|
|
@ -1688,7 +1688,8 @@ static void setup_for_endstop_move() { |
|
|
|
if (a < b) { |
|
|
|
if (b < c) median = b; |
|
|
|
if (c < a) median = a; |
|
|
|
} else { // b <= a
|
|
|
|
} |
|
|
|
else { // b <= a
|
|
|
|
if (c < b) median = b; |
|
|
|
if (a < c) median = a; |
|
|
|
} |
|
|
@ -1783,7 +1784,8 @@ static void setup_for_endstop_move() { |
|
|
|
#endif |
|
|
|
do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET + offset - 1); // Dock sled a bit closer to ensure proper capturing
|
|
|
|
digitalWrite(SLED_PIN, LOW); // turn off magnet
|
|
|
|
} else { |
|
|
|
} |
|
|
|
else { |
|
|
|
float z_loc = current_position[Z_AXIS]; |
|
|
|
if (z_loc < Z_RAISE_BEFORE_PROBING + 5) z_loc = Z_RAISE_BEFORE_PROBING; |
|
|
|
do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, current_position[Y_AXIS], z_loc); // this also updates current_position
|
|
|
@ -2696,7 +2698,8 @@ inline void gcode_G28() { |
|
|
|
SERIAL_PROTOCOLPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").\n"); |
|
|
|
return; |
|
|
|
} |
|
|
|
} else { |
|
|
|
} |
|
|
|
else { |
|
|
|
SERIAL_PROTOCOLPGM("X not entered.\n"); |
|
|
|
return; |
|
|
|
} |
|
|
@ -2706,7 +2709,8 @@ inline void gcode_G28() { |
|
|
|
SERIAL_PROTOCOLPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").\n"); |
|
|
|
return; |
|
|
|
} |
|
|
|
} else { |
|
|
|
} |
|
|
|
else { |
|
|
|
SERIAL_PROTOCOLPGM("Y not entered.\n"); |
|
|
|
return; |
|
|
|
} |
|
|
@ -6381,25 +6385,29 @@ void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_ |
|
|
|
ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist; |
|
|
|
ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist; |
|
|
|
x_splits ^= BIT(ix); |
|
|
|
} else if (ix < pix && (x_splits) & BIT(pix)) { |
|
|
|
} |
|
|
|
else if (ix < pix && (x_splits) & BIT(pix)) { |
|
|
|
nx = mbl.get_x(pix); |
|
|
|
normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]); |
|
|
|
ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist; |
|
|
|
ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist; |
|
|
|
x_splits ^= BIT(pix); |
|
|
|
} else if (iy > piy && (y_splits) & BIT(iy)) { |
|
|
|
} |
|
|
|
else if (iy > piy && (y_splits) & BIT(iy)) { |
|
|
|
ny = mbl.get_y(iy); |
|
|
|
normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]); |
|
|
|
nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist; |
|
|
|
ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist; |
|
|
|
y_splits ^= BIT(iy); |
|
|
|
} else if (iy < piy && (y_splits) & BIT(piy)) { |
|
|
|
} |
|
|
|
else if (iy < piy && (y_splits) & BIT(piy)) { |
|
|
|
ny = mbl.get_y(piy); |
|
|
|
normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]); |
|
|
|
nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist; |
|
|
|
ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist; |
|
|
|
y_splits ^= BIT(piy); |
|
|
|
} else { |
|
|
|
} |
|
|
|
else { |
|
|
|
// Already split on a border
|
|
|
|
plan_buffer_line(x, y, z, e, feed_rate, extruder); |
|
|
|
set_current_to_destination(); |
|
|
|