speed is guaranteed to be reached. Only compute
|
|
|
|
// for max allowable speed if block is decelerating and nominal length is false.
|
|
|
|
if ((!current->nominal_length_flag) && (current->max_entry_speed > next->entry_speed)) { |
|
|
|
current->entry_speed = min( current->max_entry_speed, |
|
|
|
max_allowable_speed(-current->acceleration,next->entry_speed,current->millimeters)); |
|
|
|
} else { |
|
|
|
max_allowable_speed(-current->acceleration,next->entry_speed,current->millimeters)); |
|
|
|
} |
|
|
|
else { |
|
|
|
current->entry_speed = current->max_entry_speed; |
|
|
|
} |
|
|
|
current->recalculate_flag = true; |
|
|
|
|
|
|
|
|
|
|
|
} |
|
|
|
} // Skip last block. Already initialized and set for recalculation.
|
|
|
|
} |
|
|
@ -252,10 +265,17 @@ void planner_reverse_pass_kernel(block_t *previous, block_t *current, block_t *n |
|
|
|
// implements the reverse pass.
|
|
|
|
void planner_reverse_pass() { |
|
|
|
uint8_t block_index = block_buffer_head; |
|
|
|
if(((block_buffer_head-block_buffer_tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1)) > 3) { |
|
|
|
|
|
|
|
//Make a local copy of block_buffer_tail, because the interrupt can alter it
|
|
|
|
CRITICAL_SECTION_START; |
|
|
|
unsigned char tail = block_buffer_tail; |
|
|
|
CRITICAL_SECTION_END |
|
|
|
|
|
|
|
if(((block_buffer_head-tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1)) > 3) { |
|
|
|
block_index = (block_buffer_head - 3) & (BLOCK_BUFFER_SIZE - 1); |
|
|
|
block_t *block[3] = { NULL, NULL, NULL }; |
|
|
|
while(block_index != block_buffer_tail) { |
|
|
|
block_t *block[3] = { |
|
|
|
NULL, NULL, NULL }; |
|
|
|
while(block_index != tail) { |
|
|
|
block_index = prev_block_index(block_index); |
|
|
|
block[2]= block[1]; |
|
|
|
block[1]= block[0]; |
|
|
@ -267,8 +287,10 @@ void planner_reverse_pass() { |
|
|
|
|
|
|
|
// The kernel called by planner_recalculate() when scanning the plan from first to last entry.
|
|
|
|
void planner_forward_pass_kernel(block_t *previous, block_t *current, block_t *next) { |
|
|
|
if(!previous) { return; } |
|
|
|
|
|
|
|
if(!previous) { |
|
|
|
return; |
|
|
|
} |
|
|
|
|
|
|
|
// If the previous block is an acceleration block, but it is not long enough to complete the
|
|
|
|
// full speed change within the block, we need to adjust the entry speed accordingly. Entry
|
|
|
|
// speeds have already been reset, maximized, and reverse planned by reverse planner.
|
|
|
@ -276,7 +298,7 @@ void planner_forward_pass_kernel(block_t *previous, block_t *current, block_t *n |
|
|
|
if (!previous->nominal_length_flag) { |
|
|
|
if (previous->entry_speed < current->entry_speed) { |
|
|
|
double entry_speed = min( current->entry_speed, |
|
|
|
max_allowable_speed(-previous->acceleration,previous->entry_speed,previous->millimeters) ); |
|
|
|
max_allowable_speed(-previous->acceleration,previous->entry_speed,previous->millimeters) ); |
|
|
|
|
|
|
|
// Check for junction speed change
|
|
|
|
if (current->entry_speed != entry_speed) { |
|
|
@ -291,7 +313,8 @@ void planner_forward_pass_kernel(block_t *previous, block_t *current, block_t *n |
|
|
|
// implements the forward pass.
|
|
|
|
void planner_forward_pass() { |
|
|
|
uint8_t block_index = block_buffer_tail; |
|
|
|
block_t *block[3] = { NULL, NULL, NULL }; |
|
|
|
block_t *block[3] = { |
|
|
|
NULL, NULL, NULL }; |
|
|
|
|
|
|
|
while(block_index != block_buffer_head) { |
|
|
|
block[0] = block[1]; |
|
|
@ -310,7 +333,7 @@ void planner_recalculate_trapezoids() { |
|
|
|
int8_t block_index = block_buffer_tail; |
|
|
|
block_t *current; |
|
|
|
block_t *next = NULL; |
|
|
|
|
|
|
|
|
|
|
|
while(block_index != block_buffer_head) { |
|
|
|
current = next; |
|
|
|
next = &block_buffer[block_index]; |
|
|
@ -319,7 +342,7 @@ void planner_recalculate_trapezoids() { |
|
|
|
if (current->recalculate_flag || next->recalculate_flag) { |
|
|
|
// NOTE: Entry and exit factors always > 0 by all previous logic operations.
|
|
|
|
calculate_trapezoid_for_block(current, current->entry_speed/current->nominal_speed, |
|
|
|
next->entry_speed/current->nominal_speed); |
|
|
|
next->entry_speed/current->nominal_speed); |
|
|
|
current->recalculate_flag = false; // Reset current only to ensure next trapezoid is computed
|
|
|
|
} |
|
|
|
} |
|
|
@ -328,7 +351,7 @@ void planner_recalculate_trapezoids() { |
|
|
|
// Last/newest block in buffer. Exit speed is set with MINIMUM_PLANNER_SPEED. Always recalculated.
|
|
|
|
if(next != NULL) { |
|
|
|
calculate_trapezoid_for_block(next, next->entry_speed/next->nominal_speed, |
|
|
|
MINIMUM_PLANNER_SPEED/next->nominal_speed); |
|
|
|
MINIMUM_PLANNER_SPEED/next->nominal_speed); |
|
|
|
next->recalculate_flag = false; |
|
|
|
} |
|
|
|
} |
|
|
@ -380,14 +403,14 @@ void getHighESpeed() |
|
|
|
if(degTargetHotend0()+2<autotemp_min) { //probably temperature set to zero.
|
|
|
|
return; //do nothing
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
float high=0.0; |
|
|
|
uint8_t block_index = block_buffer_tail; |
|
|
|
|
|
|
|
|
|
|
|
while(block_index != block_buffer_head) { |
|
|
|
if((block_buffer[block_index].steps_x != 0) || |
|
|
|
(block_buffer[block_index].steps_y != 0) || |
|
|
|
(block_buffer[block_index].steps_z != 0)) { |
|
|
|
(block_buffer[block_index].steps_y != 0) || |
|
|
|
(block_buffer[block_index].steps_z != 0)) { |
|
|
|
float se=(float(block_buffer[block_index].steps_e)/float(block_buffer[block_index].step_event_count))*block_buffer[block_index].nominal_speed; |
|
|
|
//se; mm/sec;
|
|
|
|
if(se>high) |
|
|
@ -397,7 +420,7 @@ void getHighESpeed() |
|
|
|
} |
|
|
|
block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1); |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
float g=autotemp_min+high*autotemp_factor; |
|
|
|
float t=g; |
|
|
|
if(t<autotemp_min) |
|
|
@ -436,17 +459,21 @@ void check_axes_activity() { |
|
|
|
} |
|
|
|
} |
|
|
|
else { |
|
|
|
#if FAN_PIN > -1 |
|
|
|
if (FanSpeed != 0){ |
|
|
|
analogWrite(FAN_PIN,FanSpeed); // If buffer is empty use current fan speed
|
|
|
|
} |
|
|
|
#endif |
|
|
|
#if FAN_PIN > -1 |
|
|
|
if (FanSpeed != 0){ |
|
|
|
analogWrite(FAN_PIN,FanSpeed); // If buffer is empty use current fan speed
|
|
|
|
} |
|
|
|
#endif |
|
|
|
} |
|
|
|
if((DISABLE_X) && (x_active == 0)) disable_x(); |
|
|
|
if((DISABLE_Y) && (y_active == 0)) disable_y(); |
|
|
|
if((DISABLE_Z) && (z_active == 0)) disable_z(); |
|
|
|
if((DISABLE_E) && (e_active == 0)) { disable_e0();disable_e1();disable_e2(); } |
|
|
|
#if FAN_PIN > -1 |
|
|
|
if((DISABLE_E) && (e_active == 0)) { |
|
|
|
disable_e0(); |
|
|
|
disable_e1(); |
|
|
|
disable_e2(); |
|
|
|
} |
|
|
|
#if FAN_PIN > -1 |
|
|
|
if((FanSpeed == 0) && (fan_speed ==0)) { |
|
|
|
analogWrite(FAN_PIN, 0); |
|
|
|
} |
|
|
@ -454,10 +481,10 @@ void check_axes_activity() { |
|
|
|
if (FanSpeed != 0 && tail_fan_speed !=0) { |
|
|
|
analogWrite(FAN_PIN,tail_fan_speed); |
|
|
|
} |
|
|
|
#endif |
|
|
|
#ifdef AUTOTEMP |
|
|
|
getHighESpeed(); |
|
|
|
#endif |
|
|
|
#endif |
|
|
|
#ifdef AUTOTEMP |
|
|
|
getHighESpeed(); |
|
|
|
#endif |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
@ -477,7 +504,7 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa |
|
|
|
manage_inactivity(1); |
|
|
|
LCD_STATUS; |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
// The target position of the tool in absolute steps
|
|
|
|
// Calculate target position in absolute steps
|
|
|
|
//this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
|
|
|
@ -486,28 +513,28 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa |
|
|
|
target[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]); |
|
|
|
target[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]); |
|
|
|
target[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]); |
|
|
|
|
|
|
|
#ifdef PREVENT_DANGEROUS_EXTRUDE |
|
|
|
if(target[E_AXIS]!=position[E_AXIS]) |
|
|
|
|
|
|
|
#ifdef PREVENT_DANGEROUS_EXTRUDE |
|
|
|
if(target[E_AXIS]!=position[E_AXIS]) |
|
|
|
if(degHotend(active_extruder)<EXTRUDE_MINTEMP && !allow_cold_extrude) |
|
|
|
{ |
|
|
|
position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
|
|
|
|
SERIAL_ECHO_START; |
|
|
|
SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP); |
|
|
|
} |
|
|
|
#ifdef PREVENT_LENGTHY_EXTRUDE |
|
|
|
if(labs(target[E_AXIS]-position[E_AXIS])>axis_steps_per_unit[E_AXIS]*EXTRUDE_MAXLENGTH) |
|
|
|
{ |
|
|
|
position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
|
|
|
|
SERIAL_ECHO_START; |
|
|
|
SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP); |
|
|
|
} |
|
|
|
#endif |
|
|
|
#endif |
|
|
|
|
|
|
|
#ifdef PREVENT_LENGTHY_EXTRUDE |
|
|
|
if(labs(target[E_AXIS]-position[E_AXIS])>axis_steps_per_unit[E_AXIS]*EXTRUDE_MAXLENGTH) |
|
|
|
{ |
|
|
|
position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
|
|
|
|
SERIAL_ECHO_START; |
|
|
|
SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP); |
|
|
|
} |
|
|
|
#endif |
|
|
|
#endif |
|
|
|
|
|
|
|
// Prepare to set up new block
|
|
|
|
block_t *block = &block_buffer[block_buffer_head]; |
|
|
|
|
|
|
|
|
|
|
|
// Mark block as not busy (Not executed by the stepper interrupt)
|
|
|
|
block->busy = false; |
|
|
|
|
|
|
@ -521,36 +548,50 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa |
|
|
|
block->step_event_count = max(block->steps_x, max(block->steps_y, max(block->steps_z, block->steps_e))); |
|
|
|
|
|
|
|
// Bail if this is a zero-length block
|
|
|
|
if (block->step_event_count <= dropsegments) { return; }; |
|
|
|
if (block->step_event_count <= dropsegments) { |
|
|
|
return; |
|
|
|
}; |
|
|
|
|
|
|
|
block->fan_speed = FanSpeed; |
|
|
|
|
|
|
|
|
|
|
|
// Compute direction bits for this block
|
|
|
|
block->direction_bits = 0; |
|
|
|
if (target[X_AXIS] < position[X_AXIS]) { block->direction_bits |= (1<<X_AXIS); } |
|
|
|
if (target[Y_AXIS] < position[Y_AXIS]) { block->direction_bits |= (1<<Y_AXIS); } |
|
|
|
if (target[Z_AXIS] < position[Z_AXIS]) { block->direction_bits |= (1<<Z_AXIS); } |
|
|
|
if (target[E_AXIS] < position[E_AXIS]) { block->direction_bits |= (1<<E_AXIS); } |
|
|
|
|
|
|
|
if (target[X_AXIS] < position[X_AXIS]) { |
|
|
|
block->direction_bits |= (1<<X_AXIS); |
|
|
|
} |
|
|
|
if (target[Y_AXIS] < position[Y_AXIS]) { |
|
|
|
block->direction_bits |= (1<<Y_AXIS); |
|
|
|
} |
|
|
|
if (target[Z_AXIS] < position[Z_AXIS]) { |
|
|
|
block->direction_bits |= (1<<Z_AXIS); |
|
|
|
} |
|
|
|
if (target[E_AXIS] < position[E_AXIS]) { |
|
|
|
block->direction_bits |= (1<<E_AXIS); |
|
|
|
} |
|
|
|
|
|
|
|
block->active_extruder = extruder; |
|
|
|
|
|
|
|
|
|
|
|
//enable active axes
|
|
|
|
if(block->steps_x != 0) enable_x(); |
|
|
|
if(block->steps_y != 0) enable_y(); |
|
|
|
#ifndef Z_LATE_ENABLE |
|
|
|
if(block->steps_z != 0) enable_z(); |
|
|
|
#endif |
|
|
|
#ifndef Z_LATE_ENABLE |
|
|
|
if(block->steps_z != 0) enable_z(); |
|
|
|
#endif |
|
|
|
|
|
|
|
// Enable all
|
|
|
|
if(block->steps_e != 0) { enable_e0();enable_e1();enable_e2(); } |
|
|
|
if(block->steps_e != 0) { |
|
|
|
enable_e0(); |
|
|
|
enable_e1(); |
|
|
|
enable_e2(); |
|
|
|
} |
|
|
|
|
|
|
|
if (block->steps_e == 0) { |
|
|
|
if(feed_rate<mintravelfeedrate) feed_rate=mintravelfeedrate; |
|
|
|
if(feed_rate<mintravelfeedrate) feed_rate=mintravelfeedrate; |
|
|
|
} |
|
|
|
else { |
|
|
|
if(feed_rate<minimumfeedrate) feed_rate=minimumfeedrate; |
|
|
|
if(feed_rate<minimumfeedrate) feed_rate=minimumfeedrate; |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
float delta_mm[4]; |
|
|
|
delta_mm[X_AXIS] = (target[X_AXIS]-position[X_AXIS])/axis_steps_per_unit[X_AXIS]; |
|
|
|
delta_mm[Y_AXIS] = (target[Y_AXIS]-position[Y_AXIS])/axis_steps_per_unit[Y_AXIS]; |
|
|
@ -558,37 +599,38 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa |
|
|
|
delta_mm[E_AXIS] = ((target[E_AXIS]-position[E_AXIS])/axis_steps_per_unit[E_AXIS])*extrudemultiply/100.0; |
|
|
|
if ( block->steps_x <=dropsegments && block->steps_y <=dropsegments && block->steps_z <=dropsegments ) { |
|
|
|
block->millimeters = fabs(delta_mm[E_AXIS]); |
|
|
|
} else { |
|
|
|
} |
|
|
|
else { |
|
|
|
block->millimeters = sqrt(square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_AXIS])); |
|
|
|
} |
|
|
|
float inverse_millimeters = 1.0/block->millimeters; // Inverse millimeters to remove multiple divides
|
|
|
|
|
|
|
|
// Calculate speed in mm/second for each axis. No divide by zero due to previous checks.
|
|
|
|
|
|
|
|
// Calculate speed in mm/second for each axis. No divide by zero due to previous checks.
|
|
|
|
float inverse_second = feed_rate * inverse_millimeters; |
|
|
|
|
|
|
|
|
|
|
|
int moves_queued=(block_buffer_head-block_buffer_tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1); |
|
|
|
|
|
|
|
|
|
|
|
// slow down when de buffer starts to empty, rather than wait at the corner for a buffer refill
|
|
|
|
#ifdef OLD_SLOWDOWN |
|
|
|
if(moves_queued < (BLOCK_BUFFER_SIZE * 0.5) && moves_queued > 1) feed_rate = feed_rate*moves_queued / (BLOCK_BUFFER_SIZE * 0.5); |
|
|
|
#endif |
|
|
|
#ifdef OLD_SLOWDOWN |
|
|
|
if(moves_queued < (BLOCK_BUFFER_SIZE * 0.5) && moves_queued > 1) feed_rate = feed_rate*moves_queued / (BLOCK_BUFFER_SIZE * 0.5); |
|
|
|
#endif |
|
|
|
|
|
|
|
#ifdef SLOWDOWN |
|
|
|
#ifdef SLOWDOWN |
|
|
|
// segment time im micro seconds
|
|
|
|
unsigned long segment_time = lround(1000000.0/inverse_second); |
|
|
|
if ((moves_queued > 1) && (moves_queued < (BLOCK_BUFFER_SIZE * 0.5))) { |
|
|
|
if (segment_time < minsegmenttime) { // buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more.
|
|
|
|
inverse_second=1000000.0/(segment_time+lround(2*(minsegmenttime-segment_time)/moves_queued)); |
|
|
|
inverse_second=1000000.0/(segment_time+lround(2*(minsegmenttime-segment_time)/moves_queued)); |
|
|
|
} |
|
|
|
} |
|
|
|
#endif |
|
|
|
#endif |
|
|
|
// END OF SLOW DOWN SECTION
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
block->nominal_speed = block->millimeters * inverse_second; // (mm/sec) Always > 0
|
|
|
|
block->nominal_rate = ceil(block->step_event_count * inverse_second); // (step/sec) Always > 0
|
|
|
|
|
|
|
|
// Calculate and limit speed in mm/sec for each axis
|
|
|
|
// Calculate and limit speed in mm/sec for each axis
|
|
|
|
float current_speed[4]; |
|
|
|
float speed_factor = 1.0; //factor <=1 do decrease speed
|
|
|
|
for(int i=0; i < 4; i++) { |
|
|
@ -597,7 +639,7 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa |
|
|
|
speed_factor = min(speed_factor, max_feedrate[i] / fabs(current_speed[i])); |
|
|
|
} |
|
|
|
|
|
|
|
// Max segement time in us.
|
|
|
|
// Max segement time in us.
|
|
|
|
#ifdef XY_FREQUENCY_LIMIT |
|
|
|
#define MAX_FREQ_TIME (1000000.0/XY_FREQUENCY_LIMIT) |
|
|
|
|
|
|
@ -606,7 +648,7 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa |
|
|
|
old_direction_bits = block->direction_bits; |
|
|
|
|
|
|
|
if((direction_change & (1<<X_AXIS)) == 0) { |
|
|
|
x_segment_time[0] += segment_time; |
|
|
|
x_segment_time[0] += segment_time; |
|
|
|
} |
|
|
|
else { |
|
|
|
x_segment_time[2] = x_segment_time[1]; |
|
|
@ -614,7 +656,7 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa |
|
|
|
x_segment_time[0] = segment_time; |
|
|
|
} |
|
|
|
if((direction_change & (1<<Y_AXIS)) == 0) { |
|
|
|
y_segment_time[0] += segment_time; |
|
|
|
y_segment_time[0] += segment_time; |
|
|
|
} |
|
|
|
else { |
|
|
|
y_segment_time[2] = y_segment_time[1]; |
|
|
@ -655,7 +697,7 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa |
|
|
|
} |
|
|
|
block->acceleration = block->acceleration_st / steps_per_mm; |
|
|
|
block->acceleration_rate = (long)((float)block->acceleration_st * 8.388608); |
|
|
|
|
|
|
|
|
|
|
|
#if 0 // Use old jerk for now
|
|
|
|
// Compute path unit vector
|
|
|
|
double unit_vec[3]; |
|
|
@ -663,7 +705,7 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa |
|
|
|
unit_vec[X_AXIS] = delta_mm[X_AXIS]*inverse_millimeters; |
|
|
|
unit_vec[Y_AXIS] = delta_mm[Y_AXIS]*inverse_millimeters; |
|
|
|
unit_vec[Z_AXIS] = delta_mm[Z_AXIS]*inverse_millimeters; |
|
|
|
|
|
|
|
|
|
|
|
// Compute maximum allowable entry speed at junction by centripetal acceleration approximation.
|
|
|
|
// Let a circle be tangent to both previous and current path line segments, where the junction
|
|
|
|
// deviation is defined as the distance from the junction to the closest edge of the circle,
|
|
|
@ -680,9 +722,9 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa |
|
|
|
// Compute cosine of angle between previous and current path. (prev_unit_vec is negative)
|
|
|
|
// NOTE: Max junction velocity is computed without sin() or acos() by trig half angle identity.
|
|
|
|
double cos_theta = - previous_unit_vec[X_AXIS] * unit_vec[X_AXIS] |
|
|
|
- previous_unit_vec[Y_AXIS] * unit_vec[Y_AXIS] |
|
|
|
- previous_unit_vec[Z_AXIS] * unit_vec[Z_AXIS] ; |
|
|
|
|
|
|
|
- previous_unit_vec[Y_AXIS] * unit_vec[Y_AXIS] |
|
|
|
- previous_unit_vec[Z_AXIS] * unit_vec[Z_AXIS] ; |
|
|
|
|
|
|
|
// Skip and use default max junction speed for 0 degree acute junction.
|
|
|
|
if (cos_theta < 0.95) { |
|
|
|
vmax_junction = min(previous_nominal_speed,block->nominal_speed); |
|
|
@ -691,36 +733,39 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa |
|
|
|
// Compute maximum junction velocity based on maximum acceleration and junction deviation
|
|
|
|
double sin_theta_d2 = sqrt(0.5*(1.0-cos_theta)); // Trig half angle identity. Always positive.
|
|
|
|
vmax_junction = min(vmax_junction, |
|
|
|
sqrt(block->acceleration * junction_deviation * sin_theta_d2/(1.0-sin_theta_d2)) ); |
|
|
|
sqrt(block->acceleration * junction_deviation * sin_theta_d2/(1.0-sin_theta_d2)) ); |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
#endif |
|
|
|
// Start with a safe speed
|
|
|
|
float vmax_junction = max_xy_jerk/2; |
|
|
|
float vmax_junction = max_xy_jerk/2; |
|
|
|
float vmax_junction_factor = 1.0; |
|
|
|
if(fabs(current_speed[Z_AXIS]) > max_z_jerk/2) |
|
|
|
vmax_junction = max_z_jerk/2; |
|
|
|
vmax_junction = min(vmax_junction, block->nominal_speed); |
|
|
|
vmax_junction = min(vmax_junction, max_z_jerk/2); |
|
|
|
if(fabs(current_speed[E_AXIS]) > max_e_jerk/2) |
|
|
|
vmax_junction = min(vmax_junction, max_e_jerk/2); |
|
|
|
|
|
|
|
vmax_junction = min(vmax_junction, block->nominal_speed); |
|
|
|
float safe_speed = vmax_junction; |
|
|
|
|
|
|
|
if ((moves_queued > 1) && (previous_nominal_speed > 0.0001)) { |
|
|
|
float jerk = sqrt(pow((current_speed[X_AXIS]-previous_speed[X_AXIS]), 2)+pow((current_speed[Y_AXIS]-previous_speed[Y_AXIS]), 2)); |
|
|
|
if((fabs(previous_speed[X_AXIS]) > 0.0001) || (fabs(previous_speed[Y_AXIS]) > 0.0001)) { |
|
|
|
vmax_junction = block->nominal_speed; |
|
|
|
} |
|
|
|
// if((fabs(previous_speed[X_AXIS]) > 0.0001) || (fabs(previous_speed[Y_AXIS]) > 0.0001)) {
|
|
|
|
vmax_junction = block->nominal_speed; |
|
|
|
// }
|
|
|
|
if (jerk > max_xy_jerk) { |
|
|
|
vmax_junction *= (max_xy_jerk/jerk); |
|
|
|
vmax_junction_factor = (max_xy_jerk/jerk); |
|
|
|
} |
|
|
|
if(fabs(current_speed[Z_AXIS] - previous_speed[Z_AXIS]) > max_z_jerk) { |
|
|
|
vmax_junction *= (max_z_jerk/fabs(current_speed[Z_AXIS] - previous_speed[Z_AXIS])); |
|
|
|
vmax_junction_factor= min(vmax_junction_factor, (max_z_jerk/fabs(current_speed[Z_AXIS] - previous_speed[Z_AXIS]))); |
|
|
|
} |
|
|
|
if(fabs(current_speed[E_AXIS] - previous_speed[E_AXIS]) > max_e_jerk) { |
|
|
|
vmax_junction *= (max_e_jerk/fabs(current_speed[E_AXIS] - previous_speed[E_AXIS])); |
|
|
|
vmax_junction_factor = min(vmax_junction_factor, (max_e_jerk/fabs(current_speed[E_AXIS] - previous_speed[E_AXIS]))); |
|
|
|
} |
|
|
|
vmax_junction = min(previous_nominal_speed, vmax_junction * vmax_junction_factor); // Limit speed to max previous speed
|
|
|
|
} |
|
|
|
block->max_entry_speed = vmax_junction; |
|
|
|
|
|
|
|
|
|
|
|
// Initialize block entry speed. Compute based on deceleration to user-defined MINIMUM_PLANNER_SPEED.
|
|
|
|
double v_allowable = max_allowable_speed(-block->acceleration,MINIMUM_PLANNER_SPEED,block->millimeters); |
|
|
|
block->entry_speed = min(vmax_junction, v_allowable); |
|
|
@ -733,48 +778,52 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa |
|
|
|
// block nominal speed limits both the current and next maximum junction speeds. Hence, in both
|
|
|
|
// the reverse and forward planners, the corresponding block junction speed will always be at the
|
|
|
|
// the maximum junction speed and may always be ignored for any speed reduction checks.
|
|
|
|
if (block->nominal_speed <= v_allowable) { block->nominal_length_flag = true; } |
|
|
|
else { block->nominal_length_flag = false; } |
|
|
|
if (block->nominal_speed <= v_allowable) { |
|
|
|
block->nominal_length_flag = true; |
|
|
|
} |
|
|
|
else { |
|
|
|
block->nominal_length_flag = false; |
|
|
|
} |
|
|
|
block->recalculate_flag = true; // Always calculate trapezoid for new block
|
|
|
|
|
|
|
|
|
|
|
|
// Update previous path unit_vector and nominal speed
|
|
|
|
memcpy(previous_speed, current_speed, sizeof(previous_speed)); // previous_speed[] = current_speed[]
|
|
|
|
previous_nominal_speed = block->nominal_speed; |
|
|
|
|
|
|
|
|
|
|
|
#ifdef ADVANCE |
|
|
|
// Calculate advance rate
|
|
|
|
if((block->steps_e == 0) || (block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0)) { |
|
|
|
|
|
|
|
#ifdef ADVANCE |
|
|
|
// Calculate advance rate
|
|
|
|
if((block->steps_e == 0) || (block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0)) { |
|
|
|
block->advance_rate = 0; |
|
|
|
block->advance = 0; |
|
|
|
} |
|
|
|
else { |
|
|
|
long acc_dist = estimate_acceleration_distance(0, block->nominal_rate, block->acceleration_st); |
|
|
|
float advance = (STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K) * |
|
|
|
(current_speed[E_AXIS] * current_speed[E_AXIS] * EXTRUTION_AREA * EXTRUTION_AREA)*256; |
|
|
|
block->advance = advance; |
|
|
|
if(acc_dist == 0) { |
|
|
|
block->advance_rate = 0; |
|
|
|
block->advance = 0; |
|
|
|
} |
|
|
|
} |
|
|
|
else { |
|
|
|
long acc_dist = estimate_acceleration_distance(0, block->nominal_rate, block->acceleration_st); |
|
|
|
float advance = (STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K) * |
|
|
|
(current_speed[E_AXIS] * current_speed[E_AXIS] * EXTRUTION_AREA * EXTRUTION_AREA)*256; |
|
|
|
block->advance = advance; |
|
|
|
if(acc_dist == 0) { |
|
|
|
block->advance_rate = 0; |
|
|
|
} |
|
|
|
else { |
|
|
|
block->advance_rate = advance / (float)acc_dist; |
|
|
|
} |
|
|
|
block->advance_rate = advance / (float)acc_dist; |
|
|
|
} |
|
|
|
/*
|
|
|
|
} |
|
|
|
/*
|
|
|
|
SERIAL_ECHO_START; |
|
|
|
SERIAL_ECHOPGM("advance :"); |
|
|
|
SERIAL_ECHO(block->advance/256.0); |
|
|
|
SERIAL_ECHOPGM("advance rate :"); |
|
|
|
SERIAL_ECHOLN(block->advance_rate/256.0); |
|
|
|
*/ |
|
|
|
#endif // ADVANCE
|
|
|
|
SERIAL_ECHOPGM("advance :"); |
|
|
|
SERIAL_ECHO(block->advance/256.0); |
|
|
|
SERIAL_ECHOPGM("advance rate :"); |
|
|
|
SERIAL_ECHOLN(block->advance_rate/256.0); |
|
|
|
*/ |
|
|
|
#endif // ADVANCE
|
|
|
|
|
|
|
|
calculate_trapezoid_for_block(block, block->entry_speed/block->nominal_speed, |
|
|
|
MINIMUM_PLANNER_SPEED/block->nominal_speed); |
|
|
|
|
|
|
|
safe_speed/block->nominal_speed); |
|
|
|
|
|
|
|
// Move buffer head
|
|
|
|
block_buffer_head = next_buffer_head; |
|
|
|
|
|
|
|
|
|
|
|
// Update position
|
|
|
|
memcpy(position, target, sizeof(target)); // position[] = target[]
|
|
|
|
|
|
|
@ -805,12 +854,13 @@ void plan_set_e_position(const float &e) |
|
|
|
|
|
|
|
uint8_t movesplanned() |
|
|
|
{ |
|
|
|
return (block_buffer_head-block_buffer_tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1); |
|
|
|
return (block_buffer_head-block_buffer_tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1); |
|
|
|
} |
|
|
|
|
|
|
|
void allow_cold_extrudes(bool allow) |
|
|
|
{ |
|
|
|
#ifdef PREVENT_DANGEROUS_EXTRUDE |
|
|
|
allow_cold_extrude=allow; |
|
|
|
#endif |
|
|
|
#ifdef PREVENT_DANGEROUS_EXTRUDE |
|
|
|
allow_cold_extrude=allow; |
|
|
|
#endif |
|
|
|
} |
|
|
|
|
|
|
|