Browse Source

Fix prepare_kinematic_move_to precision

pull/1/head
Scott Lahteine 8 years ago
parent
commit
865ad25781
  1. 99
      Marlin/Marlin_main.cpp

99
Marlin/Marlin_main.cpp

@ -8092,68 +8092,78 @@ void set_current_from_steppers_for_axis(const AxisEnum axis) {
* This calls planner.buffer_line several times, adding * This calls planner.buffer_line several times, adding
* small incremental moves for DELTA or SCARA. * small incremental moves for DELTA or SCARA.
*/ */
inline bool prepare_kinematic_move_to(float logical[NUM_AXIS]) { inline bool prepare_kinematic_move_to(float ltarget[NUM_AXIS]) {
// Get the top feedrate of the move in the XY plane // Get the top feedrate of the move in the XY plane
float _feedrate_mm_s = MMS_SCALED(feedrate_mm_s); float _feedrate_mm_s = MMS_SCALED(feedrate_mm_s);
// If the move is only in Z don't split up the move. // If the move is only in Z/E don't split up the move
// This shortcut cannot be used if planar bed leveling if (ltarget[X_AXIS] == current_position[X_AXIS] && ltarget[Y_AXIS] == current_position[Y_AXIS]) {
// is in use, but is fine with mesh-based bed leveling inverse_kinematics(ltarget);
if (logical[X_AXIS] == current_position[X_AXIS] && logical[Y_AXIS] == current_position[Y_AXIS]) { planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], ltarget[E_AXIS], _feedrate_mm_s, active_extruder);
inverse_kinematics(logical);
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], _feedrate_mm_s, active_extruder);
return true; return true;
} }
// Get the distance moved in XYZ // Get the cartesian distances moved in XYZE
float difference[NUM_AXIS]; float difference[NUM_AXIS];
LOOP_XYZE(i) difference[i] = logical[i] - current_position[i]; LOOP_XYZE(i) difference[i] = ltarget[i] - current_position[i];
// Get the linear distance in XYZ
float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS])); float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
// If the move is very short, check the E move distance
if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = abs(difference[E_AXIS]); if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = abs(difference[E_AXIS]);
// No E move either? Game over.
if (UNEAR_ZERO(cartesian_mm)) return false; if (UNEAR_ZERO(cartesian_mm)) return false;
// Minimum number of seconds to move the given distance // Minimum number of seconds to move the given distance
float seconds = cartesian_mm / _feedrate_mm_s; float seconds = cartesian_mm / _feedrate_mm_s;
// The number of segments-per-second times the duration // The number of segments-per-second times the duration
// gives the number of segments we should produce // gives the number of segments
uint16_t segments = delta_segments_per_second * seconds; uint16_t segments = delta_segments_per_second * seconds;
// For SCARA minimum segment size is 0.5mm
#if IS_SCARA #if IS_SCARA
NOMORE(segments, cartesian_mm * 2); NOMORE(segments, cartesian_mm * 2);
#endif #endif
// At least one segment is required
NOLESS(segments, 1); NOLESS(segments, 1);
// Each segment produces this much of the move // The approximate length of each segment
float inv_segments = 1.0 / segments, float segment_distance[XYZE] = {
segment_distance[XYZE] = { difference[X_AXIS] / segments,
difference[X_AXIS] * inv_segments, difference[Y_AXIS] / segments,
difference[Y_AXIS] * inv_segments, difference[Z_AXIS] / segments,
difference[Z_AXIS] * inv_segments, difference[E_AXIS] / segments
difference[E_AXIS] * inv_segments
}; };
// SERIAL_ECHOPAIR("mm=", cartesian_mm); // SERIAL_ECHOPAIR("mm=", cartesian_mm);
// SERIAL_ECHOPAIR(" seconds=", seconds); // SERIAL_ECHOPAIR(" seconds=", seconds);
// SERIAL_ECHOLNPAIR(" segments=", segments); // SERIAL_ECHOLNPAIR(" segments=", segments);
// Send all the segments to the planner // Drop one segment so the last move is to the exact target.
// If there's only 1 segment, loops will be skipped entirely.
--segments;
// Using "raw" coordinates saves 6 float subtractions
// per segment, saving valuable CPU cycles
#if ENABLED(USE_RAW_KINEMATICS) #if ENABLED(USE_RAW_KINEMATICS)
// Get the raw current position as starting point // Get the raw current position as starting point
float raw[ABC] = { float raw[XYZE] = {
RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(X_AXIS),
RAW_CURRENT_POSITION(Y_AXIS), RAW_CURRENT_POSITION(Y_AXIS),
RAW_CURRENT_POSITION(Z_AXIS) RAW_CURRENT_POSITION(Z_AXIS),
current_position[E_AXIS]
}; };
#define DELTA_E raw[E_AXIS] #define DELTA_VAR raw
#define DELTA_NEXT(ADDEND) LOOP_XYZE(i) raw[i] += ADDEND;
// Delta can inline its kinematics
#if ENABLED(DELTA) #if ENABLED(DELTA)
#define DELTA_IK() DELTA_RAW_IK() #define DELTA_IK() DELTA_RAW_IK()
#else #else
@ -8163,11 +8173,12 @@ void set_current_from_steppers_for_axis(const AxisEnum axis) {
#else #else
// Get the logical current position as starting point // Get the logical current position as starting point
LOOP_XYZE(i) logical[i] = current_position[i]; float logical[XYZE];
memcpy(logical, current_position, sizeof(logical));
#define DELTA_E logical[E_AXIS] #define DELTA_VAR logical
#define DELTA_NEXT(ADDEND) LOOP_XYZE(i) logical[i] += ADDEND;
// Delta can inline its kinematics
#if ENABLED(DELTA) #if ENABLED(DELTA)
#define DELTA_IK() DELTA_LOGICAL_IK() #define DELTA_IK() DELTA_LOGICAL_IK()
#else #else
@ -8178,16 +8189,26 @@ void set_current_from_steppers_for_axis(const AxisEnum axis) {
#if ENABLED(USE_DELTA_IK_INTERPOLATION) #if ENABLED(USE_DELTA_IK_INTERPOLATION)
// Get the starting delta for interpolation // Only interpolate XYZ. Advance E normally.
if (segments >= 2) inverse_kinematics(logical); #define DELTA_NEXT(ADDEND) LOOP_XYZ(i) DELTA_VAR[i] += ADDEND;
// Get the starting delta if interpolation is possible
if (segments >= 2) DELTA_IK();
// Loop using decrement
for (uint16_t s = segments + 1; --s;) { for (uint16_t s = segments + 1; --s;) {
if (s > 1) { // Are there at least 2 moves left?
if (s >= 2) {
// Save the previous delta for interpolation // Save the previous delta for interpolation
float prev_delta[ABC] = { delta[A_AXIS], delta[B_AXIS], delta[C_AXIS] }; float prev_delta[ABC] = { delta[A_AXIS], delta[B_AXIS], delta[C_AXIS] };
// Get the delta 2 segments ahead (rather than the next) // Get the delta 2 segments ahead (rather than the next)
DELTA_NEXT(segment_distance[i] + segment_distance[i]); DELTA_NEXT(segment_distance[i] + segment_distance[i]);
// Advance E normally
DELTA_VAR[E_AXIS] += segment_distance[E_AXIS];
// Get the exact delta for the move after this
DELTA_IK(); DELTA_IK();
// Move to the interpolated delta position first // Move to the interpolated delta position first
@ -8195,33 +8216,43 @@ void set_current_from_steppers_for_axis(const AxisEnum axis) {
(prev_delta[A_AXIS] + delta[A_AXIS]) * 0.5, (prev_delta[A_AXIS] + delta[A_AXIS]) * 0.5,
(prev_delta[B_AXIS] + delta[B_AXIS]) * 0.5, (prev_delta[B_AXIS] + delta[B_AXIS]) * 0.5,
(prev_delta[C_AXIS] + delta[C_AXIS]) * 0.5, (prev_delta[C_AXIS] + delta[C_AXIS]) * 0.5,
logical[E_AXIS], _feedrate_mm_s, active_extruder DELTA_VAR[E_AXIS], _feedrate_mm_s, active_extruder
); );
// Advance E once more for the next move
DELTA_VAR[E_AXIS] += segment_distance[E_AXIS];
// Do an extra decrement of the loop // Do an extra decrement of the loop
--s; --s;
} }
else { else {
// Get the last segment delta (only when segments is odd) // Get the last segment delta. (Used when segments is odd)
DELTA_NEXT(segment_distance[i]) DELTA_NEXT(segment_distance[i]);
DELTA_VAR[E_AXIS] += segment_distance[E_AXIS];
DELTA_IK(); DELTA_IK();
} }
// Move to the non-interpolated position // Move to the non-interpolated position
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], DELTA_E, _feedrate_mm_s, active_extruder); planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], DELTA_VAR[E_AXIS], _feedrate_mm_s, active_extruder);
} }
#else #else
#define DELTA_NEXT(ADDEND) LOOP_XYZE(i) DELTA_VAR[i] += ADDEND;
// For non-interpolated delta calculate every segment // For non-interpolated delta calculate every segment
for (uint16_t s = segments + 1; --s;) { for (uint16_t s = segments + 1; --s;) {
DELTA_NEXT(segment_distance[i]) DELTA_NEXT(segment_distance[i]);
DELTA_IK(); DELTA_IK();
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], _feedrate_mm_s, active_extruder); planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], DELTA_VAR[E_AXIS], _feedrate_mm_s, active_extruder);
} }
#endif #endif
// Since segment_distance is only approximate,
// the final move must be to the exact destination.
inverse_kinematics(ltarget);
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], ltarget[E_AXIS], _feedrate_mm_s, active_extruder);
return true; return true;
} }

Loading…
Cancel
Save