|
@ -75,6 +75,10 @@ |
|
|
//============================= public variables ============================
|
|
|
//============================= public variables ============================
|
|
|
//===========================================================================
|
|
|
//===========================================================================
|
|
|
|
|
|
|
|
|
|
|
|
#ifdef K1 // Defined in Configuration.h in the PID settings
|
|
|
|
|
|
#define K2 (1.0-K1) |
|
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
// Sampling period of the temperature routine
|
|
|
// Sampling period of the temperature routine
|
|
|
#ifdef PID_dT |
|
|
#ifdef PID_dT |
|
|
#undef PID_dT |
|
|
#undef PID_dT |
|
@ -127,8 +131,6 @@ static volatile bool temp_meas_ready = false; |
|
|
static float pid_error[EXTRUDERS]; |
|
|
static float pid_error[EXTRUDERS]; |
|
|
static float temp_iState_min[EXTRUDERS]; |
|
|
static float temp_iState_min[EXTRUDERS]; |
|
|
static float temp_iState_max[EXTRUDERS]; |
|
|
static float temp_iState_max[EXTRUDERS]; |
|
|
// static float pid_input[EXTRUDERS];
|
|
|
|
|
|
// static float pid_output[EXTRUDERS];
|
|
|
|
|
|
static bool pid_reset[EXTRUDERS]; |
|
|
static bool pid_reset[EXTRUDERS]; |
|
|
#endif //PIDTEMP
|
|
|
#endif //PIDTEMP
|
|
|
#ifdef PIDTEMPBED |
|
|
#ifdef PIDTEMPBED |
|
@ -546,34 +548,11 @@ void bed_max_temp_error(void) { |
|
|
_temp_error(-1, MSG_MAXTEMP_BED_OFF, MSG_ERR_MAXTEMP_BED); |
|
|
_temp_error(-1, MSG_MAXTEMP_BED_OFF, MSG_ERR_MAXTEMP_BED); |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
void manage_heater() { |
|
|
float get_pid_output(int e) { |
|
|
|
|
|
float pid_output; |
|
|
if (!temp_meas_ready) return; |
|
|
|
|
|
|
|
|
|
|
|
float pid_input, pid_output; |
|
|
|
|
|
|
|
|
|
|
|
updateTemperaturesFromRawValues(); |
|
|
|
|
|
|
|
|
|
|
|
#ifdef HEATER_0_USES_MAX6675 |
|
|
|
|
|
float ct = current_temperature[0]; |
|
|
|
|
|
if (ct > min(HEATER_0_MAXTEMP, 1023)) max_temp_error(0); |
|
|
|
|
|
if (ct < max(HEATER_0_MINTEMP, 0.01)) min_temp_error(0); |
|
|
|
|
|
#endif //HEATER_0_USES_MAX6675
|
|
|
|
|
|
|
|
|
|
|
|
unsigned long ms = millis(); |
|
|
|
|
|
|
|
|
|
|
|
// Loop through all extruders
|
|
|
|
|
|
for (int e = 0; e < EXTRUDERS; e++) { |
|
|
|
|
|
|
|
|
|
|
|
#if defined (THERMAL_RUNAWAY_PROTECTION_PERIOD) && THERMAL_RUNAWAY_PROTECTION_PERIOD > 0 |
|
|
|
|
|
thermal_runaway_protection(&thermal_runaway_state_machine[e], &thermal_runaway_timer[e], current_temperature[e], target_temperature[e], e, THERMAL_RUNAWAY_PROTECTION_PERIOD, THERMAL_RUNAWAY_PROTECTION_HYSTERESIS); |
|
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
|
|
#ifdef PIDTEMP |
|
|
#ifdef PIDTEMP |
|
|
pid_input = current_temperature[e]; |
|
|
|
|
|
|
|
|
|
|
|
#ifndef PID_OPENLOOP |
|
|
#ifndef PID_OPENLOOP |
|
|
pid_error[e] = target_temperature[e] - pid_input; |
|
|
pid_error[e] = target_temperature[e] - current_temperature[e]; |
|
|
if (pid_error[e] > PID_FUNCTIONAL_RANGE) { |
|
|
if (pid_error[e] > PID_FUNCTIONAL_RANGE) { |
|
|
pid_output = BANG_MAX; |
|
|
pid_output = BANG_MAX; |
|
|
pid_reset[e] = true; |
|
|
pid_reset[e] = true; |
|
@ -583,7 +562,7 @@ void manage_heater() { |
|
|
pid_reset[e] = true; |
|
|
pid_reset[e] = true; |
|
|
} |
|
|
} |
|
|
else { |
|
|
else { |
|
|
if (pid_reset[e] == true) { |
|
|
if (pid_reset[e]) { |
|
|
temp_iState[e] = 0.0; |
|
|
temp_iState[e] = 0.0; |
|
|
pid_reset[e] = false; |
|
|
pid_reset[e] = false; |
|
|
} |
|
|
} |
|
@ -592,9 +571,7 @@ void manage_heater() { |
|
|
temp_iState[e] = constrain(temp_iState[e], temp_iState_min[e], temp_iState_max[e]); |
|
|
temp_iState[e] = constrain(temp_iState[e], temp_iState_min[e], temp_iState_max[e]); |
|
|
iTerm[e] = PID_PARAM(Ki,e) * temp_iState[e]; |
|
|
iTerm[e] = PID_PARAM(Ki,e) * temp_iState[e]; |
|
|
|
|
|
|
|
|
//K1 defined in Configuration.h in the PID settings
|
|
|
dTerm[e] = K2 * PID_PARAM(Kd,e) * (current_temperature[e] - temp_dState[e]) + K1 * dTerm[e]; |
|
|
#define K2 (1.0-K1) |
|
|
|
|
|
dTerm[e] = (PID_PARAM(Kd,e) * (pid_input - temp_dState[e])) * K2 + (K1 * dTerm[e]); |
|
|
|
|
|
pid_output = pTerm[e] + iTerm[e] - dTerm[e]; |
|
|
pid_output = pTerm[e] + iTerm[e] - dTerm[e]; |
|
|
if (pid_output > PID_MAX) { |
|
|
if (pid_output > PID_MAX) { |
|
|
if (pid_error[e] > 0) temp_iState[e] -= pid_error[e]; // conditional un-integration
|
|
|
if (pid_error[e] > 0) temp_iState[e] -= pid_error[e]; // conditional un-integration
|
|
@ -605,7 +582,7 @@ void manage_heater() { |
|
|
pid_output = 0; |
|
|
pid_output = 0; |
|
|
} |
|
|
} |
|
|
} |
|
|
} |
|
|
temp_dState[e] = pid_input; |
|
|
temp_dState[e] = current_temperature[e]; |
|
|
#else |
|
|
#else |
|
|
pid_output = constrain(target_temperature[e], 0, PID_MAX); |
|
|
pid_output = constrain(target_temperature[e], 0, PID_MAX); |
|
|
#endif //PID_OPENLOOP
|
|
|
#endif //PID_OPENLOOP
|
|
@ -615,7 +592,7 @@ void manage_heater() { |
|
|
SERIAL_ECHO(MSG_PID_DEBUG); |
|
|
SERIAL_ECHO(MSG_PID_DEBUG); |
|
|
SERIAL_ECHO(e); |
|
|
SERIAL_ECHO(e); |
|
|
SERIAL_ECHO(MSG_PID_DEBUG_INPUT); |
|
|
SERIAL_ECHO(MSG_PID_DEBUG_INPUT); |
|
|
SERIAL_ECHO(pid_input); |
|
|
SERIAL_ECHO(current_temperature[e]); |
|
|
SERIAL_ECHO(MSG_PID_DEBUG_OUTPUT); |
|
|
SERIAL_ECHO(MSG_PID_DEBUG_OUTPUT); |
|
|
SERIAL_ECHO(pid_output); |
|
|
SERIAL_ECHO(pid_output); |
|
|
SERIAL_ECHO(MSG_PID_DEBUG_PTERM); |
|
|
SERIAL_ECHO(MSG_PID_DEBUG_PTERM); |
|
@ -627,12 +604,65 @@ void manage_heater() { |
|
|
#endif //PID_DEBUG
|
|
|
#endif //PID_DEBUG
|
|
|
|
|
|
|
|
|
#else /* PID off */ |
|
|
#else /* PID off */ |
|
|
|
|
|
pid_output = (current_temperature[e] < target_temperature[e]) ? PID_MAX : 0; |
|
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
|
|
return pid_output; |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
#ifdef PIDTEMPBED |
|
|
|
|
|
float get_pid_output_bed() { |
|
|
|
|
|
float pid_output; |
|
|
|
|
|
#ifndef PID_OPENLOOP |
|
|
|
|
|
pid_error_bed = target_temperature_bed - current_temperature_bed; |
|
|
|
|
|
pTerm_bed = bedKp * pid_error_bed; |
|
|
|
|
|
temp_iState_bed += pid_error_bed; |
|
|
|
|
|
temp_iState_bed = constrain(temp_iState_bed, temp_iState_min_bed, temp_iState_max_bed); |
|
|
|
|
|
iTerm_bed = bedKi * temp_iState_bed; |
|
|
|
|
|
|
|
|
|
|
|
dTerm_bed = K2 * bedKd * (current_temperature_bed - temp_dState_bed) + K1 * dTerm_bed; |
|
|
|
|
|
temp_dState_bed = current_temperature_bed; |
|
|
|
|
|
|
|
|
|
|
|
pid_output = pTerm_bed + iTerm_bed - dTerm_bed; |
|
|
|
|
|
if (pid_output > MAX_BED_POWER) { |
|
|
|
|
|
if (pid_error_bed > 0) temp_iState_bed -= pid_error_bed; // conditional un-integration
|
|
|
|
|
|
pid_output = MAX_BED_POWER; |
|
|
|
|
|
} |
|
|
|
|
|
else if (pid_output < 0) { |
|
|
|
|
|
if (pid_error_bed < 0) temp_iState_bed -= pid_error_bed; // conditional un-integration
|
|
|
pid_output = 0; |
|
|
pid_output = 0; |
|
|
if (current_temperature[e] < target_temperature[e]) pid_output = PID_MAX; |
|
|
} |
|
|
|
|
|
#else |
|
|
|
|
|
pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER); |
|
|
|
|
|
#endif // PID_OPENLOOP
|
|
|
|
|
|
|
|
|
|
|
|
return pid_output; |
|
|
|
|
|
} |
|
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
|
|
void manage_heater() { |
|
|
|
|
|
|
|
|
|
|
|
if (!temp_meas_ready) return; |
|
|
|
|
|
|
|
|
|
|
|
updateTemperaturesFromRawValues(); |
|
|
|
|
|
|
|
|
|
|
|
#ifdef HEATER_0_USES_MAX6675 |
|
|
|
|
|
float ct = current_temperature[0]; |
|
|
|
|
|
if (ct > min(HEATER_0_MAXTEMP, 1023)) max_temp_error(0); |
|
|
|
|
|
if (ct < max(HEATER_0_MINTEMP, 0.01)) min_temp_error(0); |
|
|
|
|
|
#endif //HEATER_0_USES_MAX6675
|
|
|
|
|
|
|
|
|
|
|
|
unsigned long ms = millis(); |
|
|
|
|
|
|
|
|
|
|
|
// Loop through all extruders
|
|
|
|
|
|
for (int e = 0; e < EXTRUDERS; e++) { |
|
|
|
|
|
|
|
|
|
|
|
#if defined (THERMAL_RUNAWAY_PROTECTION_PERIOD) && THERMAL_RUNAWAY_PROTECTION_PERIOD > 0 |
|
|
|
|
|
thermal_runaway_protection(&thermal_runaway_state_machine[e], &thermal_runaway_timer[e], current_temperature[e], target_temperature[e], e, THERMAL_RUNAWAY_PROTECTION_PERIOD, THERMAL_RUNAWAY_PROTECTION_HYSTERESIS); |
|
|
#endif |
|
|
#endif |
|
|
|
|
|
|
|
|
|
|
|
float pid_output = get_pid_output(e); |
|
|
|
|
|
|
|
|
// Check if temperature is within the correct range
|
|
|
// Check if temperature is within the correct range
|
|
|
soft_pwm[e] = current_temperature[e] > minttemp[e] && current_temperature[e] < maxttemp[e] ? (int)pid_output >> 1 : 0; |
|
|
soft_pwm[e] = current_temperature[e] > minttemp[e] && current_temperature[e] < maxttemp[e] ? (int)pid_output >> 1 : 0; |
|
|
|
|
|
|
|
@ -678,33 +708,7 @@ void manage_heater() { |
|
|
#endif |
|
|
#endif |
|
|
|
|
|
|
|
|
#ifdef PIDTEMPBED |
|
|
#ifdef PIDTEMPBED |
|
|
pid_input = current_temperature_bed; |
|
|
float pid_output = get_pid_output_bed(); |
|
|
|
|
|
|
|
|
#ifndef PID_OPENLOOP |
|
|
|
|
|
pid_error_bed = target_temperature_bed - pid_input; |
|
|
|
|
|
pTerm_bed = bedKp * pid_error_bed; |
|
|
|
|
|
temp_iState_bed += pid_error_bed; |
|
|
|
|
|
temp_iState_bed = constrain(temp_iState_bed, temp_iState_min_bed, temp_iState_max_bed); |
|
|
|
|
|
iTerm_bed = bedKi * temp_iState_bed; |
|
|
|
|
|
|
|
|
|
|
|
//K1 defined in Configuration.h in the PID settings
|
|
|
|
|
|
#define K2 (1.0-K1) |
|
|
|
|
|
dTerm_bed = (bedKd * (pid_input - temp_dState_bed))*K2 + (K1 * dTerm_bed); |
|
|
|
|
|
temp_dState_bed = pid_input; |
|
|
|
|
|
|
|
|
|
|
|
pid_output = pTerm_bed + iTerm_bed - dTerm_bed; |
|
|
|
|
|
if (pid_output > MAX_BED_POWER) { |
|
|
|
|
|
if (pid_error_bed > 0) temp_iState_bed -= pid_error_bed; // conditional un-integration
|
|
|
|
|
|
pid_output = MAX_BED_POWER; |
|
|
|
|
|
} |
|
|
|
|
|
else if (pid_output < 0) { |
|
|
|
|
|
if (pid_error_bed < 0) temp_iState_bed -= pid_error_bed; // conditional un-integration
|
|
|
|
|
|
pid_output = 0; |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
#else |
|
|
|
|
|
pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER); |
|
|
|
|
|
#endif //PID_OPENLOOP
|
|
|
|
|
|
|
|
|
|
|
|
soft_pwm_bed = current_temperature_bed > BED_MINTEMP && current_temperature_bed < BED_MAXTEMP ? (int)pid_output >> 1 : 0; |
|
|
soft_pwm_bed = current_temperature_bed > BED_MINTEMP && current_temperature_bed < BED_MAXTEMP ? (int)pid_output >> 1 : 0; |
|
|
|
|
|
|
|
|