|
@ -41,6 +41,10 @@ |
|
|
|
|
|
|
|
|
#define SERVO_LEVELING defined(ENABLE_AUTO_BED_LEVELING) && PROBE_SERVO_DEACTIVATION_DELAY > 0 |
|
|
#define SERVO_LEVELING defined(ENABLE_AUTO_BED_LEVELING) && PROBE_SERVO_DEACTIVATION_DELAY > 0 |
|
|
|
|
|
|
|
|
|
|
|
#if defined(MESH_BED_LEVELING) |
|
|
|
|
|
#include "mesh_bed_leveling.h" |
|
|
|
|
|
#endif // MESH_BED_LEVELING
|
|
|
|
|
|
|
|
|
#include "ultralcd.h" |
|
|
#include "ultralcd.h" |
|
|
#include "planner.h" |
|
|
#include "planner.h" |
|
|
#include "stepper.h" |
|
|
#include "stepper.h" |
|
@ -1737,6 +1741,11 @@ inline void gcode_G28() { |
|
|
#endif |
|
|
#endif |
|
|
#endif |
|
|
#endif |
|
|
|
|
|
|
|
|
|
|
|
#if defined(MESH_BED_LEVELING) |
|
|
|
|
|
uint8_t mbl_was_active = mbl.active; |
|
|
|
|
|
mbl.active = 0; |
|
|
|
|
|
#endif // MESH_BED_LEVELING
|
|
|
|
|
|
|
|
|
saved_feedrate = feedrate; |
|
|
saved_feedrate = feedrate; |
|
|
saved_feedmultiply = feedmultiply; |
|
|
saved_feedmultiply = feedmultiply; |
|
|
feedmultiply = 100; |
|
|
feedmultiply = 100; |
|
@ -1951,12 +1960,112 @@ inline void gcode_G28() { |
|
|
enable_endstops(false); |
|
|
enable_endstops(false); |
|
|
#endif |
|
|
#endif |
|
|
|
|
|
|
|
|
|
|
|
#if defined(MESH_BED_LEVELING) |
|
|
|
|
|
if (mbl_was_active) { |
|
|
|
|
|
current_position[X_AXIS] = mbl.get_x(0); |
|
|
|
|
|
current_position[Y_AXIS] = mbl.get_y(0); |
|
|
|
|
|
destination[X_AXIS] = current_position[X_AXIS]; |
|
|
|
|
|
destination[Y_AXIS] = current_position[Y_AXIS]; |
|
|
|
|
|
destination[Z_AXIS] = current_position[Z_AXIS]; |
|
|
|
|
|
destination[E_AXIS] = current_position[E_AXIS]; |
|
|
|
|
|
feedrate = homing_feedrate[X_AXIS]; |
|
|
|
|
|
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder); |
|
|
|
|
|
st_synchronize(); |
|
|
|
|
|
current_position[Z_AXIS] = MESH_HOME_SEARCH_Z; |
|
|
|
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); |
|
|
|
|
|
mbl.active = 1; |
|
|
|
|
|
} |
|
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
feedrate = saved_feedrate; |
|
|
feedrate = saved_feedrate; |
|
|
feedmultiply = saved_feedmultiply; |
|
|
feedmultiply = saved_feedmultiply; |
|
|
previous_millis_cmd = millis(); |
|
|
previous_millis_cmd = millis(); |
|
|
endstops_hit_on_purpose(); |
|
|
endstops_hit_on_purpose(); |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
#if defined(MESH_BED_LEVELING) |
|
|
|
|
|
|
|
|
|
|
|
inline void gcode_G29() { |
|
|
|
|
|
static int probe_point = -1; |
|
|
|
|
|
int state = 0; |
|
|
|
|
|
if (code_seen('S') || code_seen('s')) { |
|
|
|
|
|
state = code_value_long(); |
|
|
|
|
|
if (state < 0 || state > 2) { |
|
|
|
|
|
SERIAL_PROTOCOLPGM("S out of range (0-2).\n"); |
|
|
|
|
|
return; |
|
|
|
|
|
} |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
if (state == 0) { // Dump mesh_bed_leveling
|
|
|
|
|
|
if (mbl.active) { |
|
|
|
|
|
SERIAL_PROTOCOLPGM("Num X,Y: "); |
|
|
|
|
|
SERIAL_PROTOCOL(MESH_NUM_X_POINTS); |
|
|
|
|
|
SERIAL_PROTOCOLPGM(","); |
|
|
|
|
|
SERIAL_PROTOCOL(MESH_NUM_Y_POINTS); |
|
|
|
|
|
SERIAL_PROTOCOLPGM("\nZ search height: "); |
|
|
|
|
|
SERIAL_PROTOCOL(MESH_HOME_SEARCH_Z); |
|
|
|
|
|
SERIAL_PROTOCOLPGM("\nMeasured points:\n"); |
|
|
|
|
|
for (int y=0; y<MESH_NUM_Y_POINTS; y++) { |
|
|
|
|
|
for (int x=0; x<MESH_NUM_X_POINTS; x++) { |
|
|
|
|
|
SERIAL_PROTOCOLPGM(" "); |
|
|
|
|
|
SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5); |
|
|
|
|
|
} |
|
|
|
|
|
SERIAL_EOL; |
|
|
|
|
|
} |
|
|
|
|
|
} else { |
|
|
|
|
|
SERIAL_PROTOCOLPGM("Mesh bed leveling not active.\n"); |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
} else if (state == 1) { // Begin probing mesh points
|
|
|
|
|
|
|
|
|
|
|
|
mbl.reset(); |
|
|
|
|
|
probe_point = 0; |
|
|
|
|
|
enquecommands_P(PSTR("G28")); |
|
|
|
|
|
enquecommands_P(PSTR("G29 S2")); |
|
|
|
|
|
|
|
|
|
|
|
} else if (state == 2) { // Goto next point
|
|
|
|
|
|
|
|
|
|
|
|
if (probe_point < 0) { |
|
|
|
|
|
SERIAL_PROTOCOLPGM("Mesh probing not started.\n"); |
|
|
|
|
|
return; |
|
|
|
|
|
} |
|
|
|
|
|
int ix, iy; |
|
|
|
|
|
if (probe_point == 0) { |
|
|
|
|
|
current_position[Z_AXIS] = MESH_HOME_SEARCH_Z; |
|
|
|
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); |
|
|
|
|
|
} else { |
|
|
|
|
|
ix = (probe_point-1) % MESH_NUM_X_POINTS; |
|
|
|
|
|
iy = (probe_point-1) / MESH_NUM_X_POINTS; |
|
|
|
|
|
if (iy&1) { // Zig zag
|
|
|
|
|
|
ix = (MESH_NUM_X_POINTS - 1) - ix; |
|
|
|
|
|
} |
|
|
|
|
|
mbl.set_z(ix, iy, current_position[Z_AXIS]); |
|
|
|
|
|
current_position[Z_AXIS] = MESH_HOME_SEARCH_Z; |
|
|
|
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder); |
|
|
|
|
|
st_synchronize(); |
|
|
|
|
|
} |
|
|
|
|
|
if (probe_point == MESH_NUM_X_POINTS*MESH_NUM_Y_POINTS) { |
|
|
|
|
|
SERIAL_PROTOCOLPGM("Mesh done.\n"); |
|
|
|
|
|
probe_point = -1; |
|
|
|
|
|
mbl.active = 1; |
|
|
|
|
|
enquecommands_P(PSTR("G28")); |
|
|
|
|
|
return; |
|
|
|
|
|
} |
|
|
|
|
|
ix = probe_point % MESH_NUM_X_POINTS; |
|
|
|
|
|
iy = probe_point / MESH_NUM_X_POINTS; |
|
|
|
|
|
if (iy&1) { // Zig zag
|
|
|
|
|
|
ix = (MESH_NUM_X_POINTS - 1) - ix; |
|
|
|
|
|
} |
|
|
|
|
|
current_position[X_AXIS] = mbl.get_x(ix); |
|
|
|
|
|
current_position[Y_AXIS] = mbl.get_y(iy); |
|
|
|
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder); |
|
|
|
|
|
st_synchronize(); |
|
|
|
|
|
probe_point++; |
|
|
|
|
|
} |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
#ifdef ENABLE_AUTO_BED_LEVELING |
|
|
#ifdef ENABLE_AUTO_BED_LEVELING |
|
|
|
|
|
|
|
|
// Define the possible boundaries for probing based on set limits
|
|
|
// Define the possible boundaries for probing based on set limits
|
|
@ -4661,6 +4770,12 @@ void process_commands() { |
|
|
gcode_G28(); |
|
|
gcode_G28(); |
|
|
break; |
|
|
break; |
|
|
|
|
|
|
|
|
|
|
|
#if defined(MESH_BED_LEVELING) |
|
|
|
|
|
case 29: // G29 Handle mesh based leveling
|
|
|
|
|
|
gcode_G29(); |
|
|
|
|
|
break; |
|
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
#ifdef ENABLE_AUTO_BED_LEVELING |
|
|
#ifdef ENABLE_AUTO_BED_LEVELING |
|
|
|
|
|
|
|
|
case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
|
|
|
case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
|
|
@ -5280,6 +5395,81 @@ void prepare_move_raw() |
|
|
} |
|
|
} |
|
|
#endif //DELTA
|
|
|
#endif //DELTA
|
|
|
|
|
|
|
|
|
|
|
|
#if defined(MESH_BED_LEVELING) |
|
|
|
|
|
#if !defined(MIN) |
|
|
|
|
|
#define MIN(_v1, _v2) (((_v1) < (_v2)) ? (_v1) : (_v2)) |
|
|
|
|
|
#endif // ! MIN
|
|
|
|
|
|
// This function is used to split lines on mesh borders so each segment is only part of one mesh area
|
|
|
|
|
|
void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t &extruder, uint8_t x_splits=0xff, uint8_t y_splits=0xff) |
|
|
|
|
|
{ |
|
|
|
|
|
if (!mbl.active) { |
|
|
|
|
|
plan_buffer_line(x, y, z, e, feed_rate, extruder); |
|
|
|
|
|
for(int8_t i=0; i < NUM_AXIS; i++) { |
|
|
|
|
|
current_position[i] = destination[i]; |
|
|
|
|
|
} |
|
|
|
|
|
return; |
|
|
|
|
|
} |
|
|
|
|
|
int pix = mbl.select_x_index(current_position[X_AXIS]); |
|
|
|
|
|
int piy = mbl.select_y_index(current_position[Y_AXIS]); |
|
|
|
|
|
int ix = mbl.select_x_index(x); |
|
|
|
|
|
int iy = mbl.select_y_index(y); |
|
|
|
|
|
pix = MIN(pix, MESH_NUM_X_POINTS-2); |
|
|
|
|
|
piy = MIN(piy, MESH_NUM_Y_POINTS-2); |
|
|
|
|
|
ix = MIN(ix, MESH_NUM_X_POINTS-2); |
|
|
|
|
|
iy = MIN(iy, MESH_NUM_Y_POINTS-2); |
|
|
|
|
|
if (pix == ix && piy == iy) { |
|
|
|
|
|
// Start and end on same mesh square
|
|
|
|
|
|
plan_buffer_line(x, y, z, e, feed_rate, extruder); |
|
|
|
|
|
for(int8_t i=0; i < NUM_AXIS; i++) { |
|
|
|
|
|
current_position[i] = destination[i]; |
|
|
|
|
|
} |
|
|
|
|
|
return; |
|
|
|
|
|
} |
|
|
|
|
|
float nx, ny, ne, normalized_dist; |
|
|
|
|
|
if (ix > pix && (x_splits) & BIT(ix)) { |
|
|
|
|
|
nx = mbl.get_x(ix); |
|
|
|
|
|
normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]); |
|
|
|
|
|
ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist; |
|
|
|
|
|
ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist; |
|
|
|
|
|
x_splits ^= BIT(ix); |
|
|
|
|
|
} else if (ix < pix && (x_splits) & BIT(pix)) { |
|
|
|
|
|
nx = mbl.get_x(pix); |
|
|
|
|
|
normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]); |
|
|
|
|
|
ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist; |
|
|
|
|
|
ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist; |
|
|
|
|
|
x_splits ^= BIT(pix); |
|
|
|
|
|
} else if (iy > piy && (y_splits) & BIT(iy)) { |
|
|
|
|
|
ny = mbl.get_y(iy); |
|
|
|
|
|
normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]); |
|
|
|
|
|
nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist; |
|
|
|
|
|
ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist; |
|
|
|
|
|
y_splits ^= BIT(iy); |
|
|
|
|
|
} else if (iy < piy && (y_splits) & BIT(piy)) { |
|
|
|
|
|
ny = mbl.get_y(piy); |
|
|
|
|
|
normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]); |
|
|
|
|
|
nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist; |
|
|
|
|
|
ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist; |
|
|
|
|
|
y_splits ^= BIT(piy); |
|
|
|
|
|
} else { |
|
|
|
|
|
// Already split on a border
|
|
|
|
|
|
plan_buffer_line(x, y, z, e, feed_rate, extruder); |
|
|
|
|
|
for(int8_t i=0; i < NUM_AXIS; i++) { |
|
|
|
|
|
current_position[i] = destination[i]; |
|
|
|
|
|
} |
|
|
|
|
|
return; |
|
|
|
|
|
} |
|
|
|
|
|
// Do the split and look for more borders
|
|
|
|
|
|
destination[X_AXIS] = nx; |
|
|
|
|
|
destination[Y_AXIS] = ny; |
|
|
|
|
|
destination[E_AXIS] = ne; |
|
|
|
|
|
mesh_plan_buffer_line(nx, ny, z, ne, feed_rate, extruder, x_splits, y_splits); |
|
|
|
|
|
destination[X_AXIS] = x; |
|
|
|
|
|
destination[Y_AXIS] = y; |
|
|
|
|
|
destination[E_AXIS] = e; |
|
|
|
|
|
mesh_plan_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits); |
|
|
|
|
|
} |
|
|
|
|
|
#endif // MESH_BED_LEVELING
|
|
|
|
|
|
|
|
|
void prepare_move() |
|
|
void prepare_move() |
|
|
{ |
|
|
{ |
|
|
clamp_to_software_endstops(destination); |
|
|
clamp_to_software_endstops(destination); |
|
@ -5396,9 +5586,13 @@ for (int s = 1; s <= steps; s++) { |
|
|
// Do not use feedmultiply for E or Z only moves
|
|
|
// Do not use feedmultiply for E or Z only moves
|
|
|
if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) { |
|
|
if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) { |
|
|
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); |
|
|
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); |
|
|
} |
|
|
} else { |
|
|
else { |
|
|
#if defined(MESH_BED_LEVELING) |
|
|
|
|
|
mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder); |
|
|
|
|
|
return; |
|
|
|
|
|
#else |
|
|
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder); |
|
|
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder); |
|
|
|
|
|
#endif // MESH_BED_LEVELING
|
|
|
} |
|
|
} |
|
|
#endif // !(DELTA || SCARA)
|
|
|
#endif // !(DELTA || SCARA)
|
|
|
|
|
|
|
|
|