Browse Source

Fixed AD595 define

pull/1/head
Erik van der Zalm 13 years ago
parent
commit
b67dacdc8f
  1. 466
      Marlin/planner.cpp
  2. 4
      Marlin/stepper.cpp
  3. 4
      Marlin/ultralcd.pde

466
Marlin/planner.cpp

@ -1,56 +1,56 @@
/*
planner.c - buffers movement commands and manages the acceleration profile plan
Part of Grbl
Copyright (c) 2009-2011 Simen Svale Skogsrud
Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/
Part of Grbl
Copyright (c) 2009-2011 Simen Svale Skogsrud
Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/
/* The ring buffer implementation gleaned from the wiring_serial library by David A. Mellis. */
/*
Reasoning behind the mathematics in this module (in the key of 'Mathematica'):
s == speed, a == acceleration, t == time, d == distance
Basic definitions:
Speed[s_, a_, t_] := s + (a*t)
Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
Distance to reach a specific speed with a constant acceleration:
Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
Speed after a given distance of travel with constant acceleration:
Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
m -> Sqrt[2 a d + s^2]
DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
When to start braking (di) to reach a specified destionation speed (s2) after accelerating
from initial speed s1 without ever stopping at a plateau:
Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
Reasoning behind the mathematics in this module (in the key of 'Mathematica'):
s == speed, a == acceleration, t == time, d == distance
Basic definitions:
Speed[s_, a_, t_] := s + (a*t)
Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
Distance to reach a specific speed with a constant acceleration:
Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
Speed after a given distance of travel with constant acceleration:
Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
m -> Sqrt[2 a d + s^2]
DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
When to start braking (di) to reach a specified destionation speed (s2) after accelerating
from initial speed s1 without ever stopping at a plateau:
Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
*/
IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
*/
#include "Marlin.h"
#include "planner.h"
#include "stepper.h"
@ -83,10 +83,10 @@ static float previous_nominal_speed; // Nominal speed of previous path line segm
extern volatile int extrudemultiply; // Sets extrude multiply factor (in percent)
#ifdef AUTOTEMP
float autotemp_max=250;
float autotemp_min=210;
float autotemp_factor=0.1;
bool autotemp_enabled=false;
float autotemp_max=250;
float autotemp_min=210;
float autotemp_factor=0.1;
bool autotemp_enabled=false;
#endif
//===========================================================================
@ -100,27 +100,33 @@ volatile unsigned char block_buffer_tail; // Index of the block to pro
//=============================private variables ============================
//===========================================================================
#ifdef PREVENT_DANGEROUS_EXTRUDE
bool allow_cold_extrude=false;
bool allow_cold_extrude=false;
#endif
#ifdef XY_FREQUENCY_LIMIT
// Used for the frequency limit
static unsigned char old_direction_bits = 0; // Old direction bits. Used for speed calculations
static long x_segment_time[3]={0,0,0}; // Segment times (in us). Used for speed calculations
static long y_segment_time[3]={0,0,0};
// Used for the frequency limit
static unsigned char old_direction_bits = 0; // Old direction bits. Used for speed calculations
static long x_segment_time[3]={
0,0,0}; // Segment times (in us). Used for speed calculations
static long y_segment_time[3]={
0,0,0};
#endif
// Returns the index of the next block in the ring buffer
// NOTE: Removed modulo (%) operator, which uses an expensive divide and multiplication.
static int8_t next_block_index(int8_t block_index) {
block_index++;
if (block_index == BLOCK_BUFFER_SIZE) { block_index = 0; }
if (block_index == BLOCK_BUFFER_SIZE) {
block_index = 0;
}
return(block_index);
}
// Returns the index of the previous block in the ring buffer
static int8_t prev_block_index(int8_t block_index) {
if (block_index == 0) { block_index = BLOCK_BUFFER_SIZE; }
if (block_index == 0) {
block_index = BLOCK_BUFFER_SIZE;
}
block_index--;
return(block_index);
}
@ -134,8 +140,8 @@ static int8_t prev_block_index(int8_t block_index) {
FORCE_INLINE float estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration)
{
if (acceleration!=0) {
return((target_rate*target_rate-initial_rate*initial_rate)/
(2.0*acceleration));
return((target_rate*target_rate-initial_rate*initial_rate)/
(2.0*acceleration));
}
else {
return 0.0; // acceleration was 0, set acceleration distance to 0
@ -149,9 +155,9 @@ FORCE_INLINE float estimate_acceleration_distance(float initial_rate, float targ
FORCE_INLINE float intersection_distance(float initial_rate, float final_rate, float acceleration, float distance)
{
if (acceleration!=0) {
return((2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/
(4.0*acceleration) );
if (acceleration!=0) {
return((2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/
(4.0*acceleration) );
}
else {
return 0.0; // acceleration was 0, set intersection distance to 0
@ -165,46 +171,50 @@ void calculate_trapezoid_for_block(block_t *block, float entry_factor, float exi
unsigned long final_rate = ceil(block->nominal_rate*exit_factor); // (step/min)
// Limit minimal step rate (Otherwise the timer will overflow.)
if(initial_rate <120) {initial_rate=120; }
if(final_rate < 120) {final_rate=120; }
if(initial_rate <120) {
initial_rate=120;
}
if(final_rate < 120) {
final_rate=120;
}
long acceleration = block->acceleration_st;
int32_t accelerate_steps =
ceil(estimate_acceleration_distance(block->initial_rate, block->nominal_rate, acceleration));
int32_t decelerate_steps =
floor(estimate_acceleration_distance(block->nominal_rate, block->final_rate, -acceleration));
// Calculate the size of Plateau of Nominal Rate.
int32_t plateau_steps = block->step_event_count-accelerate_steps-decelerate_steps;
// Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
// have to use intersection_distance() to calculate when to abort acceleration and start braking
// in order to reach the final_rate exactly at the end of this block.
if (plateau_steps < 0) {
accelerate_steps = ceil(
intersection_distance(block->initial_rate, block->final_rate, acceleration, block->step_event_count));
intersection_distance(block->initial_rate, block->final_rate, acceleration, block->step_event_count));
accelerate_steps = max(accelerate_steps,0); // Check limits due to numerical round-off
accelerate_steps = min(accelerate_steps,block->step_event_count);
plateau_steps = 0;
}
#ifdef ADVANCE
volatile long initial_advance = block->advance*entry_factor*entry_factor;
volatile long final_advance = block->advance*exit_factor*exit_factor;
#endif // ADVANCE
// block->accelerate_until = accelerate_steps;
// block->decelerate_after = accelerate_steps+plateau_steps;
#ifdef ADVANCE
volatile long initial_advance = block->advance*entry_factor*entry_factor;
volatile long final_advance = block->advance*exit_factor*exit_factor;
#endif // ADVANCE
// block->accelerate_until = accelerate_steps;
// block->decelerate_after = accelerate_steps+plateau_steps;
CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section
if(block->busy == false) { // Don't update variables if block is busy.
block->accelerate_until = accelerate_steps;
block->decelerate_after = accelerate_steps+plateau_steps;
block->initial_rate = initial_rate;
block->final_rate = final_rate;
#ifdef ADVANCE
block->initial_advance = initial_advance;
block->final_advance = final_advance;
#endif //ADVANCE
#ifdef ADVANCE
block->initial_advance = initial_advance;
block->final_advance = final_advance;
#endif //ADVANCE
}
CRITICAL_SECTION_END;
}
@ -226,24 +236,27 @@ FORCE_INLINE float max_allowable_speed(float acceleration, float target_velocity
// The kernel called by planner_recalculate() when scanning the plan from last to first entry.
void planner_reverse_pass_kernel(block_t *previous, block_t *current, block_t *next) {
if(!current) { return; }
if (next) {
if(!current) {
return;
}
if (next) {
// If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
// If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
// check for maximum allowable speed reductions to ensure maximum possible planned speed.
if (current->entry_speed != current->max_entry_speed) {
// If nominal length true, max junction speed is guaranteed to be reached. Only compute
// for max allowable speed if block is decelerating and nominal length is false.
if ((!current->nominal_length_flag) && (current->max_entry_speed > next->entry_speed)) {
current->entry_speed = min( current->max_entry_speed,
max_allowable_speed(-current->acceleration,next->entry_speed,current->millimeters));
} else {
max_allowable_speed(-current->acceleration,next->entry_speed,current->millimeters));
}
else {
current->entry_speed = current->max_entry_speed;
}
current->recalculate_flag = true;
}
} // Skip last block. Already initialized and set for recalculation.
}
@ -252,10 +265,17 @@ void planner_reverse_pass_kernel(block_t *previous, block_t *current, block_t *n
// implements the reverse pass.
void planner_reverse_pass() {
uint8_t block_index = block_buffer_head;
if(((block_buffer_head-block_buffer_tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1)) > 3) {
//Make a local copy of block_buffer_tail, because the interrupt can alter it
CRITICAL_SECTION_START;
unsigned char tail = block_buffer_tail;
CRITICAL_SECTION_END
if(((block_buffer_head-tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1)) > 3) {
block_index = (block_buffer_head - 3) & (BLOCK_BUFFER_SIZE - 1);
block_t *block[3] = { NULL, NULL, NULL };
while(block_index != block_buffer_tail) {
block_t *block[3] = {
NULL, NULL, NULL };
while(block_index != tail) {
block_index = prev_block_index(block_index);
block[2]= block[1];
block[1]= block[0];
@ -267,8 +287,10 @@ void planner_reverse_pass() {
// The kernel called by planner_recalculate() when scanning the plan from first to last entry.
void planner_forward_pass_kernel(block_t *previous, block_t *current, block_t *next) {
if(!previous) { return; }
if(!previous) {
return;
}
// If the previous block is an acceleration block, but it is not long enough to complete the
// full speed change within the block, we need to adjust the entry speed accordingly. Entry
// speeds have already been reset, maximized, and reverse planned by reverse planner.
@ -276,7 +298,7 @@ void planner_forward_pass_kernel(block_t *previous, block_t *current, block_t *n
if (!previous->nominal_length_flag) {
if (previous->entry_speed < current->entry_speed) {
double entry_speed = min( current->entry_speed,
max_allowable_speed(-previous->acceleration,previous->entry_speed,previous->millimeters) );
max_allowable_speed(-previous->acceleration,previous->entry_speed,previous->millimeters) );
// Check for junction speed change
if (current->entry_speed != entry_speed) {
@ -291,7 +313,8 @@ void planner_forward_pass_kernel(block_t *previous, block_t *current, block_t *n
// implements the forward pass.
void planner_forward_pass() {
uint8_t block_index = block_buffer_tail;
block_t *block[3] = { NULL, NULL, NULL };
block_t *block[3] = {
NULL, NULL, NULL };
while(block_index != block_buffer_head) {
block[0] = block[1];
@ -310,7 +333,7 @@ void planner_recalculate_trapezoids() {
int8_t block_index = block_buffer_tail;
block_t *current;
block_t *next = NULL;
while(block_index != block_buffer_head) {
current = next;
next = &block_buffer[block_index];
@ -319,7 +342,7 @@ void planner_recalculate_trapezoids() {
if (current->recalculate_flag || next->recalculate_flag) {
// NOTE: Entry and exit factors always > 0 by all previous logic operations.
calculate_trapezoid_for_block(current, current->entry_speed/current->nominal_speed,
next->entry_speed/current->nominal_speed);
next->entry_speed/current->nominal_speed);
current->recalculate_flag = false; // Reset current only to ensure next trapezoid is computed
}
}
@ -328,7 +351,7 @@ void planner_recalculate_trapezoids() {
// Last/newest block in buffer. Exit speed is set with MINIMUM_PLANNER_SPEED. Always recalculated.
if(next != NULL) {
calculate_trapezoid_for_block(next, next->entry_speed/next->nominal_speed,
MINIMUM_PLANNER_SPEED/next->nominal_speed);
MINIMUM_PLANNER_SPEED/next->nominal_speed);
next->recalculate_flag = false;
}
}
@ -380,14 +403,14 @@ void getHighESpeed()
if(degTargetHotend0()+2<autotemp_min) { //probably temperature set to zero.
return; //do nothing
}
float high=0.0;
uint8_t block_index = block_buffer_tail;
while(block_index != block_buffer_head) {
if((block_buffer[block_index].steps_x != 0) ||
(block_buffer[block_index].steps_y != 0) ||
(block_buffer[block_index].steps_z != 0)) {
(block_buffer[block_index].steps_y != 0) ||
(block_buffer[block_index].steps_z != 0)) {
float se=(float(block_buffer[block_index].steps_e)/float(block_buffer[block_index].step_event_count))*block_buffer[block_index].nominal_speed;
//se; mm/sec;
if(se>high)
@ -397,7 +420,7 @@ void getHighESpeed()
}
block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
}
float g=autotemp_min+high*autotemp_factor;
float t=g;
if(t<autotemp_min)
@ -436,17 +459,21 @@ void check_axes_activity() {
}
}
else {
#if FAN_PIN > -1
if (FanSpeed != 0){
analogWrite(FAN_PIN,FanSpeed); // If buffer is empty use current fan speed
}
#endif
#if FAN_PIN > -1
if (FanSpeed != 0){
analogWrite(FAN_PIN,FanSpeed); // If buffer is empty use current fan speed
}
#endif
}
if((DISABLE_X) && (x_active == 0)) disable_x();
if((DISABLE_Y) && (y_active == 0)) disable_y();
if((DISABLE_Z) && (z_active == 0)) disable_z();
if((DISABLE_E) && (e_active == 0)) { disable_e0();disable_e1();disable_e2(); }
#if FAN_PIN > -1
if((DISABLE_E) && (e_active == 0)) {
disable_e0();
disable_e1();
disable_e2();
}
#if FAN_PIN > -1
if((FanSpeed == 0) && (fan_speed ==0)) {
analogWrite(FAN_PIN, 0);
}
@ -454,10 +481,10 @@ void check_axes_activity() {
if (FanSpeed != 0 && tail_fan_speed !=0) {
analogWrite(FAN_PIN,tail_fan_speed);
}
#endif
#ifdef AUTOTEMP
getHighESpeed();
#endif
#endif
#ifdef AUTOTEMP
getHighESpeed();
#endif
}
@ -477,7 +504,7 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
manage_inactivity(1);
LCD_STATUS;
}
// The target position of the tool in absolute steps
// Calculate target position in absolute steps
//this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
@ -486,28 +513,28 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
target[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);
target[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
target[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
#ifdef PREVENT_DANGEROUS_EXTRUDE
if(target[E_AXIS]!=position[E_AXIS])
#ifdef PREVENT_DANGEROUS_EXTRUDE
if(target[E_AXIS]!=position[E_AXIS])
if(degHotend(active_extruder)<EXTRUDE_MINTEMP && !allow_cold_extrude)
{
position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
}
#ifdef PREVENT_LENGTHY_EXTRUDE
if(labs(target[E_AXIS]-position[E_AXIS])>axis_steps_per_unit[E_AXIS]*EXTRUDE_MAXLENGTH)
{
position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
}
#endif
#endif
#ifdef PREVENT_LENGTHY_EXTRUDE
if(labs(target[E_AXIS]-position[E_AXIS])>axis_steps_per_unit[E_AXIS]*EXTRUDE_MAXLENGTH)
{
position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
}
#endif
#endif
// Prepare to set up new block
block_t *block = &block_buffer[block_buffer_head];
// Mark block as not busy (Not executed by the stepper interrupt)
block->busy = false;
@ -521,36 +548,50 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
block->step_event_count = max(block->steps_x, max(block->steps_y, max(block->steps_z, block->steps_e)));
// Bail if this is a zero-length block
if (block->step_event_count <= dropsegments) { return; };
if (block->step_event_count <= dropsegments) {
return;
};
block->fan_speed = FanSpeed;
// Compute direction bits for this block
block->direction_bits = 0;
if (target[X_AXIS] < position[X_AXIS]) { block->direction_bits |= (1<<X_AXIS); }
if (target[Y_AXIS] < position[Y_AXIS]) { block->direction_bits |= (1<<Y_AXIS); }
if (target[Z_AXIS] < position[Z_AXIS]) { block->direction_bits |= (1<<Z_AXIS); }
if (target[E_AXIS] < position[E_AXIS]) { block->direction_bits |= (1<<E_AXIS); }
if (target[X_AXIS] < position[X_AXIS]) {
block->direction_bits |= (1<<X_AXIS);
}
if (target[Y_AXIS] < position[Y_AXIS]) {
block->direction_bits |= (1<<Y_AXIS);
}
if (target[Z_AXIS] < position[Z_AXIS]) {
block->direction_bits |= (1<<Z_AXIS);
}
if (target[E_AXIS] < position[E_AXIS]) {
block->direction_bits |= (1<<E_AXIS);
}
block->active_extruder = extruder;
//enable active axes
if(block->steps_x != 0) enable_x();
if(block->steps_y != 0) enable_y();
#ifndef Z_LATE_ENABLE
if(block->steps_z != 0) enable_z();
#endif
#ifndef Z_LATE_ENABLE
if(block->steps_z != 0) enable_z();
#endif
// Enable all
if(block->steps_e != 0) { enable_e0();enable_e1();enable_e2(); }
if(block->steps_e != 0) {
enable_e0();
enable_e1();
enable_e2();
}
if (block->steps_e == 0) {
if(feed_rate<mintravelfeedrate) feed_rate=mintravelfeedrate;
if(feed_rate<mintravelfeedrate) feed_rate=mintravelfeedrate;
}
else {
if(feed_rate<minimumfeedrate) feed_rate=minimumfeedrate;
if(feed_rate<minimumfeedrate) feed_rate=minimumfeedrate;
}
float delta_mm[4];
delta_mm[X_AXIS] = (target[X_AXIS]-position[X_AXIS])/axis_steps_per_unit[X_AXIS];
delta_mm[Y_AXIS] = (target[Y_AXIS]-position[Y_AXIS])/axis_steps_per_unit[Y_AXIS];
@ -558,37 +599,38 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
delta_mm[E_AXIS] = ((target[E_AXIS]-position[E_AXIS])/axis_steps_per_unit[E_AXIS])*extrudemultiply/100.0;
if ( block->steps_x <=dropsegments && block->steps_y <=dropsegments && block->steps_z <=dropsegments ) {
block->millimeters = fabs(delta_mm[E_AXIS]);
} else {
}
else {
block->millimeters = sqrt(square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_AXIS]));
}
float inverse_millimeters = 1.0/block->millimeters; // Inverse millimeters to remove multiple divides
// Calculate speed in mm/second for each axis. No divide by zero due to previous checks.
// Calculate speed in mm/second for each axis. No divide by zero due to previous checks.
float inverse_second = feed_rate * inverse_millimeters;
int moves_queued=(block_buffer_head-block_buffer_tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1);
// slow down when de buffer starts to empty, rather than wait at the corner for a buffer refill
#ifdef OLD_SLOWDOWN
if(moves_queued < (BLOCK_BUFFER_SIZE * 0.5) && moves_queued > 1) feed_rate = feed_rate*moves_queued / (BLOCK_BUFFER_SIZE * 0.5);
#endif
#ifdef OLD_SLOWDOWN
if(moves_queued < (BLOCK_BUFFER_SIZE * 0.5) && moves_queued > 1) feed_rate = feed_rate*moves_queued / (BLOCK_BUFFER_SIZE * 0.5);
#endif
#ifdef SLOWDOWN
#ifdef SLOWDOWN
// segment time im micro seconds
unsigned long segment_time = lround(1000000.0/inverse_second);
if ((moves_queued > 1) && (moves_queued < (BLOCK_BUFFER_SIZE * 0.5))) {
if (segment_time < minsegmenttime) { // buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more.
inverse_second=1000000.0/(segment_time+lround(2*(minsegmenttime-segment_time)/moves_queued));
inverse_second=1000000.0/(segment_time+lround(2*(minsegmenttime-segment_time)/moves_queued));
}
}
#endif
#endif
// END OF SLOW DOWN SECTION
block->nominal_speed = block->millimeters * inverse_second; // (mm/sec) Always > 0
block->nominal_rate = ceil(block->step_event_count * inverse_second); // (step/sec) Always > 0
// Calculate and limit speed in mm/sec for each axis
// Calculate and limit speed in mm/sec for each axis
float current_speed[4];
float speed_factor = 1.0; //factor <=1 do decrease speed
for(int i=0; i < 4; i++) {
@ -597,7 +639,7 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
speed_factor = min(speed_factor, max_feedrate[i] / fabs(current_speed[i]));
}
// Max segement time in us.
// Max segement time in us.
#ifdef XY_FREQUENCY_LIMIT
#define MAX_FREQ_TIME (1000000.0/XY_FREQUENCY_LIMIT)
@ -606,7 +648,7 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
old_direction_bits = block->direction_bits;
if((direction_change & (1<<X_AXIS)) == 0) {
x_segment_time[0] += segment_time;
x_segment_time[0] += segment_time;
}
else {
x_segment_time[2] = x_segment_time[1];
@ -614,7 +656,7 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
x_segment_time[0] = segment_time;
}
if((direction_change & (1<<Y_AXIS)) == 0) {
y_segment_time[0] += segment_time;
y_segment_time[0] += segment_time;
}
else {
y_segment_time[2] = y_segment_time[1];
@ -655,7 +697,7 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
}
block->acceleration = block->acceleration_st / steps_per_mm;
block->acceleration_rate = (long)((float)block->acceleration_st * 8.388608);
#if 0 // Use old jerk for now
// Compute path unit vector
double unit_vec[3];
@ -663,7 +705,7 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
unit_vec[X_AXIS] = delta_mm[X_AXIS]*inverse_millimeters;
unit_vec[Y_AXIS] = delta_mm[Y_AXIS]*inverse_millimeters;
unit_vec[Z_AXIS] = delta_mm[Z_AXIS]*inverse_millimeters;
// Compute maximum allowable entry speed at junction by centripetal acceleration approximation.
// Let a circle be tangent to both previous and current path line segments, where the junction
// deviation is defined as the distance from the junction to the closest edge of the circle,
@ -680,9 +722,9 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
// Compute cosine of angle between previous and current path. (prev_unit_vec is negative)
// NOTE: Max junction velocity is computed without sin() or acos() by trig half angle identity.
double cos_theta = - previous_unit_vec[X_AXIS] * unit_vec[X_AXIS]
- previous_unit_vec[Y_AXIS] * unit_vec[Y_AXIS]
- previous_unit_vec[Z_AXIS] * unit_vec[Z_AXIS] ;
- previous_unit_vec[Y_AXIS] * unit_vec[Y_AXIS]
- previous_unit_vec[Z_AXIS] * unit_vec[Z_AXIS] ;
// Skip and use default max junction speed for 0 degree acute junction.
if (cos_theta < 0.95) {
vmax_junction = min(previous_nominal_speed,block->nominal_speed);
@ -691,36 +733,39 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
// Compute maximum junction velocity based on maximum acceleration and junction deviation
double sin_theta_d2 = sqrt(0.5*(1.0-cos_theta)); // Trig half angle identity. Always positive.
vmax_junction = min(vmax_junction,
sqrt(block->acceleration * junction_deviation * sin_theta_d2/(1.0-sin_theta_d2)) );
sqrt(block->acceleration * junction_deviation * sin_theta_d2/(1.0-sin_theta_d2)) );
}
}
}
#endif
// Start with a safe speed
float vmax_junction = max_xy_jerk/2;
float vmax_junction = max_xy_jerk/2;
float vmax_junction_factor = 1.0;
if(fabs(current_speed[Z_AXIS]) > max_z_jerk/2)
vmax_junction = max_z_jerk/2;
vmax_junction = min(vmax_junction, block->nominal_speed);
vmax_junction = min(vmax_junction, max_z_jerk/2);
if(fabs(current_speed[E_AXIS]) > max_e_jerk/2)
vmax_junction = min(vmax_junction, max_e_jerk/2);
vmax_junction = min(vmax_junction, block->nominal_speed);
float safe_speed = vmax_junction;
if ((moves_queued > 1) && (previous_nominal_speed > 0.0001)) {
float jerk = sqrt(pow((current_speed[X_AXIS]-previous_speed[X_AXIS]), 2)+pow((current_speed[Y_AXIS]-previous_speed[Y_AXIS]), 2));
if((fabs(previous_speed[X_AXIS]) > 0.0001) || (fabs(previous_speed[Y_AXIS]) > 0.0001)) {
vmax_junction = block->nominal_speed;
}
// if((fabs(previous_speed[X_AXIS]) > 0.0001) || (fabs(previous_speed[Y_AXIS]) > 0.0001)) {
vmax_junction = block->nominal_speed;
// }
if (jerk > max_xy_jerk) {
vmax_junction *= (max_xy_jerk/jerk);
vmax_junction_factor = (max_xy_jerk/jerk);
}
if(fabs(current_speed[Z_AXIS] - previous_speed[Z_AXIS]) > max_z_jerk) {
vmax_junction *= (max_z_jerk/fabs(current_speed[Z_AXIS] - previous_speed[Z_AXIS]));
vmax_junction_factor= min(vmax_junction_factor, (max_z_jerk/fabs(current_speed[Z_AXIS] - previous_speed[Z_AXIS])));
}
if(fabs(current_speed[E_AXIS] - previous_speed[E_AXIS]) > max_e_jerk) {
vmax_junction *= (max_e_jerk/fabs(current_speed[E_AXIS] - previous_speed[E_AXIS]));
vmax_junction_factor = min(vmax_junction_factor, (max_e_jerk/fabs(current_speed[E_AXIS] - previous_speed[E_AXIS])));
}
vmax_junction = min(previous_nominal_speed, vmax_junction * vmax_junction_factor); // Limit speed to max previous speed
}
block->max_entry_speed = vmax_junction;
// Initialize block entry speed. Compute based on deceleration to user-defined MINIMUM_PLANNER_SPEED.
double v_allowable = max_allowable_speed(-block->acceleration,MINIMUM_PLANNER_SPEED,block->millimeters);
block->entry_speed = min(vmax_junction, v_allowable);
@ -733,48 +778,52 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
// block nominal speed limits both the current and next maximum junction speeds. Hence, in both
// the reverse and forward planners, the corresponding block junction speed will always be at the
// the maximum junction speed and may always be ignored for any speed reduction checks.
if (block->nominal_speed <= v_allowable) { block->nominal_length_flag = true; }
else { block->nominal_length_flag = false; }
if (block->nominal_speed <= v_allowable) {
block->nominal_length_flag = true;
}
else {
block->nominal_length_flag = false;
}
block->recalculate_flag = true; // Always calculate trapezoid for new block
// Update previous path unit_vector and nominal speed
memcpy(previous_speed, current_speed, sizeof(previous_speed)); // previous_speed[] = current_speed[]
previous_nominal_speed = block->nominal_speed;
#ifdef ADVANCE
// Calculate advance rate
if((block->steps_e == 0) || (block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0)) {
#ifdef ADVANCE
// Calculate advance rate
if((block->steps_e == 0) || (block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0)) {
block->advance_rate = 0;
block->advance = 0;
}
else {
long acc_dist = estimate_acceleration_distance(0, block->nominal_rate, block->acceleration_st);
float advance = (STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K) *
(current_speed[E_AXIS] * current_speed[E_AXIS] * EXTRUTION_AREA * EXTRUTION_AREA)*256;
block->advance = advance;
if(acc_dist == 0) {
block->advance_rate = 0;
block->advance = 0;
}
}
else {
long acc_dist = estimate_acceleration_distance(0, block->nominal_rate, block->acceleration_st);
float advance = (STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K) *
(current_speed[E_AXIS] * current_speed[E_AXIS] * EXTRUTION_AREA * EXTRUTION_AREA)*256;
block->advance = advance;
if(acc_dist == 0) {
block->advance_rate = 0;
}
else {
block->advance_rate = advance / (float)acc_dist;
}
block->advance_rate = advance / (float)acc_dist;
}
/*
}
/*
SERIAL_ECHO_START;
SERIAL_ECHOPGM("advance :");
SERIAL_ECHO(block->advance/256.0);
SERIAL_ECHOPGM("advance rate :");
SERIAL_ECHOLN(block->advance_rate/256.0);
*/
#endif // ADVANCE
SERIAL_ECHOPGM("advance :");
SERIAL_ECHO(block->advance/256.0);
SERIAL_ECHOPGM("advance rate :");
SERIAL_ECHOLN(block->advance_rate/256.0);
*/
#endif // ADVANCE
calculate_trapezoid_for_block(block, block->entry_speed/block->nominal_speed,
MINIMUM_PLANNER_SPEED/block->nominal_speed);
safe_speed/block->nominal_speed);
// Move buffer head
block_buffer_head = next_buffer_head;
// Update position
memcpy(position, target, sizeof(target)); // position[] = target[]
@ -805,12 +854,13 @@ void plan_set_e_position(const float &e)
uint8_t movesplanned()
{
return (block_buffer_head-block_buffer_tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1);
return (block_buffer_head-block_buffer_tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1);
}
void allow_cold_extrudes(bool allow)
{
#ifdef PREVENT_DANGEROUS_EXTRUDE
allow_cold_extrude=allow;
#endif
#ifdef PREVENT_DANGEROUS_EXTRUDE
allow_cold_extrude=allow;
#endif
}

4
Marlin/stepper.cpp

@ -261,12 +261,10 @@ FORCE_INLINE void trapezoid_generator_reset() {
#endif
deceleration_time = 0;
// step_rate to timer interval
OCR1A_nominal = calc_timer(current_block->nominal_rate);
acc_step_rate = current_block->initial_rate;
acceleration_time = calc_timer(acc_step_rate);
OCR1A = acceleration_time;
OCR1A_nominal = calc_timer(current_block->nominal_rate);
// SERIAL_ECHO_START;
// SERIAL_ECHOPGM("advance :");

4
Marlin/ultralcd.pde

@ -957,7 +957,7 @@ enum {
#if EXTRUDERS > 2
ItemCT_nozzle2,
#endif
#if defined BED_USES_THERMISTOR || BED_USES_AD595
#if defined BED_USES_THERMISTOR || defined BED_USES_AD595
ItemCT_bed,
#endif
ItemCT_fan,
@ -1212,7 +1212,7 @@ void MainMenu::showControlTemp()
}break;
#endif //autotemp
#if defined BED_USES_THERMISTOR || BED_USES_AD595
#if defined BED_USES_THERMISTOR || defined BED_USES_AD595
case ItemCT_bed:
{
if(force_lcd_update)

Loading…
Cancel
Save