|
|
@ -149,13 +149,13 @@ float cartes[XYZ]; |
|
|
|
#endif |
|
|
|
|
|
|
|
#if HAS_SOFTWARE_ENDSTOPS |
|
|
|
float soft_endstop_radius, soft_endstop_radius_2; |
|
|
|
float delta_max_radius, delta_max_radius_2; |
|
|
|
#elif IS_SCARA |
|
|
|
constexpr float soft_endstop_radius = SCARA_PRINTABLE_RADIUS, |
|
|
|
soft_endstop_radius_2 = sq(SCARA_PRINTABLE_RADIUS); |
|
|
|
constexpr float delta_max_radius = SCARA_PRINTABLE_RADIUS, |
|
|
|
delta_max_radius_2 = sq(SCARA_PRINTABLE_RADIUS); |
|
|
|
#else // DELTA
|
|
|
|
constexpr float soft_endstop_radius = DELTA_PRINTABLE_RADIUS, |
|
|
|
soft_endstop_radius_2 = sq(DELTA_PRINTABLE_RADIUS); |
|
|
|
constexpr float delta_max_radius = DELTA_PRINTABLE_RADIUS, |
|
|
|
delta_max_radius_2 = sq(DELTA_PRINTABLE_RADIUS); |
|
|
|
#endif |
|
|
|
|
|
|
|
#endif |
|
|
@ -460,8 +460,7 @@ void clean_up_after_endstop_or_probe_move() { |
|
|
|
bool soft_endstops_enabled = true; |
|
|
|
|
|
|
|
// Software Endstops are based on the configured limits.
|
|
|
|
float soft_endstop_min[XYZ] = { X_MIN_BED, Y_MIN_BED, Z_MIN_POS }, |
|
|
|
soft_endstop_max[XYZ] = { X_MAX_BED, Y_MAX_BED, Z_MAX_POS }; |
|
|
|
axis_limits_t soft_endstop[XYZ] = { { X_MIN_BED, X_MAX_BED }, { Y_MIN_BED, Y_MAX_BED }, { Z_MIN_POS, Z_MAX_POS } }; |
|
|
|
|
|
|
|
/**
|
|
|
|
* Software endstops can be used to monitor the open end of |
|
|
@ -487,26 +486,27 @@ void clean_up_after_endstop_or_probe_move() { |
|
|
|
|
|
|
|
if (new_tool_index != 0) { |
|
|
|
// T1 can move from X2_MIN_POS to X2_MAX_POS or X2 home position (whichever is larger)
|
|
|
|
soft_endstop_min[X_AXIS] = X2_MIN_POS; |
|
|
|
soft_endstop_max[X_AXIS] = dual_max_x; |
|
|
|
soft_endstop[X_AXIS].min = X2_MIN_POS; |
|
|
|
soft_endstop[X_AXIS].max = dual_max_x; |
|
|
|
} |
|
|
|
else if (dxc_is_duplicating()) { |
|
|
|
// In Duplication Mode, T0 can move as far left as X1_MIN_POS
|
|
|
|
// but not so far to the right that T1 would move past the end
|
|
|
|
soft_endstop_min[X_AXIS] = X1_MIN_POS; |
|
|
|
soft_endstop_max[X_AXIS] = MIN(X1_MAX_POS, dual_max_x - duplicate_extruder_x_offset); |
|
|
|
soft_endstop[X_AXIS].min = X1_MIN_POS; |
|
|
|
soft_endstop[X_AXIS].max = MIN(X1_MAX_POS, dual_max_x - duplicate_extruder_x_offset); |
|
|
|
} |
|
|
|
else { |
|
|
|
// In other modes, T0 can move from X1_MIN_POS to X1_MAX_POS
|
|
|
|
soft_endstop_min[X_AXIS] = X1_MIN_POS; |
|
|
|
soft_endstop_max[X_AXIS] = X1_MAX_POS; |
|
|
|
soft_endstop[X_AXIS].min = X1_MIN_POS; |
|
|
|
soft_endstop[X_AXIS].max = X1_MAX_POS; |
|
|
|
} |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
#elif ENABLED(DELTA) |
|
|
|
|
|
|
|
soft_endstop_min[axis] = base_min_pos(axis); |
|
|
|
soft_endstop_max[axis] = (axis == Z_AXIS ? delta_height |
|
|
|
soft_endstop[axis].min = base_min_pos(axis); |
|
|
|
soft_endstop[axis].max = (axis == Z_AXIS ? delta_height |
|
|
|
#if HAS_BED_PROBE |
|
|
|
- zprobe_zoffset |
|
|
|
#endif |
|
|
@ -516,11 +516,11 @@ void clean_up_after_endstop_or_probe_move() { |
|
|
|
case X_AXIS: |
|
|
|
case Y_AXIS: |
|
|
|
// Get a minimum radius for clamping
|
|
|
|
soft_endstop_radius = MIN(ABS(MAX(soft_endstop_min[X_AXIS], soft_endstop_min[Y_AXIS])), soft_endstop_max[X_AXIS], soft_endstop_max[Y_AXIS]); |
|
|
|
soft_endstop_radius_2 = sq(soft_endstop_radius); |
|
|
|
delta_max_radius = MIN(ABS(MAX(soft_endstop[X_AXIS].min, soft_endstop[Y_AXIS].min)), soft_endstop[X_AXIS].max, soft_endstop[Y_AXIS].max); |
|
|
|
delta_max_radius_2 = sq(delta_max_radius); |
|
|
|
break; |
|
|
|
case Z_AXIS: |
|
|
|
delta_clip_start_height = soft_endstop_max[axis] - delta_safe_distance_from_top(); |
|
|
|
delta_clip_start_height = soft_endstop[axis].max - delta_safe_distance_from_top(); |
|
|
|
default: break; |
|
|
|
} |
|
|
|
|
|
|
@ -531,40 +531,35 @@ void clean_up_after_endstop_or_probe_move() { |
|
|
|
// retain the same physical limit when other tools are selected.
|
|
|
|
if (old_tool_index != new_tool_index) { |
|
|
|
const float offs = hotend_offset[axis][new_tool_index] - hotend_offset[axis][old_tool_index]; |
|
|
|
soft_endstop_min[axis] += offs; |
|
|
|
soft_endstop_max[axis] += offs; |
|
|
|
soft_endstop[axis].min += offs; |
|
|
|
soft_endstop[axis].max += offs; |
|
|
|
} |
|
|
|
else { |
|
|
|
const float offs = hotend_offset[axis][active_extruder]; |
|
|
|
soft_endstop_min[axis] = base_min_pos(axis) + offs; |
|
|
|
soft_endstop_max[axis] = base_max_pos(axis) + offs; |
|
|
|
soft_endstop[axis].min = base_min_pos(axis) + offs; |
|
|
|
soft_endstop[axis].max = base_max_pos(axis) + offs; |
|
|
|
} |
|
|
|
|
|
|
|
#else |
|
|
|
|
|
|
|
soft_endstop_min[axis] = base_min_pos(axis); |
|
|
|
soft_endstop_max[axis] = base_max_pos(axis); |
|
|
|
soft_endstop[axis].min = base_min_pos(axis); |
|
|
|
soft_endstop[axis].max = base_max_pos(axis); |
|
|
|
|
|
|
|
#endif |
|
|
|
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE) |
|
|
|
if (DEBUGGING(LEVELING)) { |
|
|
|
SERIAL_ECHOPAIR("For ", axis_codes[axis]); |
|
|
|
SERIAL_ECHOPAIR(" axis:\n soft_endstop_min = ", soft_endstop_min[axis]); |
|
|
|
SERIAL_ECHOLNPAIR("\n soft_endstop_max = ", soft_endstop_max[axis]); |
|
|
|
} |
|
|
|
if (DEBUGGING(LEVELING)) |
|
|
|
SERIAL_ECHOLNPAIR("Axis ", axis_codes[axis], " min:", soft_endstop[axis].min, " max:", soft_endstop[axis].max); |
|
|
|
#endif |
|
|
|
} |
|
|
|
|
|
|
|
#endif // HAS_SOFTWARE_ENDSTOPS
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Constrain the given coordinates to the software endstops. |
|
|
|
* |
|
|
|
* For DELTA/SCARA the XY constraint is based on the smallest |
|
|
|
* radius within the set software endstops. |
|
|
|
*/ |
|
|
|
void clamp_to_software_endstops(float target[XYZ]) { |
|
|
|
void apply_motion_limits(float target[XYZ]) { |
|
|
|
|
|
|
|
if (!soft_endstops_enabled) return; |
|
|
|
|
|
|
@ -579,8 +574,8 @@ void clamp_to_software_endstops(float target[XYZ]) { |
|
|
|
#endif |
|
|
|
|
|
|
|
const float dist_2 = HYPOT2(target[X_AXIS] - offx, target[Y_AXIS] - offy); |
|
|
|
if (dist_2 > soft_endstop_radius_2) { |
|
|
|
const float ratio = (soft_endstop_radius) / SQRT(dist_2); // 200 / 300 = 0.66
|
|
|
|
if (dist_2 > delta_max_radius_2) { |
|
|
|
const float ratio = (delta_max_radius) / SQRT(dist_2); // 200 / 300 = 0.66
|
|
|
|
target[X_AXIS] *= ratio; |
|
|
|
target[Y_AXIS] *= ratio; |
|
|
|
} |
|
|
@ -588,28 +583,30 @@ void clamp_to_software_endstops(float target[XYZ]) { |
|
|
|
#else |
|
|
|
|
|
|
|
#if !HAS_SOFTWARE_ENDSTOPS || ENABLED(MIN_SOFTWARE_ENDSTOP_X) |
|
|
|
NOLESS(target[X_AXIS], soft_endstop_min[X_AXIS]); |
|
|
|
NOLESS(target[X_AXIS], soft_endstop[X_AXIS].min); |
|
|
|
#endif |
|
|
|
#if !HAS_SOFTWARE_ENDSTOPS || ENABLED(MAX_SOFTWARE_ENDSTOP_X) |
|
|
|
NOMORE(target[X_AXIS], soft_endstop_max[X_AXIS]); |
|
|
|
NOMORE(target[X_AXIS], soft_endstop[X_AXIS].max); |
|
|
|
#endif |
|
|
|
#if !HAS_SOFTWARE_ENDSTOPS || ENABLED(MIN_SOFTWARE_ENDSTOP_Y) |
|
|
|
NOLESS(target[Y_AXIS], soft_endstop_min[Y_AXIS]); |
|
|
|
NOLESS(target[Y_AXIS], soft_endstop[Y_AXIS].min); |
|
|
|
#endif |
|
|
|
#if !HAS_SOFTWARE_ENDSTOPS || ENABLED(MAX_SOFTWARE_ENDSTOP_Y) |
|
|
|
NOMORE(target[Y_AXIS], soft_endstop_max[Y_AXIS]); |
|
|
|
NOMORE(target[Y_AXIS], soft_endstop[Y_AXIS].max); |
|
|
|
#endif |
|
|
|
|
|
|
|
#endif |
|
|
|
|
|
|
|
#if !HAS_SOFTWARE_ENDSTOPS || ENABLED(MIN_SOFTWARE_ENDSTOP_Z) |
|
|
|
NOLESS(target[Z_AXIS], soft_endstop_min[Z_AXIS]); |
|
|
|
NOLESS(target[Z_AXIS], soft_endstop[Z_AXIS].min); |
|
|
|
#endif |
|
|
|
#if !HAS_SOFTWARE_ENDSTOPS || ENABLED(MAX_SOFTWARE_ENDSTOP_Z) |
|
|
|
NOMORE(target[Z_AXIS], soft_endstop_max[Z_AXIS]); |
|
|
|
NOMORE(target[Z_AXIS], soft_endstop[Z_AXIS].max); |
|
|
|
#endif |
|
|
|
} |
|
|
|
|
|
|
|
#endif // HAS_SOFTWARE_ENDSTOPS
|
|
|
|
|
|
|
|
#if !UBL_SEGMENTED |
|
|
|
#if IS_KINEMATIC |
|
|
|
|
|
|
@ -995,7 +992,7 @@ void clamp_to_software_endstops(float target[XYZ]) { |
|
|
|
* before calling or cold/lengthy extrusion may get missed. |
|
|
|
*/ |
|
|
|
void prepare_move_to_destination() { |
|
|
|
clamp_to_software_endstops(destination); |
|
|
|
apply_motion_limits(destination); |
|
|
|
|
|
|
|
#if ENABLED(PREVENT_COLD_EXTRUSION) || ENABLED(PREVENT_LENGTHY_EXTRUDE) |
|
|
|
|
|
|
|