|
|
@ -264,7 +264,7 @@ class Planner { |
|
|
|
* fr_mm_s - (target) speed of the move (mm/s) |
|
|
|
* extruder - target extruder |
|
|
|
*/ |
|
|
|
static FORCE_INLINE void buffer_line(ARG_X, ARG_Y, ARG_Z, const float &e, float fr_mm_s, const uint8_t extruder) { |
|
|
|
static FORCE_INLINE void buffer_line(ARG_X, ARG_Y, ARG_Z, const float &e, const float &fr_mm_s, const uint8_t extruder) { |
|
|
|
#if PLANNER_LEVELING && IS_CARTESIAN |
|
|
|
apply_leveling(lx, ly, lz); |
|
|
|
#endif |
|
|
@ -280,7 +280,7 @@ class Planner { |
|
|
|
* fr_mm_s - (target) speed of the move (mm/s) |
|
|
|
* extruder - target extruder |
|
|
|
*/ |
|
|
|
static FORCE_INLINE void buffer_line_kinematic(const float target[XYZE], float fr_mm_s, const uint8_t extruder) { |
|
|
|
static FORCE_INLINE void buffer_line_kinematic(const float target[XYZE], const float &fr_mm_s, const uint8_t extruder) { |
|
|
|
#if PLANNER_LEVELING |
|
|
|
float pos[XYZ] = { target[X_AXIS], target[Y_AXIS], target[Z_AXIS] }; |
|
|
|
apply_leveling(pos); |
|
|
@ -311,9 +311,9 @@ class Planner { |
|
|
|
_set_position_mm(lx, ly, lz, e); |
|
|
|
} |
|
|
|
static void set_position_mm_kinematic(const float position[NUM_AXIS]); |
|
|
|
static void set_position_mm(const AxisEnum axis, const float& v); |
|
|
|
static FORCE_INLINE void set_z_position_mm(const float& z) { set_position_mm(Z_AXIS, z); } |
|
|
|
static FORCE_INLINE void set_e_position_mm(const float& e) { set_position_mm(E_AXIS, e); } |
|
|
|
static void set_position_mm(const AxisEnum axis, const float &v); |
|
|
|
static FORCE_INLINE void set_z_position_mm(const float &z) { set_position_mm(Z_AXIS, z); } |
|
|
|
static FORCE_INLINE void set_e_position_mm(const float &e) { set_position_mm(E_AXIS, e); } |
|
|
|
|
|
|
|
/**
|
|
|
|
* Sync from the stepper positions. (e.g., after an interrupted move) |
|
|
@ -369,7 +369,7 @@ class Planner { |
|
|
|
* Calculate the distance (not time) it takes to accelerate |
|
|
|
* from initial_rate to target_rate using the given acceleration: |
|
|
|
*/ |
|
|
|
static float estimate_acceleration_distance(float initial_rate, float target_rate, float accel) { |
|
|
|
static float estimate_acceleration_distance(const float &initial_rate, const float &target_rate, const float &accel) { |
|
|
|
if (accel == 0) return 0; // accel was 0, set acceleration distance to 0
|
|
|
|
return (sq(target_rate) - sq(initial_rate)) / (accel * 2); |
|
|
|
} |
|
|
@ -382,7 +382,7 @@ class Planner { |
|
|
|
* This is used to compute the intersection point between acceleration and deceleration |
|
|
|
* in cases where the "trapezoid" has no plateau (i.e., never reaches maximum speed) |
|
|
|
*/ |
|
|
|
static float intersection_distance(float initial_rate, float final_rate, float accel, float distance) { |
|
|
|
static float intersection_distance(const float &initial_rate, const float &final_rate, const float &accel, const float &distance) { |
|
|
|
if (accel == 0) return 0; // accel was 0, set intersection distance to 0
|
|
|
|
return (accel * 2 * distance - sq(initial_rate) + sq(final_rate)) / (accel * 4); |
|
|
|
} |
|
|
@ -392,7 +392,7 @@ class Planner { |
|
|
|
* to reach 'target_velocity' using 'acceleration' within a given |
|
|
|
* 'distance'. |
|
|
|
*/ |
|
|
|
static float max_allowable_speed(float accel, float target_velocity, float distance) { |
|
|
|
static float max_allowable_speed(const float &accel, const float &target_velocity, const float &distance) { |
|
|
|
return sqrt(sq(target_velocity) - 2 * accel * distance); |
|
|
|
} |
|
|
|
|
|
|
|