Browse Source

Merge branch 'vanilla_fb_2.1.x' into FB4S_WIFI

Signed-off-by: Sergey Terentiev <sergey@terentiev.me>
FB4S_WIFI
Sergey Terentiev 2 years ago
parent
commit
a28b1700a2
No known key found for this signature in database GPG Key ID: AFAA57ACD15D1EB0
  1. 548
      Marlin/src/HAL/STM32/sdio.cpp

548
Marlin/src/HAL/STM32/sdio.cpp

@ -33,256 +33,410 @@
#include <stdint.h> #include <stdint.h>
#include <stdbool.h> #include <stdbool.h>
// use local drivers
#if defined(STM32F103xE) || defined(STM32F103xG) #if defined(STM32F103xE) || defined(STM32F103xG)
#include <stm32f1xx.h> #include <stm32f1xx_hal_rcc_ex.h>
#include <stm32f1xx_hal_sd.h>
#elif defined(STM32F4xx) #elif defined(STM32F4xx)
#include <stm32f4xx.h> #include <stm32f4xx_hal_rcc.h>
#include <stm32f4xx_hal_dma.h>
#include <stm32f4xx_hal_gpio.h>
#include <stm32f4xx_hal_sd.h>
#elif defined(STM32F7xx) #elif defined(STM32F7xx)
#include <stm32f7xx.h> #include <stm32f7xx_hal_rcc.h>
#include <stm32f7xx_hal_dma.h>
#include <stm32f7xx_hal_gpio.h>
#include <stm32f7xx_hal_sd.h>
#elif defined(STM32H7xx) #elif defined(STM32H7xx)
#include <stm32h7xx.h> #define SDIO_FOR_STM32H7
#include <stm32h7xx_hal_rcc.h>
#include <stm32h7xx_hal_dma.h>
#include <stm32h7xx_hal_gpio.h>
#include <stm32h7xx_hal_sd.h>
#else #else
#error "SDIO only supported with STM32F103xE, STM32F103xG, STM32F4xx, STM32F7xx, or STM32H7xx." #error "SDIO is only supported with STM32F103xE, STM32F103xG, STM32F4xx, STM32F7xx, and STM32H7xx."
#endif #endif
// SDIO Max Clock (naming from STM Manual, don't change)
#define SDIOCLK 48000000
// Target Clock, configurable. Default is 18MHz, from STM32F1 // Target Clock, configurable. Default is 18MHz, from STM32F1
#ifndef SDIO_CLOCK #ifndef SDIO_CLOCK
#define SDIO_CLOCK 18000000 // 18 MHz #define SDIO_CLOCK 18000000 // 18 MHz
#endif #endif
#define SD_TIMEOUT 1000 // ms SD_HandleTypeDef hsd; // SDIO structure
// SDIO Max Clock (naming from STM Manual, don't change) static uint32_t clock_to_divider(uint32_t clk) {
#define SDIOCLK 48000000 #ifdef SDIO_FOR_STM32H7
// SDMMC_CK frequency = sdmmc_ker_ck / [2 * CLKDIV].
uint32_t sdmmc_clk = HAL_RCCEx_GetPeriphCLKFreq(RCC_PERIPHCLK_SDMMC);
return sdmmc_clk / (2U * SDIO_CLOCK) + (sdmmc_clk % (2U * SDIO_CLOCK) != 0);
#else
// limit the SDIO master clock to 8/3 of PCLK2. See STM32 Manuals
// Also limited to no more than 48Mhz (SDIOCLK).
const uint32_t pclk2 = HAL_RCC_GetPCLK2Freq();
clk = min(clk, (uint32_t)(pclk2 * 8 / 3));
clk = min(clk, (uint32_t)SDIOCLK);
// Round up divider, so we don't run the card over the speed supported,
// and subtract by 2, because STM32 will add 2, as written in the manual:
// SDIO_CK frequency = SDIOCLK / [CLKDIV + 2]
return pclk2 / clk + (pclk2 % clk != 0) - 2;
#endif
}
#if defined(STM32F1xx) // Start the SDIO clock
DMA_HandleTypeDef hdma_sdio; void HAL_SD_MspInit(SD_HandleTypeDef *hsd) {
extern "C" void DMA2_Channel4_5_IRQHandler(void) { UNUSED(hsd);
HAL_DMA_IRQHandler(&hdma_sdio); #ifdef SDIO_FOR_STM32H7
} pinmap_pinout(PC_12, PinMap_SD);
#elif defined(STM32F4xx) pinmap_pinout(PD_2, PinMap_SD);
DMA_HandleTypeDef hdma_sdio_rx; pinmap_pinout(PC_8, PinMap_SD);
DMA_HandleTypeDef hdma_sdio_tx; #if PINS_EXIST(SDIO_D1, SDIO_D2, SDIO_D3) // Define D1-D3 only for 4-bit wide SDIO bus
extern "C" void DMA2_Stream3_IRQHandler(void) { pinmap_pinout(PC_9, PinMap_SD);
HAL_DMA_IRQHandler(&hdma_sdio_rx); pinmap_pinout(PC_10, PinMap_SD);
pinmap_pinout(PC_11, PinMap_SD);
#endif
__HAL_RCC_SDMMC1_CLK_ENABLE();
HAL_NVIC_EnableIRQ(SDMMC1_IRQn);
#else
__HAL_RCC_SDIO_CLK_ENABLE();
#endif
}
#ifdef SDIO_FOR_STM32H7
#define SD_TIMEOUT 1000 // ms
extern "C" void SDMMC1_IRQHandler(void) { HAL_SD_IRQHandler(&hsd); }
uint8_t waitingRxCplt = 0, waitingTxCplt = 0;
void HAL_SD_TxCpltCallback(SD_HandleTypeDef *hsdio) { waitingTxCplt = 0; }
void HAL_SD_RxCpltCallback(SD_HandleTypeDef *hsdio) { waitingRxCplt = 0; }
void HAL_SD_MspDeInit(SD_HandleTypeDef *hsd) {
__HAL_RCC_SDMMC1_FORCE_RESET(); delay(10);
__HAL_RCC_SDMMC1_RELEASE_RESET(); delay(10);
} }
extern "C" void DMA2_Stream6_IRQHandler(void) { bool SDIO_Init() {
HAL_DMA_IRQHandler(&hdma_sdio_tx); HAL_StatusTypeDef sd_state = HAL_OK;
if (hsd.Instance == SDMMC1) HAL_SD_DeInit(&hsd);
// HAL SD initialization
hsd.Instance = SDMMC1;
hsd.Init.ClockEdge = SDMMC_CLOCK_EDGE_RISING;
hsd.Init.ClockPowerSave = SDMMC_CLOCK_POWER_SAVE_DISABLE;
hsd.Init.BusWide = SDMMC_BUS_WIDE_1B;
hsd.Init.HardwareFlowControl = SDMMC_HARDWARE_FLOW_CONTROL_DISABLE;
hsd.Init.ClockDiv = clock_to_divider(SDIO_CLOCK);
sd_state = HAL_SD_Init(&hsd);
#if PINS_EXIST(SDIO_D1, SDIO_D2, SDIO_D3)
if (sd_state == HAL_OK)
sd_state = HAL_SD_ConfigWideBusOperation(&hsd, SDMMC_BUS_WIDE_4B);
#endif
return (sd_state == HAL_OK);
} }
#elif defined(STM32H7xx)
#define __HAL_RCC_SDIO_FORCE_RESET __HAL_RCC_SDMMC1_FORCE_RESET
#define __HAL_RCC_SDIO_RELEASE_RESET __HAL_RCC_SDMMC1_RELEASE_RESET
#define __HAL_RCC_SDIO_CLK_ENABLE __HAL_RCC_SDMMC1_CLK_ENABLE
#define SDIO SDMMC1
#define SDIO_IRQn SDMMC1_IRQn
#define SDIO_IRQHandler SDMMC1_IRQHandler
#define SDIO_CLOCK_EDGE_RISING SDMMC_CLOCK_EDGE_RISING
#define SDIO_CLOCK_POWER_SAVE_DISABLE SDMMC_CLOCK_POWER_SAVE_DISABLE
#define SDIO_BUS_WIDE_1B SDMMC_BUS_WIDE_1B
#define SDIO_BUS_WIDE_4B SDMMC_BUS_WIDE_4B
#define SDIO_HARDWARE_FLOW_CONTROL_DISABLE SDMMC_HARDWARE_FLOW_CONTROL_DISABLE
#endif
uint8_t waitingRxCplt = 0; #else // !SDIO_FOR_STM32H7
uint8_t waitingTxCplt = 0;
SD_HandleTypeDef hsd;
extern "C" void SDIO_IRQHandler(void) { #define SD_TIMEOUT 500 // ms
HAL_SD_IRQHandler(&hsd);
}
void HAL_SD_TxCpltCallback(SD_HandleTypeDef *hsdio) { // SDIO retries, configurable. Default is 3, from STM32F1
waitingTxCplt = 0; #ifndef SDIO_READ_RETRIES
} #define SDIO_READ_RETRIES 3
#endif
void HAL_SD_RxCpltCallback(SD_HandleTypeDef *hsdio) { // F4 supports one DMA for RX and another for TX, but Marlin will never
waitingRxCplt = 0; // do read and write at same time, so we use the same DMA for both.
} DMA_HandleTypeDef hdma_sdio;
void HAL_SD_MspInit(SD_HandleTypeDef *hsd) { #ifdef STM32F1xx
pinmap_pinout(PC_12, PinMap_SD); #define DMA_IRQ_HANDLER DMA2_Channel4_5_IRQHandler
pinmap_pinout(PD_2, PinMap_SD); #elif defined(STM32F4xx)
pinmap_pinout(PC_8, PinMap_SD); #define DMA_IRQ_HANDLER DMA2_Stream3_IRQHandler
#if PINS_EXIST(SDIO_D1, SDIO_D2, SDIO_D3) // define D1-D3 only if have a four bit wide SDIO bus #else
// D1-D3 #error "Unknown STM32 architecture."
pinmap_pinout(PC_9, PinMap_SD);
pinmap_pinout(PC_10, PinMap_SD);
pinmap_pinout(PC_11, PinMap_SD);
#endif #endif
__HAL_RCC_SDIO_CLK_ENABLE(); extern "C" void SDIO_IRQHandler(void) { HAL_SD_IRQHandler(&hsd); }
HAL_NVIC_EnableIRQ(SDIO_IRQn); extern "C" void DMA_IRQ_HANDLER(void) { HAL_DMA_IRQHandler(&hdma_sdio); }
/*
SDIO_INIT_CLK_DIV is 118
SDIO clock frequency is 48MHz / (TRANSFER_CLOCK_DIV + 2)
SDIO init clock frequency should not exceed 400kHz = 48MHz / (118 + 2)
Default TRANSFER_CLOCK_DIV is 2 (118 / 40)
Default SDIO clock frequency is 48MHz / (2 + 2) = 12 MHz
This might be too fast for stable SDIO operations
MKS Robin SDIO seems stable with BusWide 1bit and ClockDiv 8 (i.e., 4.8MHz SDIO clock frequency)
More testing is required as there are clearly some 4bit init problems.
*/
void go_to_transfer_speed() {
/* Default SDIO peripheral configuration for SD card initialization */
hsd.Init.ClockEdge = hsd.Init.ClockEdge;
hsd.Init.ClockBypass = hsd.Init.ClockBypass;
hsd.Init.ClockPowerSave = hsd.Init.ClockPowerSave;
hsd.Init.BusWide = hsd.Init.BusWide;
hsd.Init.HardwareFlowControl = hsd.Init.HardwareFlowControl;
hsd.Init.ClockDiv = clock_to_divider(SDIO_CLOCK);
/* Initialize SDIO peripheral interface with default configuration */
SDIO_Init(hsd.Instance, hsd.Init);
}
// DMA Config void SD_LowLevel_Init() {
#if defined(STM32F1xx) uint32_t tempreg;
__HAL_RCC_DMA2_CLK_ENABLE();
HAL_NVIC_EnableIRQ(DMA2_Channel4_5_IRQn); // Enable GPIO clocks
hdma_sdio.Instance = DMA2_Channel4; __HAL_RCC_GPIOC_CLK_ENABLE();
hdma_sdio.Init.Direction = DMA_PERIPH_TO_MEMORY; __HAL_RCC_GPIOD_CLK_ENABLE();
GPIO_InitTypeDef GPIO_InitStruct;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = 1; // GPIO_NOPULL
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
#if DISABLED(STM32F1xx)
GPIO_InitStruct.Alternate = GPIO_AF12_SDIO;
#endif
GPIO_InitStruct.Pin = GPIO_PIN_8 | GPIO_PIN_12; // D0 & SCK
HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
#if PINS_EXIST(SDIO_D1, SDIO_D2, SDIO_D3) // define D1-D3 only if have a four bit wide SDIO bus
GPIO_InitStruct.Pin = GPIO_PIN_9 | GPIO_PIN_10 | GPIO_PIN_11; // D1-D3
HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
#endif
// Configure PD.02 CMD line
GPIO_InitStruct.Pin = GPIO_PIN_2;
HAL_GPIO_Init(GPIOD, &GPIO_InitStruct);
// Setup DMA
#ifdef STM32F1xx
hdma_sdio.Init.Mode = DMA_NORMAL;
hdma_sdio.Instance = DMA2_Channel4;
HAL_NVIC_EnableIRQ(DMA2_Channel4_5_IRQn);
#elif defined(STM32F4xx)
hdma_sdio.Init.Mode = DMA_PFCTRL;
hdma_sdio.Instance = DMA2_Stream3;
hdma_sdio.Init.Channel = DMA_CHANNEL_4;
hdma_sdio.Init.FIFOMode = DMA_FIFOMODE_ENABLE;
hdma_sdio.Init.FIFOThreshold = DMA_FIFO_THRESHOLD_FULL;
hdma_sdio.Init.MemBurst = DMA_MBURST_INC4;
hdma_sdio.Init.PeriphBurst = DMA_PBURST_INC4;
HAL_NVIC_EnableIRQ(DMA2_Stream3_IRQn);
#endif
HAL_NVIC_EnableIRQ(SDIO_IRQn);
hdma_sdio.Init.PeriphInc = DMA_PINC_DISABLE; hdma_sdio.Init.PeriphInc = DMA_PINC_DISABLE;
hdma_sdio.Init.MemInc = DMA_MINC_ENABLE; hdma_sdio.Init.MemInc = DMA_MINC_ENABLE;
hdma_sdio.Init.PeriphDataAlignment = DMA_PDATAALIGN_WORD; hdma_sdio.Init.PeriphDataAlignment = DMA_PDATAALIGN_WORD;
hdma_sdio.Init.MemDataAlignment = DMA_MDATAALIGN_WORD; hdma_sdio.Init.MemDataAlignment = DMA_MDATAALIGN_WORD;
hdma_sdio.Init.Mode = DMA_NORMAL;
hdma_sdio.Init.Priority = DMA_PRIORITY_LOW; hdma_sdio.Init.Priority = DMA_PRIORITY_LOW;
HAL_DMA_Init(&hdma_sdio); __HAL_LINKDMA(&hsd, hdmarx, hdma_sdio);
__HAL_LINKDMA(&hsd, hdmatx, hdma_sdio);
#ifdef STM32F1xx
__HAL_RCC_SDIO_CLK_ENABLE();
__HAL_RCC_DMA2_CLK_ENABLE();
#else
__HAL_RCC_SDIO_FORCE_RESET(); delay(2);
__HAL_RCC_SDIO_RELEASE_RESET(); delay(2);
__HAL_RCC_SDIO_CLK_ENABLE();
__HAL_RCC_DMA2_FORCE_RESET(); delay(2);
__HAL_RCC_DMA2_RELEASE_RESET(); delay(2);
__HAL_RCC_DMA2_CLK_ENABLE();
#endif
// Initialize the SDIO (with initial <400Khz Clock)
tempreg = 0 // Reset value
| SDIO_CLKCR_CLKEN // Clock enabled
| SDIO_INIT_CLK_DIV; // Clock Divider. Clock = 48000 / (118 + 2) = 400Khz
// Keep the rest at 0 => HW_Flow Disabled, Rising Clock Edge, Disable CLK ByPass, Bus Width = 0, Power save Disable
SDIO->CLKCR = tempreg;
// Power up the SDIO
SDIO_PowerState_ON(SDIO);
hsd.Instance = SDIO;
}
__HAL_LINKDMA(hsd, hdmarx ,hdma_sdio); bool SDIO_Init() {
__HAL_LINKDMA(hsd, hdmatx, hdma_sdio); uint8_t retryCnt = SDIO_READ_RETRIES;
#elif defined(STM32F4xx)
__HAL_RCC_DMA2_CLK_ENABLE();
HAL_NVIC_EnableIRQ(DMA2_Stream3_IRQn);
HAL_NVIC_EnableIRQ(DMA2_Stream6_IRQn);
hdma_sdio_rx.Instance = DMA2_Stream3;
hdma_sdio_rx.Init.Channel = DMA_CHANNEL_4;
hdma_sdio_rx.Init.Direction = DMA_PERIPH_TO_MEMORY;
hdma_sdio_rx.Init.PeriphInc = DMA_PINC_DISABLE;
hdma_sdio_rx.Init.MemInc = DMA_MINC_ENABLE;
hdma_sdio_rx.Init.PeriphDataAlignment = DMA_PDATAALIGN_WORD;
hdma_sdio_rx.Init.MemDataAlignment = DMA_MDATAALIGN_WORD;
hdma_sdio_rx.Init.Mode = DMA_PFCTRL;
hdma_sdio_rx.Init.Priority = DMA_PRIORITY_LOW;
hdma_sdio_rx.Init.FIFOMode = DMA_FIFOMODE_ENABLE;
hdma_sdio_rx.Init.FIFOThreshold = DMA_FIFO_THRESHOLD_FULL;
hdma_sdio_rx.Init.MemBurst = DMA_MBURST_INC4;
hdma_sdio_rx.Init.PeriphBurst = DMA_PBURST_INC4;
HAL_DMA_Init(&hdma_sdio_rx);
__HAL_LINKDMA(hsd,hdmarx,hdma_sdio_rx);
hdma_sdio_tx.Instance = DMA2_Stream6;
hdma_sdio_tx.Init.Channel = DMA_CHANNEL_4;
hdma_sdio_tx.Init.Direction = DMA_MEMORY_TO_PERIPH;
hdma_sdio_tx.Init.PeriphInc = DMA_PINC_DISABLE;
hdma_sdio_tx.Init.MemInc = DMA_MINC_ENABLE;
hdma_sdio_tx.Init.PeriphDataAlignment = DMA_PDATAALIGN_WORD;
hdma_sdio_tx.Init.MemDataAlignment = DMA_MDATAALIGN_WORD;
hdma_sdio_tx.Init.Mode = DMA_PFCTRL;
hdma_sdio_tx.Init.Priority = DMA_PRIORITY_LOW;
hdma_sdio_tx.Init.FIFOMode = DMA_FIFOMODE_ENABLE;
hdma_sdio_tx.Init.FIFOThreshold = DMA_FIFO_THRESHOLD_FULL;
hdma_sdio_tx.Init.MemBurst = DMA_MBURST_INC4;
hdma_sdio_tx.Init.PeriphBurst = DMA_PBURST_INC4;
HAL_DMA_Init(&hdma_sdio_tx);
__HAL_LINKDMA(hsd,hdmatx,hdma_sdio_tx);
#endif
}
void HAL_SD_MspDeInit(SD_HandleTypeDef *hsd) { bool status;
#if !defined(STM32F1xx) hsd.Instance = SDIO;
__HAL_RCC_SDIO_FORCE_RESET(); hsd.State = HAL_SD_STATE_RESET;
delay(10);
__HAL_RCC_SDIO_RELEASE_RESET();
delay(10);
#endif
}
static uint32_t clock_to_divider(uint32_t clk) { SD_LowLevel_Init();
#if defined(STM32H7xx)
// SDMMC_CK frequency = sdmmc_ker_ck / [2 * CLKDIV].
uint32_t sdmmc_clk = HAL_RCCEx_GetPeriphCLKFreq(RCC_PERIPHCLK_SDMMC);
return sdmmc_clk / (2U * SDIO_CLOCK) + (sdmmc_clk % (2U * SDIO_CLOCK) != 0);
#else
// limit the SDIO master clock to 8/3 of PCLK2. See STM32 Manuals
// Also limited to no more than 48Mhz (SDIOCLK).
const uint32_t pclk2 = HAL_RCC_GetPCLK2Freq();
clk = min(clk, (uint32_t)(pclk2 * 8 / 3));
clk = min(clk, (uint32_t)SDIOCLK);
// Round up divider, so we don't run the card over the speed supported,
// and subtract by 2, because STM32 will add 2, as written in the manual:
// SDIO_CK frequency = SDIOCLK / [CLKDIV + 2]
return pclk2 / clk + (pclk2 % clk != 0) - 2;
#endif
}
bool SDIO_Init() { uint8_t retry_Cnt = retryCnt;
HAL_StatusTypeDef sd_state = HAL_OK; for (;;) {
if (hsd.Instance == SDIO) hal.watchdog_refresh();
HAL_SD_DeInit(&hsd); status = (bool) HAL_SD_Init(&hsd);
if (!status) break;
/* HAL SD initialization */ if (!--retry_Cnt) return false; // return failing status if retries are exhausted
hsd.Instance = SDIO; }
hsd.Init.ClockEdge = SDIO_CLOCK_EDGE_RISING;
hsd.Init.ClockPowerSave = SDIO_CLOCK_POWER_SAVE_DISABLE; go_to_transfer_speed();
hsd.Init.BusWide = SDIO_BUS_WIDE_1B;
hsd.Init.HardwareFlowControl = SDIO_HARDWARE_FLOW_CONTROL_DISABLE; #if PINS_EXIST(SDIO_D1, SDIO_D2, SDIO_D3) // go to 4 bit wide mode if pins are defined
hsd.Init.ClockDiv = clock_to_divider(SDIO_CLOCK); retry_Cnt = retryCnt;
sd_state = HAL_SD_Init(&hsd); for (;;) {
hal.watchdog_refresh();
#if PINS_EXIST(SDIO_D1, SDIO_D2, SDIO_D3) if (!HAL_SD_ConfigWideBusOperation(&hsd, SDIO_BUS_WIDE_4B)) break; // some cards are only 1 bit wide so a pass here is not required
if (sd_state == HAL_OK) { if (!--retry_Cnt) break;
//sd_state = HAL_SD_ConfigWideBusOperation(&hsd, SDIO_BUS_WIDE_4B); }
//Fix 4b sdio if (!retry_Cnt) { // wide bus failed, go back to one bit wide mode
SDIO_InitTypeDef Init; hsd.State = (HAL_SD_StateTypeDef) 0; // HAL_SD_STATE_RESET
uint32_t errorstate; SD_LowLevel_Init();
retry_Cnt = retryCnt;
/* Send CMD55 APP_CMD with argument as card's RCA.*/ for (;;) {
errorstate = SDMMC_CmdAppCommand(hsd.Instance, (uint32_t)(hsd.SdCard.RelCardAdd << 16U)); hal.watchdog_refresh();
if(errorstate != HAL_SD_ERROR_NONE) status = (bool) HAL_SD_Init(&hsd);
{ if (!status) break;
return false; if (!--retry_Cnt) return false; // return failing status if retries are exhausted
}
go_to_transfer_speed();
} }
#endif
/* Send ACMD6 APP_CMD with argument as 2 for wide bus mode */ return true;
errorstate = SDMMC_CmdBusWidth(hsd.Instance, 2U); }
if(errorstate != HAL_SD_ERROR_NONE)
{ /**
* @brief Read or Write a block
* @details Read or Write a block with SDIO
*
* @param block The block index
* @param src The data buffer source for a write
* @param dst The data buffer destination for a read
*
* @return true on success
*/
static bool SDIO_ReadWriteBlock_DMA(uint32_t block, const uint8_t *src, uint8_t *dst) {
if (HAL_SD_GetCardState(&hsd) != HAL_SD_CARD_TRANSFER) return false;
hal.watchdog_refresh();
HAL_StatusTypeDef ret;
if (src) {
hdma_sdio.Init.Direction = DMA_MEMORY_TO_PERIPH;
HAL_DMA_Init(&hdma_sdio);
ret = HAL_SD_WriteBlocks_DMA(&hsd, (uint8_t*)src, block, 1);
}
else {
hdma_sdio.Init.Direction = DMA_PERIPH_TO_MEMORY;
HAL_DMA_Init(&hdma_sdio);
ret = HAL_SD_ReadBlocks_DMA(&hsd, (uint8_t*)dst, block, 1);
}
if (ret != HAL_OK) {
HAL_DMA_Abort_IT(&hdma_sdio);
HAL_DMA_DeInit(&hdma_sdio);
return false;
}
millis_t timeout = millis() + SD_TIMEOUT;
// Wait the transfer
while (hsd.State != HAL_SD_STATE_READY) {
if (ELAPSED(millis(), timeout)) {
HAL_DMA_Abort_IT(&hdma_sdio);
HAL_DMA_DeInit(&hdma_sdio);
return false; return false;
} }
}
/* Configure the SDIO peripheral */ while (__HAL_DMA_GET_FLAG(&hdma_sdio, __HAL_DMA_GET_TC_FLAG_INDEX(&hdma_sdio)) != 0
Init.ClockEdge = hsd.Init.ClockEdge; || __HAL_DMA_GET_FLAG(&hdma_sdio, __HAL_DMA_GET_TE_FLAG_INDEX(&hdma_sdio)) != 0) { /* nada */ }
Init.ClockBypass = hsd.Init.ClockBypass;
Init.ClockPowerSave = hsd.Init.ClockPowerSave;
Init.BusWide = SDIO_BUS_WIDE_4B;
Init.HardwareFlowControl = hsd.Init.HardwareFlowControl;
Init.ClockDiv = hsd.Init.ClockDiv;
(void)SDIO_Init(hsd.Instance, Init);
/* Change State */
hsd.State = HAL_SD_STATE_READY;
}
#endif
return (sd_state == HAL_OK) ? true : false; HAL_DMA_Abort_IT(&hdma_sdio);
} HAL_DMA_DeInit(&hdma_sdio);
bool SDIO_ReadBlock(uint32_t block, uint8_t *dst) { timeout = millis() + SD_TIMEOUT;
uint32_t timeout = HAL_GetTick() + SD_TIMEOUT; while (HAL_SD_GetCardState(&hsd) != HAL_SD_CARD_TRANSFER) if (ELAPSED(millis(), timeout)) return false;
while (HAL_SD_GetCardState(&hsd) != HAL_SD_CARD_TRANSFER) { return true;
if (HAL_GetTick() >= timeout) return false;
} }
waitingRxCplt = 1; #endif // !SDIO_FOR_STM32H7
if (HAL_SD_ReadBlocks_DMA(&hsd, (uint8_t *)dst, block, 1) != HAL_OK)
return false;
timeout = HAL_GetTick() + SD_TIMEOUT; /**
while (waitingRxCplt) * @brief Read a block
if (HAL_GetTick() >= timeout) return false; * @details Read a block to media with SDIO
*
* @param block The block index
* @param src The block buffer
*
* @return true on success
*/
bool SDIO_ReadBlock(uint32_t block, uint8_t *dst) {
#ifdef SDIO_FOR_STM32H7
uint32_t timeout = HAL_GetTick() + SD_TIMEOUT;
while (HAL_SD_GetCardState(&hsd) != HAL_SD_CARD_TRANSFER)
if (HAL_GetTick() >= timeout) return false;
waitingRxCplt = 1;
if (HAL_SD_ReadBlocks_DMA(&hsd, (uint8_t*)dst, block, 1) != HAL_OK)
return false;
timeout = HAL_GetTick() + SD_TIMEOUT;
while (waitingRxCplt)
if (HAL_GetTick() >= timeout) return false;
return true; return true;
#else
uint8_t retries = SDIO_READ_RETRIES;
while (retries--) if (SDIO_ReadWriteBlock_DMA(block, nullptr, dst)) return true;
return false;
#endif
} }
/**
* @brief Write a block
* @details Write a block to media with SDIO
*
* @param block The block index
* @param src The block data
*
* @return true on success
*/
bool SDIO_WriteBlock(uint32_t block, const uint8_t *src) { bool SDIO_WriteBlock(uint32_t block, const uint8_t *src) {
uint32_t timeout = HAL_GetTick() + SD_TIMEOUT; #ifdef SDIO_FOR_STM32H7
while (HAL_SD_GetCardState(&hsd) != HAL_SD_CARD_TRANSFER) uint32_t timeout = HAL_GetTick() + SD_TIMEOUT;
if (HAL_GetTick() >= timeout) return false;
waitingTxCplt = 1; while (HAL_SD_GetCardState(&hsd) != HAL_SD_CARD_TRANSFER)
if (HAL_SD_WriteBlocks_DMA(&hsd, (uint8_t *)src, block, 1) != HAL_OK) if (HAL_GetTick() >= timeout) return false;
return false;
waitingTxCplt = 1;
if (HAL_SD_WriteBlocks_DMA(&hsd, (uint8_t*)src, block, 1) != HAL_OK)
return false;
timeout = HAL_GetTick() + SD_TIMEOUT; timeout = HAL_GetTick() + SD_TIMEOUT;
while (waitingTxCplt) while (waitingTxCplt)
if (HAL_GetTick() >= timeout) return false; if (HAL_GetTick() >= timeout) return false;
return true; return true;
#else
uint8_t retries = SDIO_READ_RETRIES;
while (retries--) if (SDIO_ReadWriteBlock_DMA(block, src, nullptr)) return true;
return false;
#endif
} }
bool SDIO_IsReady() { bool SDIO_IsReady() {

Loading…
Cancel
Save