Browse Source

Embed G26/G29 in ubl class, with enhancements

pull/1/head
Scott Lahteine 8 years ago
parent
commit
85b967657e
  1. 231
      Marlin/G26_Mesh_Validation_Tool.cpp
  2. 12
      Marlin/Marlin_main.cpp
  3. 2
      Marlin/fastio.h
  4. 8
      Marlin/ubl.cpp
  5. 161
      Marlin/ubl.h
  6. 453
      Marlin/ubl_G29.cpp
  7. 128
      Marlin/ubl_motion.cpp

231
Marlin/G26_Mesh_Validation_Tool.cpp

@ -135,54 +135,44 @@
float code_value_axis_units(const AxisEnum axis); float code_value_axis_units(const AxisEnum axis);
bool code_value_bool(); bool code_value_bool();
bool code_has_value(); bool code_has_value();
void lcd_init();
void lcd_setstatuspgm(const char* const message, const uint8_t level);
void sync_plan_position_e(); void sync_plan_position_e();
void chirp_at_user(); void chirp_at_user();
// Private functions // Private functions
void un_retract_filament(float where[XYZE]);
void retract_filament(float where[XYZE]);
bool look_for_lines_to_connect();
bool parse_G26_parameters();
void move_to(const float&, const float&, const float&, const float&) ;
void print_line_from_here_to_there(const float&, const float&, const float&, const float&, const float&, const float&);
bool turn_on_heaters();
bool prime_nozzle();
static uint16_t circle_flags[16], horizontal_mesh_line_flags[16], vertical_mesh_line_flags[16]; static uint16_t circle_flags[16], horizontal_mesh_line_flags[16], vertical_mesh_line_flags[16];
float g26_e_axis_feedrate = 0.020, float g26_e_axis_feedrate = 0.020,
random_deviation = 0.0, random_deviation = 0.0;
layer_height = LAYER_HEIGHT;
static bool g26_retracted = false; // Track the retracted state of the nozzle so mismatched static bool g26_retracted = false; // Track the retracted state of the nozzle so mismatched
// retracts/recovers won't result in a bad state. // retracts/recovers won't result in a bad state.
float valid_trig_angle(float); float valid_trig_angle(float);
mesh_index_pair find_closest_circle_to_print(const float&, const float&);
static float extrusion_multiplier = EXTRUSION_MULTIPLIER, float unified_bed_leveling::g26_extrusion_multiplier,
retraction_multiplier = RETRACTION_MULTIPLIER, unified_bed_leveling::g26_retraction_multiplier,
nozzle = NOZZLE, unified_bed_leveling::g26_nozzle,
filament_diameter = FILAMENT, unified_bed_leveling::g26_filament_diameter,
prime_length = PRIME_LENGTH, unified_bed_leveling::g26_layer_height,
x_pos, y_pos, unified_bed_leveling::g26_prime_length,
ooze_amount = OOZE_AMOUNT; unified_bed_leveling::g26_x_pos,
unified_bed_leveling::g26_y_pos,
unified_bed_leveling::g26_ooze_amount;
static int16_t bed_temp = BED_TEMP, int16_t unified_bed_leveling::g26_bed_temp,
hotend_temp = HOTEND_TEMP; unified_bed_leveling::g26_hotend_temp;
static int8_t prime_flag = 0; int8_t unified_bed_leveling::g26_prime_flag;
static bool continue_with_closest, keep_heaters_on; bool unified_bed_leveling::g26_continue_with_closest,
unified_bed_leveling::g26_keep_heaters_on;
static int16_t g26_repeats; int16_t unified_bed_leveling::g26_repeats;
void G26_line_to_destination(const float &feed_rate) { void unified_bed_leveling::G26_line_to_destination(const float &feed_rate) {
const float save_feedrate = feedrate_mm_s; const float save_feedrate = feedrate_mm_s;
feedrate_mm_s = feed_rate; // use specified feed rate feedrate_mm_s = feed_rate; // use specified feed rate
prepare_move_to_destination(); // will ultimately call ubl_line_to_destination_cartesian or ubl_prepare_linear_move_to for UBL_DELTA prepare_move_to_destination(); // will ultimately call ubl.line_to_destination_cartesian or ubl.prepare_linear_move_to for UBL_DELTA
feedrate_mm_s = save_feedrate; // restore global feed rate feedrate_mm_s = save_feedrate; // restore global feed rate
} }
@ -216,7 +206,7 @@
* Used to interactively edit UBL's Mesh by placing the * Used to interactively edit UBL's Mesh by placing the
* nozzle in a problem area and doing a G29 P4 R command. * nozzle in a problem area and doing a G29 P4 R command.
*/ */
void gcode_G26() { void unified_bed_leveling::G26() {
SERIAL_ECHOLNPGM("G26 command started. Waiting for heater(s)."); SERIAL_ECHOLNPGM("G26 command started. Waiting for heater(s).");
float tmp, start_angle, end_angle; float tmp, start_angle, end_angle;
int i, xi, yi; int i, xi, yi;
@ -237,7 +227,7 @@
current_position[E_AXIS] = 0.0; current_position[E_AXIS] = 0.0;
sync_plan_position_e(); sync_plan_position_e();
if (prime_flag && prime_nozzle()) goto LEAVE; if (g26_prime_flag && prime_nozzle()) goto LEAVE;
/** /**
* Bed is preheated * Bed is preheated
@ -255,11 +245,11 @@
// Move nozzle to the specified height for the first layer // Move nozzle to the specified height for the first layer
set_destination_to_current(); set_destination_to_current();
destination[Z_AXIS] = layer_height; destination[Z_AXIS] = g26_layer_height;
move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 0.0); move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 0.0);
move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], ooze_amount); move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], g26_ooze_amount);
ubl.has_control_of_lcd_panel = true; has_control_of_lcd_panel = true;
//debug_current_and_destination(PSTR("Starting G26 Mesh Validation Pattern.")); //debug_current_and_destination(PSTR("Starting G26 Mesh Validation Pattern."));
/** /**
@ -273,13 +263,13 @@
} }
do { do {
location = continue_with_closest location = g26_continue_with_closest
? find_closest_circle_to_print(current_position[X_AXIS], current_position[Y_AXIS]) ? find_closest_circle_to_print(current_position[X_AXIS], current_position[Y_AXIS])
: find_closest_circle_to_print(x_pos, y_pos); // Find the closest Mesh Intersection to where we are now. : find_closest_circle_to_print(g26_x_pos, g26_y_pos); // Find the closest Mesh Intersection to where we are now.
if (location.x_index >= 0 && location.y_index >= 0) { if (location.x_index >= 0 && location.y_index >= 0) {
const float circle_x = pgm_read_float(&ubl.mesh_index_to_xpos[location.x_index]), const float circle_x = mesh_index_to_xpos(location.x_index),
circle_y = pgm_read_float(&ubl.mesh_index_to_ypos[location.y_index]); circle_y = mesh_index_to_ypos(location.y_index);
// If this mesh location is outside the printable_radius, skip it. // If this mesh location is outside the printable_radius, skip it.
@ -288,7 +278,7 @@
xi = location.x_index; // Just to shrink the next few lines and make them easier to understand xi = location.x_index; // Just to shrink the next few lines and make them easier to understand
yi = location.y_index; yi = location.y_index;
if (ubl.g26_debug_flag) { if (g26_debug_flag) {
SERIAL_ECHOPAIR(" Doing circle at: (xi=", xi); SERIAL_ECHOPAIR(" Doing circle at: (xi=", xi);
SERIAL_ECHOPAIR(", yi=", yi); SERIAL_ECHOPAIR(", yi=", yi);
SERIAL_CHAR(')'); SERIAL_CHAR(')');
@ -344,7 +334,7 @@
ye = constrain(ye, Y_MIN_POS + 1, Y_MAX_POS - 1); ye = constrain(ye, Y_MIN_POS + 1, Y_MAX_POS - 1);
#endif #endif
//if (ubl.g26_debug_flag) { //if (g26_debug_flag) {
// char ccc, *cptr, seg_msg[50], seg_num[10]; // char ccc, *cptr, seg_msg[50], seg_num[10];
// strcpy(seg_msg, " segment: "); // strcpy(seg_msg, " segment: ");
// strcpy(seg_num, " \n"); // strcpy(seg_num, " \n");
@ -355,7 +345,7 @@
// debug_current_and_destination(seg_msg); // debug_current_and_destination(seg_msg);
//} //}
print_line_from_here_to_there(LOGICAL_X_POSITION(x), LOGICAL_Y_POSITION(y), layer_height, LOGICAL_X_POSITION(xe), LOGICAL_Y_POSITION(ye), layer_height); print_line_from_here_to_there(LOGICAL_X_POSITION(x), LOGICAL_Y_POSITION(y), g26_layer_height, LOGICAL_X_POSITION(xe), LOGICAL_Y_POSITION(ye), g26_layer_height);
} }
if (look_for_lines_to_connect()) if (look_for_lines_to_connect())
@ -374,16 +364,16 @@
move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 0); // Raise the nozzle move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 0); // Raise the nozzle
//debug_current_and_destination(PSTR("done doing Z-Raise.")); //debug_current_and_destination(PSTR("done doing Z-Raise."));
destination[X_AXIS] = x_pos; // Move back to the starting position destination[X_AXIS] = g26_x_pos; // Move back to the starting position
destination[Y_AXIS] = y_pos; destination[Y_AXIS] = g26_y_pos;
//destination[Z_AXIS] = Z_CLEARANCE_BETWEEN_PROBES; // Keep the nozzle where it is //destination[Z_AXIS] = Z_CLEARANCE_BETWEEN_PROBES; // Keep the nozzle where it is
move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 0); // Move back to the starting position move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 0); // Move back to the starting position
//debug_current_and_destination(PSTR("done doing X/Y move.")); //debug_current_and_destination(PSTR("done doing X/Y move."));
ubl.has_control_of_lcd_panel = false; // Give back control of the LCD Panel! has_control_of_lcd_panel = false; // Give back control of the LCD Panel!
if (!keep_heaters_on) { if (!g26_keep_heaters_on) {
#if HAS_TEMP_BED #if HAS_TEMP_BED
thermalManager.setTargetBed(0); thermalManager.setTargetBed(0);
#endif #endif
@ -391,14 +381,13 @@
} }
} }
float valid_trig_angle(float d) { float valid_trig_angle(float d) {
while (d > 360.0) d -= 360.0; while (d > 360.0) d -= 360.0;
while (d < 0.0) d += 360.0; while (d < 0.0) d += 360.0;
return d; return d;
} }
mesh_index_pair find_closest_circle_to_print(const float &X, const float &Y) { mesh_index_pair unified_bed_leveling::find_closest_circle_to_print(const float &X, const float &Y) {
float closest = 99999.99; float closest = 99999.99;
mesh_index_pair return_val; mesh_index_pair return_val;
@ -407,8 +396,8 @@
for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) { for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) { for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
if (!is_bit_set(circle_flags, i, j)) { if (!is_bit_set(circle_flags, i, j)) {
const float mx = pgm_read_float(&ubl.mesh_index_to_xpos[i]), // We found a circle that needs to be printed const float mx = mesh_index_to_xpos(i), // We found a circle that needs to be printed
my = pgm_read_float(&ubl.mesh_index_to_ypos[j]); my = mesh_index_to_ypos(j);
// Get the distance to this intersection // Get the distance to this intersection
float f = HYPOT(X - mx, Y - my); float f = HYPOT(X - mx, Y - my);
@ -417,7 +406,7 @@
// to let us find the closest circle to the start position. // to let us find the closest circle to the start position.
// But if this is not the case, add a small weighting to the // But if this is not the case, add a small weighting to the
// distance calculation to help it choose a better place to continue. // distance calculation to help it choose a better place to continue.
f += HYPOT(x_pos - mx, y_pos - my) / 15.0; f += HYPOT(g26_x_pos - mx, g26_y_pos - my) / 15.0;
// Add in the specified amount of Random Noise to our search // Add in the specified amount of Random Noise to our search
if (random_deviation > 1.0) if (random_deviation > 1.0)
@ -436,7 +425,7 @@
return return_val; return return_val;
} }
bool look_for_lines_to_connect() { bool unified_bed_leveling::look_for_lines_to_connect() {
float sx, sy, ex, ey; float sx, sy, ex, ey;
for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) { for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
@ -454,16 +443,16 @@
// We found two circles that need a horizontal line to connect them // We found two circles that need a horizontal line to connect them
// Print it! // Print it!
// //
sx = pgm_read_float(&ubl.mesh_index_to_xpos[ i ]) + (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // right edge sx = mesh_index_to_xpos( i ) + (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // right edge
ex = pgm_read_float(&ubl.mesh_index_to_xpos[i + 1]) - (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // left edge ex = mesh_index_to_xpos(i + 1) - (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // left edge
sx = constrain(sx, X_MIN_POS + 1, X_MAX_POS - 1); sx = constrain(sx, X_MIN_POS + 1, X_MAX_POS - 1);
sy = ey = constrain(pgm_read_float(&ubl.mesh_index_to_ypos[j]), Y_MIN_POS + 1, Y_MAX_POS - 1); sy = ey = constrain(mesh_index_to_ypos(j), Y_MIN_POS + 1, Y_MAX_POS - 1);
ex = constrain(ex, X_MIN_POS + 1, X_MAX_POS - 1); ex = constrain(ex, X_MIN_POS + 1, X_MAX_POS - 1);
if (position_is_reachable_raw_xy(sx, sy) && position_is_reachable_raw_xy(ex, ey)) { if (position_is_reachable_raw_xy(sx, sy) && position_is_reachable_raw_xy(ex, ey)) {
if (ubl.g26_debug_flag) { if (g26_debug_flag) {
SERIAL_ECHOPAIR(" Connecting with horizontal line (sx=", sx); SERIAL_ECHOPAIR(" Connecting with horizontal line (sx=", sx);
SERIAL_ECHOPAIR(", sy=", sy); SERIAL_ECHOPAIR(", sy=", sy);
SERIAL_ECHOPAIR(") -> (ex=", ex); SERIAL_ECHOPAIR(") -> (ex=", ex);
@ -473,7 +462,7 @@
//debug_current_and_destination(PSTR("Connecting horizontal line.")); //debug_current_and_destination(PSTR("Connecting horizontal line."));
} }
print_line_from_here_to_there(LOGICAL_X_POSITION(sx), LOGICAL_Y_POSITION(sy), layer_height, LOGICAL_X_POSITION(ex), LOGICAL_Y_POSITION(ey), layer_height); print_line_from_here_to_there(LOGICAL_X_POSITION(sx), LOGICAL_Y_POSITION(sy), g26_layer_height, LOGICAL_X_POSITION(ex), LOGICAL_Y_POSITION(ey), g26_layer_height);
} }
bit_set(horizontal_mesh_line_flags, i, j); // Mark it as done so we don't do it again, even if we skipped it bit_set(horizontal_mesh_line_flags, i, j); // Mark it as done so we don't do it again, even if we skipped it
} }
@ -488,16 +477,16 @@
// We found two circles that need a vertical line to connect them // We found two circles that need a vertical line to connect them
// Print it! // Print it!
// //
sy = pgm_read_float(&ubl.mesh_index_to_ypos[ j ]) + (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // top edge sy = mesh_index_to_ypos( j ) + (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // top edge
ey = pgm_read_float(&ubl.mesh_index_to_ypos[j + 1]) - (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // bottom edge ey = mesh_index_to_ypos(j + 1) - (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // bottom edge
sx = ex = constrain(pgm_read_float(&ubl.mesh_index_to_xpos[i]), X_MIN_POS + 1, X_MAX_POS - 1); sx = ex = constrain(mesh_index_to_xpos(i), X_MIN_POS + 1, X_MAX_POS - 1);
sy = constrain(sy, Y_MIN_POS + 1, Y_MAX_POS - 1); sy = constrain(sy, Y_MIN_POS + 1, Y_MAX_POS - 1);
ey = constrain(ey, Y_MIN_POS + 1, Y_MAX_POS - 1); ey = constrain(ey, Y_MIN_POS + 1, Y_MAX_POS - 1);
if (position_is_reachable_raw_xy(sx, sy) && position_is_reachable_raw_xy(ex, ey)) { if (position_is_reachable_raw_xy(sx, sy) && position_is_reachable_raw_xy(ex, ey)) {
if (ubl.g26_debug_flag) { if (g26_debug_flag) {
SERIAL_ECHOPAIR(" Connecting with vertical line (sx=", sx); SERIAL_ECHOPAIR(" Connecting with vertical line (sx=", sx);
SERIAL_ECHOPAIR(", sy=", sy); SERIAL_ECHOPAIR(", sy=", sy);
SERIAL_ECHOPAIR(") -> (ex=", ex); SERIAL_ECHOPAIR(") -> (ex=", ex);
@ -506,7 +495,7 @@
SERIAL_EOL; SERIAL_EOL;
debug_current_and_destination(PSTR("Connecting vertical line.")); debug_current_and_destination(PSTR("Connecting vertical line."));
} }
print_line_from_here_to_there(LOGICAL_X_POSITION(sx), LOGICAL_Y_POSITION(sy), layer_height, LOGICAL_X_POSITION(ex), LOGICAL_Y_POSITION(ey), layer_height); print_line_from_here_to_there(LOGICAL_X_POSITION(sx), LOGICAL_Y_POSITION(sy), g26_layer_height, LOGICAL_X_POSITION(ex), LOGICAL_Y_POSITION(ey), g26_layer_height);
} }
bit_set(vertical_mesh_line_flags, i, j); // Mark it as done so we don't do it again, even if skipped bit_set(vertical_mesh_line_flags, i, j); // Mark it as done so we don't do it again, even if skipped
} }
@ -518,7 +507,7 @@
return false; return false;
} }
void move_to(const float &x, const float &y, const float &z, const float &e_delta) { void unified_bed_leveling::move_to(const float &x, const float &y, const float &z, const float &e_delta) {
float feed_value; float feed_value;
static float last_z = -999.99; static float last_z = -999.99;
@ -540,10 +529,10 @@
} }
// Check if X or Y is involved in the movement. // Check if X or Y is involved in the movement.
// Yes: a 'normal' movement. No: a retract() or un_retract() // Yes: a 'normal' movement. No: a retract() or recover()
feed_value = has_xy_component ? PLANNER_XY_FEEDRATE() / 10.0 : planner.max_feedrate_mm_s[E_AXIS] / 1.5; feed_value = has_xy_component ? PLANNER_XY_FEEDRATE() / 10.0 : planner.max_feedrate_mm_s[E_AXIS] / 1.5;
if (ubl.g26_debug_flag) SERIAL_ECHOLNPAIR("in move_to() feed_value for XY:", feed_value); if (g26_debug_flag) SERIAL_ECHOLNPAIR("in move_to() feed_value for XY:", feed_value);
destination[X_AXIS] = x; destination[X_AXIS] = x;
destination[Y_AXIS] = y; destination[Y_AXIS] = y;
@ -556,16 +545,16 @@
} }
void retract_filament(float where[XYZE]) { void unified_bed_leveling::retract_filament(float where[XYZE]) {
if (!g26_retracted) { // Only retract if we are not already retracted! if (!g26_retracted) { // Only retract if we are not already retracted!
g26_retracted = true; g26_retracted = true;
move_to(where[X_AXIS], where[Y_AXIS], where[Z_AXIS], -1.0 * retraction_multiplier); move_to(where[X_AXIS], where[Y_AXIS], where[Z_AXIS], -1.0 * g26_retraction_multiplier);
} }
} }
void un_retract_filament(float where[XYZE]) { void unified_bed_leveling::recover_filament(float where[XYZE]) {
if (g26_retracted) { // Only un-retract if we are retracted. if (g26_retracted) { // Only un-retract if we are retracted.
move_to(where[X_AXIS], where[Y_AXIS], where[Z_AXIS], 1.2 * retraction_multiplier); move_to(where[X_AXIS], where[Y_AXIS], where[Z_AXIS], 1.2 * g26_retraction_multiplier);
g26_retracted = false; g26_retracted = false;
} }
} }
@ -585,7 +574,7 @@
* segment of a 'circle'. The time this requires is very short and is easily saved by the other * segment of a 'circle'. The time this requires is very short and is easily saved by the other
* cases where the optimization comes into play. * cases where the optimization comes into play.
*/ */
void print_line_from_here_to_there(const float &sx, const float &sy, const float &sz, const float &ex, const float &ey, const float &ez) { void unified_bed_leveling::print_line_from_here_to_there(const float &sx, const float &sy, const float &sz, const float &ex, const float &ey, const float &ez) {
const float dx_s = current_position[X_AXIS] - sx, // find our distance from the start of the actual line segment const float dx_s = current_position[X_AXIS] - sx, // find our distance from the start of the actual line segment
dy_s = current_position[Y_AXIS] - sy, dy_s = current_position[Y_AXIS] - sy,
dist_start = HYPOT2(dx_s, dy_s), // We don't need to do a sqrt(), we can compare the distance^2 dist_start = HYPOT2(dx_s, dy_s), // We don't need to do a sqrt(), we can compare the distance^2
@ -613,9 +602,9 @@
move_to(sx, sy, sz, 0.0); // Get to the starting point with no extrusion / un-Z bump move_to(sx, sy, sz, 0.0); // Get to the starting point with no extrusion / un-Z bump
const float e_pos_delta = line_length * g26_e_axis_feedrate * extrusion_multiplier; const float e_pos_delta = line_length * g26_e_axis_feedrate * g26_extrusion_multiplier;
un_retract_filament(destination); recover_filament(destination);
move_to(ex, ey, ez, e_pos_delta); // Get to the ending point with an appropriate amount of extrusion move_to(ex, ey, ez, e_pos_delta); // Get to the ending point with an appropriate amount of extrusion
} }
@ -624,33 +613,33 @@
* parameters it made sense to turn them into static globals and get * parameters it made sense to turn them into static globals and get
* this code out of sight of the main routine. * this code out of sight of the main routine.
*/ */
bool parse_G26_parameters() { bool unified_bed_leveling::parse_G26_parameters() {
extrusion_multiplier = EXTRUSION_MULTIPLIER; g26_extrusion_multiplier = EXTRUSION_MULTIPLIER;
retraction_multiplier = RETRACTION_MULTIPLIER; g26_retraction_multiplier = RETRACTION_MULTIPLIER;
nozzle = NOZZLE; g26_nozzle = NOZZLE;
filament_diameter = FILAMENT; g26_filament_diameter = FILAMENT;
layer_height = LAYER_HEIGHT; g26_layer_height = LAYER_HEIGHT;
prime_length = PRIME_LENGTH; g26_prime_length = PRIME_LENGTH;
bed_temp = BED_TEMP; g26_bed_temp = BED_TEMP;
hotend_temp = HOTEND_TEMP; g26_hotend_temp = HOTEND_TEMP;
prime_flag = 0; g26_prime_flag = 0;
ooze_amount = code_seen('O') && code_has_value() ? code_value_linear_units() : OOZE_AMOUNT; g26_ooze_amount = code_seen('O') && code_has_value() ? code_value_linear_units() : OOZE_AMOUNT;
keep_heaters_on = code_seen('K') && code_value_bool(); g26_keep_heaters_on = code_seen('K') && code_value_bool();
continue_with_closest = code_seen('C') && code_value_bool(); g26_continue_with_closest = code_seen('C') && code_value_bool();
if (code_seen('B')) { if (code_seen('B')) {
bed_temp = code_value_temp_abs(); g26_bed_temp = code_value_temp_abs();
if (!WITHIN(bed_temp, 15, 140)) { if (!WITHIN(g26_bed_temp, 15, 140)) {
SERIAL_PROTOCOLLNPGM("?Specified bed temperature not plausible."); SERIAL_PROTOCOLLNPGM("?Specified bed temperature not plausible.");
return UBL_ERR; return UBL_ERR;
} }
} }
if (code_seen('L')) { if (code_seen('L')) {
layer_height = code_value_linear_units(); g26_layer_height = code_value_linear_units();
if (!WITHIN(layer_height, 0.0, 2.0)) { if (!WITHIN(g26_layer_height, 0.0, 2.0)) {
SERIAL_PROTOCOLLNPGM("?Specified layer height not plausible."); SERIAL_PROTOCOLLNPGM("?Specified layer height not plausible.");
return UBL_ERR; return UBL_ERR;
} }
@ -658,8 +647,8 @@
if (code_seen('Q')) { if (code_seen('Q')) {
if (code_has_value()) { if (code_has_value()) {
retraction_multiplier = code_value_float(); g26_retraction_multiplier = code_value_float();
if (!WITHIN(retraction_multiplier, 0.05, 15.0)) { if (!WITHIN(g26_retraction_multiplier, 0.05, 15.0)) {
SERIAL_PROTOCOLLNPGM("?Specified Retraction Multiplier not plausible."); SERIAL_PROTOCOLLNPGM("?Specified Retraction Multiplier not plausible.");
return UBL_ERR; return UBL_ERR;
} }
@ -671,8 +660,8 @@
} }
if (code_seen('S')) { if (code_seen('S')) {
nozzle = code_value_float(); g26_nozzle = code_value_float();
if (!WITHIN(nozzle, 0.1, 1.0)) { if (!WITHIN(g26_nozzle, 0.1, 1.0)) {
SERIAL_PROTOCOLLNPGM("?Specified nozzle size not plausible."); SERIAL_PROTOCOLLNPGM("?Specified nozzle size not plausible.");
return UBL_ERR; return UBL_ERR;
} }
@ -680,11 +669,11 @@
if (code_seen('P')) { if (code_seen('P')) {
if (!code_has_value()) if (!code_has_value())
prime_flag = -1; g26_prime_flag = -1;
else { else {
prime_flag++; g26_prime_flag++;
prime_length = code_value_linear_units(); g26_prime_length = code_value_linear_units();
if (!WITHIN(prime_length, 0.0, 25.0)) { if (!WITHIN(g26_prime_length, 0.0, 25.0)) {
SERIAL_PROTOCOLLNPGM("?Specified prime length not plausible."); SERIAL_PROTOCOLLNPGM("?Specified prime length not plausible.");
return UBL_ERR; return UBL_ERR;
} }
@ -692,21 +681,21 @@
} }
if (code_seen('F')) { if (code_seen('F')) {
filament_diameter = code_value_linear_units(); g26_filament_diameter = code_value_linear_units();
if (!WITHIN(filament_diameter, 1.0, 4.0)) { if (!WITHIN(g26_filament_diameter, 1.0, 4.0)) {
SERIAL_PROTOCOLLNPGM("?Specified filament size not plausible."); SERIAL_PROTOCOLLNPGM("?Specified filament size not plausible.");
return UBL_ERR; return UBL_ERR;
} }
} }
extrusion_multiplier *= sq(1.75) / sq(filament_diameter); // If we aren't using 1.75mm filament, we need to g26_extrusion_multiplier *= sq(1.75) / sq(g26_filament_diameter); // If we aren't using 1.75mm filament, we need to
// scale up or down the length needed to get the // scale up or down the length needed to get the
// same volume of filament // same volume of filament
extrusion_multiplier *= filament_diameter * sq(nozzle) / sq(0.3); // Scale up by nozzle size g26_extrusion_multiplier *= g26_filament_diameter * sq(g26_nozzle) / sq(0.3); // Scale up by nozzle size
if (code_seen('H')) { if (code_seen('H')) {
hotend_temp = code_value_temp_abs(); g26_hotend_temp = code_value_temp_abs();
if (!WITHIN(hotend_temp, 165, 280)) { if (!WITHIN(g26_hotend_temp, 165, 280)) {
SERIAL_PROTOCOLLNPGM("?Specified nozzle temperature not plausible."); SERIAL_PROTOCOLLNPGM("?Specified nozzle temperature not plausible.");
return UBL_ERR; return UBL_ERR;
} }
@ -723,9 +712,9 @@
return UBL_ERR; return UBL_ERR;
} }
x_pos = code_seen('X') ? code_value_linear_units() : current_position[X_AXIS]; g26_x_pos = code_seen('X') ? code_value_linear_units() : current_position[X_AXIS];
y_pos = code_seen('Y') ? code_value_linear_units() : current_position[Y_AXIS]; g26_y_pos = code_seen('Y') ? code_value_linear_units() : current_position[Y_AXIS];
if (!position_is_reachable_xy(x_pos, y_pos)) { if (!position_is_reachable_xy(g26_x_pos, g26_y_pos)) {
SERIAL_PROTOCOLLNPGM("?Specified X,Y coordinate out of bounds."); SERIAL_PROTOCOLLNPGM("?Specified X,Y coordinate out of bounds.");
return UBL_ERR; return UBL_ERR;
} }
@ -733,12 +722,12 @@
/** /**
* Wait until all parameters are verified before altering the state! * Wait until all parameters are verified before altering the state!
*/ */
ubl.state.active = !code_seen('D'); state.active = !code_seen('D');
return UBL_OK; return UBL_OK;
} }
bool exit_from_g26() { bool unified_bed_leveling::exit_from_g26() {
lcd_reset_alert_level(); lcd_reset_alert_level();
lcd_setstatuspgm(PSTR("Leaving G26")); lcd_setstatuspgm(PSTR("Leaving G26"));
while (ubl_lcd_clicked()) idle(); while (ubl_lcd_clicked()) idle();
@ -749,18 +738,18 @@
* Turn on the bed and nozzle heat and * Turn on the bed and nozzle heat and
* wait for them to get up to temperature. * wait for them to get up to temperature.
*/ */
bool turn_on_heaters() { bool unified_bed_leveling::turn_on_heaters() {
millis_t next; millis_t next;
#if HAS_TEMP_BED #if HAS_TEMP_BED
#if ENABLED(ULTRA_LCD) #if ENABLED(ULTRA_LCD)
if (bed_temp > 25) { if (g26_bed_temp > 25) {
lcd_setstatuspgm(PSTR("G26 Heating Bed."), 99); lcd_setstatuspgm(PSTR("G26 Heating Bed."), 99);
lcd_quick_feedback(); lcd_quick_feedback();
#endif #endif
ubl.has_control_of_lcd_panel = true; has_control_of_lcd_panel = true;
thermalManager.setTargetBed(bed_temp); thermalManager.setTargetBed(g26_bed_temp);
next = millis() + 5000UL; next = millis() + 5000UL;
while (abs(thermalManager.degBed() - bed_temp) > 3) { while (abs(thermalManager.degBed() - g26_bed_temp) > 3) {
if (ubl_lcd_clicked()) return exit_from_g26(); if (ubl_lcd_clicked()) return exit_from_g26();
if (PENDING(millis(), next)) { if (PENDING(millis(), next)) {
next = millis() + 5000UL; next = millis() + 5000UL;
@ -776,8 +765,8 @@
#endif #endif
// Start heating the nozzle and wait for it to reach temperature. // Start heating the nozzle and wait for it to reach temperature.
thermalManager.setTargetHotend(hotend_temp, 0); thermalManager.setTargetHotend(g26_hotend_temp, 0);
while (abs(thermalManager.degHotend(0) - hotend_temp) > 3) { while (abs(thermalManager.degHotend(0) - g26_hotend_temp) > 3) {
if (ubl_lcd_clicked()) return exit_from_g26(); if (ubl_lcd_clicked()) return exit_from_g26();
if (PENDING(millis(), next)) { if (PENDING(millis(), next)) {
next = millis() + 5000UL; next = millis() + 5000UL;
@ -798,19 +787,19 @@
/** /**
* Prime the nozzle if needed. Return true on error. * Prime the nozzle if needed. Return true on error.
*/ */
bool prime_nozzle() { bool unified_bed_leveling::prime_nozzle() {
float Total_Prime = 0.0; float Total_Prime = 0.0;
if (prime_flag == -1) { // The user wants to control how much filament gets purged if (g26_prime_flag == -1) { // The user wants to control how much filament gets purged
ubl.has_control_of_lcd_panel = true; has_control_of_lcd_panel = true;
lcd_setstatuspgm(PSTR("User-Controlled Prime"), 99); lcd_setstatuspgm(PSTR("User-Controlled Prime"), 99);
chirp_at_user(); chirp_at_user();
set_destination_to_current(); set_destination_to_current();
un_retract_filament(destination); // Make sure G26 doesn't think the filament is retracted(). recover_filament(destination); // Make sure G26 doesn't think the filament is retracted().
while (!ubl_lcd_clicked()) { while (!ubl_lcd_clicked()) {
chirp_at_user(); chirp_at_user();
@ -838,7 +827,7 @@
lcd_quick_feedback(); lcd_quick_feedback();
#endif #endif
ubl.has_control_of_lcd_panel = false; has_control_of_lcd_panel = false;
} }
else { else {
@ -847,7 +836,7 @@
lcd_quick_feedback(); lcd_quick_feedback();
#endif #endif
set_destination_to_current(); set_destination_to_current();
destination[E_AXIS] += prime_length; destination[E_AXIS] += g26_prime_length;
G26_line_to_destination(planner.max_feedrate_mm_s[E_AXIS] / 15.0); G26_line_to_destination(planner.max_feedrate_mm_s[E_AXIS] / 15.0);
stepper.synchronize(); stepper.synchronize();
set_destination_to_current(); set_destination_to_current();

12
Marlin/Marlin_main.cpp

@ -3416,8 +3416,8 @@ inline void gcode_G7(
return; return;
} }
destination[X_AXIS] = hasI ? pgm_read_float(&ubl.mesh_index_to_xpos[ix]) : current_position[X_AXIS]; destination[X_AXIS] = hasI ? ubl.mesh_index_to_xpos(ix) : current_position[X_AXIS];
destination[Y_AXIS] = hasJ ? pgm_read_float(&ubl.mesh_index_to_ypos[iy]) : current_position[Y_AXIS]; destination[Y_AXIS] = hasJ ? ubl.mesh_index_to_ypos(iy) : current_position[Y_AXIS];
destination[Z_AXIS] = current_position[Z_AXIS]; //todo: perhaps add Z-move support? destination[Z_AXIS] = current_position[Z_AXIS]; //todo: perhaps add Z-move support?
destination[E_AXIS] = current_position[E_AXIS]; destination[E_AXIS] = current_position[E_AXIS];
@ -8704,7 +8704,7 @@ void quickstop_stepper() {
const bool hasZ = code_seen('Z'), hasQ = !hasZ && code_seen('Q'); const bool hasZ = code_seen('Z'), hasQ = !hasZ && code_seen('Q');
if (hasC) { if (hasC) {
const mesh_index_pair location = find_closest_mesh_point_of_type(REAL, current_position[X_AXIS], current_position[Y_AXIS], USE_NOZZLE_AS_REFERENCE, NULL, false); const mesh_index_pair location = ubl.find_closest_mesh_point_of_type(REAL, current_position[X_AXIS], current_position[Y_AXIS], USE_NOZZLE_AS_REFERENCE, NULL, false);
ix = location.x_index; ix = location.x_index;
iy = location.y_index; iy = location.y_index;
} }
@ -11467,7 +11467,7 @@ void set_current_from_steppers_for_axis(const AxisEnum axis) {
#if ENABLED(AUTO_BED_LEVELING_UBL) #if ENABLED(AUTO_BED_LEVELING_UBL)
const float fr_scaled = MMS_SCALED(feedrate_mm_s); const float fr_scaled = MMS_SCALED(feedrate_mm_s);
if (ubl.state.active) { if (ubl.state.active) {
ubl_line_to_destination_cartesian(fr_scaled, active_extruder); ubl.line_to_destination_cartesian(fr_scaled, active_extruder);
return true; return true;
} }
else else
@ -11612,14 +11612,14 @@ void prepare_move_to_destination() {
if ( if (
#if IS_KINEMATIC #if IS_KINEMATIC
#if UBL_DELTA #if UBL_DELTA
ubl_prepare_linear_move_to(destination, feedrate_mm_s) ubl.prepare_linear_move_to(destination, feedrate_mm_s)
#else #else
prepare_kinematic_move_to(destination) prepare_kinematic_move_to(destination)
#endif #endif
#elif ENABLED(DUAL_X_CARRIAGE) #elif ENABLED(DUAL_X_CARRIAGE)
prepare_move_to_destination_dualx() prepare_move_to_destination_dualx()
#elif UBL_DELTA // will work for CARTESIAN too (smaller segments follow mesh more closely) #elif UBL_DELTA // will work for CARTESIAN too (smaller segments follow mesh more closely)
ubl_prepare_linear_move_to(destination, feedrate_mm_s) ubl.prepare_linear_move_to(destination, feedrate_mm_s)
#else #else
prepare_move_to_destination_cartesian() prepare_move_to_destination_cartesian()
#endif #endif

2
Marlin/fastio.h

@ -58,7 +58,7 @@
#endif #endif
#ifndef _BV #ifndef _BV
#define _BV(PIN) (1 << PIN) #define _BV(PIN) (1UL << PIN)
#endif #endif
/** /**

8
Marlin/ubl.cpp

@ -69,8 +69,8 @@
// 15 is the maximum nubmer of grid points supported + 1 safety margin for now, // 15 is the maximum nubmer of grid points supported + 1 safety margin for now,
// until determinism prevails // until determinism prevails
constexpr float unified_bed_leveling::mesh_index_to_xpos[16], constexpr float unified_bed_leveling::_mesh_index_to_xpos[16],
unified_bed_leveling::mesh_index_to_ypos[16]; unified_bed_leveling::_mesh_index_to_ypos[16];
bool unified_bed_leveling::g26_debug_flag = false, bool unified_bed_leveling::g26_debug_flag = false,
unified_bed_leveling::has_control_of_lcd_panel = false; unified_bed_leveling::has_control_of_lcd_panel = false;
@ -117,8 +117,8 @@
SERIAL_EOL; SERIAL_EOL;
} }
const float current_xi = ubl.get_cell_index_x(current_position[X_AXIS] + (MESH_X_DIST) / 2.0), const float current_xi = get_cell_index_x(current_position[X_AXIS] + (MESH_X_DIST) / 2.0),
current_yi = ubl.get_cell_index_y(current_position[Y_AXIS] + (MESH_Y_DIST) / 2.0); current_yi = get_cell_index_y(current_position[Y_AXIS] + (MESH_Y_DIST) / 2.0);
for (int8_t j = GRID_MAX_POINTS_Y - 1; j >= 0; j--) { for (int8_t j = GRID_MAX_POINTS_Y - 1; j >= 0; j--) {
for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) { for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {

161
Marlin/ubl.h

@ -53,30 +53,16 @@
// ubl_motion.cpp // ubl_motion.cpp
void debug_current_and_destination(const char * const title); void debug_current_and_destination(const char * const title);
void ubl_line_to_destination_cartesian(const float&, uint8_t);
bool ubl_prepare_linear_move_to(const float ltarget[XYZE], const float &feedrate );
// ubl_G29.cpp // ubl_G29.cpp
enum MeshPointType { INVALID, REAL, SET_IN_BITMAP }; enum MeshPointType { INVALID, REAL, SET_IN_BITMAP };
void dump(char * const str, const float &f);
void probe_entire_mesh(const float&, const float&, const bool, const bool, const bool);
float measure_business_card_thickness(float&);
mesh_index_pair find_closest_mesh_point_of_type(const MeshPointType, const float&, const float&, const bool, unsigned int[16], bool);
void shift_mesh_height();
void fine_tune_mesh(const float&, const float&, const bool);
bool g29_parameter_parsing();
void g29_eeprom_dump();
void g29_compare_current_mesh_to_stored_mesh();
// External references // External references
char *ftostr43sign(const float&, char); char *ftostr43sign(const float&, char);
bool ubl_lcd_clicked(); bool ubl_lcd_clicked();
void home_all_axes(); void home_all_axes();
void gcode_G26();
void gcode_G29();
extern uint8_t ubl_cnt; extern uint8_t ubl_cnt;
@ -101,26 +87,81 @@
static float last_specified_z; static float last_specified_z;
static int g29_verbose_level,
g29_phase_value,
g29_repetition_cnt,
g29_storage_slot,
g29_map_type,
g29_grid_size;
static bool g29_c_flag, g29_x_flag, g29_y_flag;
static float g29_x_pos, g29_y_pos,
g29_card_thickness,
g29_constant;
#if ENABLED(UBL_G26_MESH_VALIDATION)
static float g26_extrusion_multiplier,
g26_retraction_multiplier,
g26_nozzle,
g26_filament_diameter,
g26_prime_length,
g26_x_pos, g26_y_pos,
g26_ooze_amount,
g26_layer_height;
static int16_t g26_bed_temp,
g26_hotend_temp,
g26_repeats;
static int8_t g26_prime_flag;
static bool g26_continue_with_closest, g26_keep_heaters_on;
#endif
static float measure_point_with_encoder();
static float measure_business_card_thickness(float&);
static bool g29_parameter_parsing();
static void find_mean_mesh_height();
static void shift_mesh_height();
static void probe_entire_mesh(const float &lx, const float &ly, const bool do_ubl_mesh_map, const bool stow_probe, bool do_furthest);
static void manually_probe_remaining_mesh(const float&, const float&, const float&, const float&, const bool);
static void tilt_mesh_based_on_3pts(const float &z1, const float &z2, const float &z3);
static void tilt_mesh_based_on_probed_grid(const bool do_ubl_mesh_map);
static void g29_what_command();
static void g29_eeprom_dump();
static void g29_compare_current_mesh_to_stored_mesh();
static void fine_tune_mesh(const float &lx, const float &ly, const bool do_ubl_mesh_map);
static bool smart_fill_one(const uint8_t x, const uint8_t y, const int8_t xdir, const int8_t ydir);
static void smart_fill_mesh();
#if ENABLED(UBL_G26_MESH_VALIDATION)
static bool exit_from_g26();
static bool parse_G26_parameters();
static void G26_line_to_destination(const float &feed_rate);
static mesh_index_pair find_closest_circle_to_print(const float&, const float&);
static bool look_for_lines_to_connect();
static bool turn_on_heaters();
static bool prime_nozzle();
static void retract_filament(float where[XYZE]);
static void recover_filament(float where[XYZE]);
static void print_line_from_here_to_there(const float&, const float&, const float&, const float&, const float&, const float&);
static void move_to(const float&, const float&, const float&, const float&);
#endif
public: public:
void echo_name(); static void echo_name();
void report_state(); static void report_state();
void find_mean_mesh_height(); static void save_ubl_active_state_and_disable();
void shift_mesh_height(); static void restore_ubl_active_state_and_leave();
void probe_entire_mesh(const float &lx, const float &ly, const bool do_ubl_mesh_map, const bool stow_probe, bool do_furthest); static void display_map(const int);
void tilt_mesh_based_on_3pts(const float &z1, const float &z2, const float &z3); static mesh_index_pair find_closest_mesh_point_of_type(const MeshPointType, const float&, const float&, const bool, unsigned int[16], bool);
void tilt_mesh_based_on_probed_grid(const bool do_ubl_mesh_map); static void reset();
void save_ubl_active_state_and_disable(); static void invalidate();
void restore_ubl_active_state_and_leave(); static bool sanity_check();
void g29_what_command();
void g29_eeprom_dump(); static void G29() _O0; // O0 for no optimization
void g29_compare_current_mesh_to_stored_mesh(); static void smart_fill_wlsf(const float &) _O2; // O2 gives smaller code than Os on A2560
void fine_tune_mesh(const float &lx, const float &ly, const bool do_ubl_mesh_map);
void smart_fill_mesh(); #if ENABLED(UBL_G26_MESH_VALIDATION)
void display_map(const int); static void G26();
void reset(); #endif
void invalidate();
bool sanity_check();
static ubl_state state; static ubl_state state;
@ -128,7 +169,7 @@
// 15 is the maximum nubmer of grid points supported + 1 safety margin for now, // 15 is the maximum nubmer of grid points supported + 1 safety margin for now,
// until determinism prevails // until determinism prevails
constexpr static float mesh_index_to_xpos[16] PROGMEM = { constexpr static float _mesh_index_to_xpos[16] PROGMEM = {
UBL_MESH_MIN_X + 0 * (MESH_X_DIST), UBL_MESH_MIN_X + 1 * (MESH_X_DIST), UBL_MESH_MIN_X + 0 * (MESH_X_DIST), UBL_MESH_MIN_X + 1 * (MESH_X_DIST),
UBL_MESH_MIN_X + 2 * (MESH_X_DIST), UBL_MESH_MIN_X + 3 * (MESH_X_DIST), UBL_MESH_MIN_X + 2 * (MESH_X_DIST), UBL_MESH_MIN_X + 3 * (MESH_X_DIST),
UBL_MESH_MIN_X + 4 * (MESH_X_DIST), UBL_MESH_MIN_X + 5 * (MESH_X_DIST), UBL_MESH_MIN_X + 4 * (MESH_X_DIST), UBL_MESH_MIN_X + 5 * (MESH_X_DIST),
@ -139,7 +180,7 @@
UBL_MESH_MIN_X + 14 * (MESH_X_DIST), UBL_MESH_MIN_X + 15 * (MESH_X_DIST) UBL_MESH_MIN_X + 14 * (MESH_X_DIST), UBL_MESH_MIN_X + 15 * (MESH_X_DIST)
}; };
constexpr static float mesh_index_to_ypos[16] PROGMEM = { constexpr static float _mesh_index_to_ypos[16] PROGMEM = {
UBL_MESH_MIN_Y + 0 * (MESH_Y_DIST), UBL_MESH_MIN_Y + 1 * (MESH_Y_DIST), UBL_MESH_MIN_Y + 0 * (MESH_Y_DIST), UBL_MESH_MIN_Y + 1 * (MESH_Y_DIST),
UBL_MESH_MIN_Y + 2 * (MESH_Y_DIST), UBL_MESH_MIN_Y + 3 * (MESH_Y_DIST), UBL_MESH_MIN_Y + 2 * (MESH_Y_DIST), UBL_MESH_MIN_Y + 3 * (MESH_Y_DIST),
UBL_MESH_MIN_Y + 4 * (MESH_Y_DIST), UBL_MESH_MIN_Y + 5 * (MESH_Y_DIST), UBL_MESH_MIN_Y + 4 * (MESH_Y_DIST), UBL_MESH_MIN_Y + 5 * (MESH_Y_DIST),
@ -156,16 +197,16 @@
unified_bed_leveling(); unified_bed_leveling();
FORCE_INLINE void set_z(const int8_t px, const int8_t py, const float &z) { z_values[px][py] = z; } FORCE_INLINE static void set_z(const int8_t px, const int8_t py, const float &z) { z_values[px][py] = z; }
int8_t get_cell_index_x(const float &x) { static int8_t get_cell_index_x(const float &x) {
const int8_t cx = (x - (UBL_MESH_MIN_X)) * (1.0 / (MESH_X_DIST)); const int8_t cx = (x - (UBL_MESH_MIN_X)) * (1.0 / (MESH_X_DIST));
return constrain(cx, 0, (GRID_MAX_POINTS_X) - 1); // -1 is appropriate if we want all movement to the X_MAX return constrain(cx, 0, (GRID_MAX_POINTS_X) - 1); // -1 is appropriate if we want all movement to the X_MAX
} // position. But with this defined this way, it is possible } // position. But with this defined this way, it is possible
// to extrapolate off of this point even further out. Probably // to extrapolate off of this point even further out. Probably
// that is OK because something else should be keeping that from // that is OK because something else should be keeping that from
// happening and should not be worried about at this level. // happening and should not be worried about at this level.
int8_t get_cell_index_y(const float &y) { static int8_t get_cell_index_y(const float &y) {
const int8_t cy = (y - (UBL_MESH_MIN_Y)) * (1.0 / (MESH_Y_DIST)); const int8_t cy = (y - (UBL_MESH_MIN_Y)) * (1.0 / (MESH_Y_DIST));
return constrain(cy, 0, (GRID_MAX_POINTS_Y) - 1); // -1 is appropriate if we want all movement to the Y_MAX return constrain(cy, 0, (GRID_MAX_POINTS_Y) - 1); // -1 is appropriate if we want all movement to the Y_MAX
} // position. But with this defined this way, it is possible } // position. But with this defined this way, it is possible
@ -173,12 +214,12 @@
// that is OK because something else should be keeping that from // that is OK because something else should be keeping that from
// happening and should not be worried about at this level. // happening and should not be worried about at this level.
int8_t find_closest_x_index(const float &x) { static int8_t find_closest_x_index(const float &x) {
const int8_t px = (x - (UBL_MESH_MIN_X) + (MESH_X_DIST) * 0.5) * (1.0 / (MESH_X_DIST)); const int8_t px = (x - (UBL_MESH_MIN_X) + (MESH_X_DIST) * 0.5) * (1.0 / (MESH_X_DIST));
return WITHIN(px, 0, GRID_MAX_POINTS_X - 1) ? px : -1; return WITHIN(px, 0, GRID_MAX_POINTS_X - 1) ? px : -1;
} }
int8_t find_closest_y_index(const float &y) { static int8_t find_closest_y_index(const float &y) {
const int8_t py = (y - (UBL_MESH_MIN_Y) + (MESH_Y_DIST) * 0.5) * (1.0 / (MESH_Y_DIST)); const int8_t py = (y - (UBL_MESH_MIN_Y) + (MESH_Y_DIST) * 0.5) * (1.0 / (MESH_Y_DIST));
return WITHIN(py, 0, GRID_MAX_POINTS_Y - 1) ? py : -1; return WITHIN(py, 0, GRID_MAX_POINTS_Y - 1) ? py : -1;
} }
@ -198,7 +239,7 @@
* It is fairly expensive with its 4 floating point additions and 2 floating point * It is fairly expensive with its 4 floating point additions and 2 floating point
* multiplications. * multiplications.
*/ */
FORCE_INLINE float calc_z0(const float &a0, const float &a1, const float &z1, const float &a2, const float &z2) { FORCE_INLINE static float calc_z0(const float &a0, const float &a1, const float &z1, const float &a2, const float &z2) {
return z1 + (z2 - z1) * (a0 - a1) / (a2 - a1); return z1 + (z2 - z1) * (a0 - a1) / (a2 - a1);
} }
@ -206,7 +247,7 @@
* z_correction_for_x_on_horizontal_mesh_line is an optimization for * z_correction_for_x_on_horizontal_mesh_line is an optimization for
* the rare occasion when a point lies exactly on a Mesh line (denoted by index yi). * the rare occasion when a point lies exactly on a Mesh line (denoted by index yi).
*/ */
inline float z_correction_for_x_on_horizontal_mesh_line(const float &lx0, const int x1_i, const int yi) { inline static float z_correction_for_x_on_horizontal_mesh_line(const float &lx0, const int x1_i, const int yi) {
if (!WITHIN(x1_i, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(yi, 0, GRID_MAX_POINTS_Y - 1)) { if (!WITHIN(x1_i, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(yi, 0, GRID_MAX_POINTS_Y - 1)) {
serialprintPGM( !WITHIN(x1_i, 0, GRID_MAX_POINTS_X - 1) ? PSTR("x1l_i") : PSTR("yi") ); serialprintPGM( !WITHIN(x1_i, 0, GRID_MAX_POINTS_X - 1) ? PSTR("x1l_i") : PSTR("yi") );
SERIAL_ECHOPAIR(" out of bounds in z_correction_for_x_on_horizontal_mesh_line(lx0=", lx0); SERIAL_ECHOPAIR(" out of bounds in z_correction_for_x_on_horizontal_mesh_line(lx0=", lx0);
@ -217,7 +258,7 @@
return NAN; return NAN;
} }
const float xratio = (RAW_X_POSITION(lx0) - pgm_read_float(&mesh_index_to_xpos[x1_i])) * (1.0 / (MESH_X_DIST)), const float xratio = (RAW_X_POSITION(lx0) - mesh_index_to_xpos(x1_i)) * (1.0 / (MESH_X_DIST)),
z1 = z_values[x1_i][yi]; z1 = z_values[x1_i][yi];
return z1 + xratio * (z_values[x1_i + 1][yi] - z1); return z1 + xratio * (z_values[x1_i + 1][yi] - z1);
@ -226,7 +267,7 @@
// //
// See comments above for z_correction_for_x_on_horizontal_mesh_line // See comments above for z_correction_for_x_on_horizontal_mesh_line
// //
inline float z_correction_for_y_on_vertical_mesh_line(const float &ly0, const int xi, const int y1_i) { inline static float z_correction_for_y_on_vertical_mesh_line(const float &ly0, const int xi, const int y1_i) {
if (!WITHIN(xi, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(y1_i, 0, GRID_MAX_POINTS_Y - 1)) { if (!WITHIN(xi, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(y1_i, 0, GRID_MAX_POINTS_Y - 1)) {
serialprintPGM( !WITHIN(xi, 0, GRID_MAX_POINTS_X - 1) ? PSTR("xi") : PSTR("yl_i") ); serialprintPGM( !WITHIN(xi, 0, GRID_MAX_POINTS_X - 1) ? PSTR("xi") : PSTR("yl_i") );
SERIAL_ECHOPAIR(" out of bounds in z_correction_for_y_on_vertical_mesh_line(ly0=", ly0); SERIAL_ECHOPAIR(" out of bounds in z_correction_for_y_on_vertical_mesh_line(ly0=", ly0);
@ -237,7 +278,7 @@
return NAN; return NAN;
} }
const float yratio = (RAW_Y_POSITION(ly0) - pgm_read_float(&mesh_index_to_ypos[y1_i])) * (1.0 / (MESH_Y_DIST)), const float yratio = (RAW_Y_POSITION(ly0) - mesh_index_to_ypos(y1_i)) * (1.0 / (MESH_Y_DIST)),
z1 = z_values[xi][y1_i]; z1 = z_values[xi][y1_i];
return z1 + yratio * (z_values[xi][y1_i + 1] - z1); return z1 + yratio * (z_values[xi][y1_i + 1] - z1);
@ -249,7 +290,7 @@
* Z-Height at both ends. Then it does a linear interpolation of these heights based * Z-Height at both ends. Then it does a linear interpolation of these heights based
* on the Y position within the cell. * on the Y position within the cell.
*/ */
float get_z_correction(const float &lx0, const float &ly0) { static float get_z_correction(const float &lx0, const float &ly0) {
const int8_t cx = get_cell_index_x(RAW_X_POSITION(lx0)), const int8_t cx = get_cell_index_x(RAW_X_POSITION(lx0)),
cy = get_cell_index_y(RAW_Y_POSITION(ly0)); cy = get_cell_index_y(RAW_Y_POSITION(ly0));
@ -268,16 +309,16 @@
} }
const float z1 = calc_z0(RAW_X_POSITION(lx0), const float z1 = calc_z0(RAW_X_POSITION(lx0),
pgm_read_float(&mesh_index_to_xpos[cx]), z_values[cx][cy], mesh_index_to_xpos(cx), z_values[cx][cy],
pgm_read_float(&mesh_index_to_xpos[cx + 1]), z_values[cx + 1][cy]); mesh_index_to_xpos(cx + 1), z_values[cx + 1][cy]);
const float z2 = calc_z0(RAW_X_POSITION(lx0), const float z2 = calc_z0(RAW_X_POSITION(lx0),
pgm_read_float(&mesh_index_to_xpos[cx]), z_values[cx][cy + 1], mesh_index_to_xpos(cx), z_values[cx][cy + 1],
pgm_read_float(&mesh_index_to_xpos[cx + 1]), z_values[cx + 1][cy + 1]); mesh_index_to_xpos(cx + 1), z_values[cx + 1][cy + 1]);
float z0 = calc_z0(RAW_Y_POSITION(ly0), float z0 = calc_z0(RAW_Y_POSITION(ly0),
pgm_read_float(&mesh_index_to_ypos[cy]), z1, mesh_index_to_ypos(cy), z1,
pgm_read_float(&mesh_index_to_ypos[cy + 1]), z2); mesh_index_to_ypos(cy + 1), z2);
#if ENABLED(DEBUG_LEVELING_FEATURE) #if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(MESH_ADJUST)) { if (DEBUGGING(MESH_ADJUST)) {
@ -324,7 +365,7 @@
* Returns 0.0 if Z is past the specified 'Fade Height'. * Returns 0.0 if Z is past the specified 'Fade Height'.
*/ */
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
inline float fade_scaling_factor_for_z(const float &lz) { static inline float fade_scaling_factor_for_z(const float &lz) {
if (planner.z_fade_height == 0.0) return 1.0; if (planner.z_fade_height == 0.0) return 1.0;
static float fade_scaling_factor = 1.0; static float fade_scaling_factor = 1.0;
const float rz = RAW_Z_POSITION(lz); const float rz = RAW_Z_POSITION(lz);
@ -338,14 +379,24 @@
return fade_scaling_factor; return fade_scaling_factor;
} }
#else #else
inline float fade_scaling_factor_for_z(const float &lz) { FORCE_INLINE static float fade_scaling_factor_for_z(const float &lz) { return 1.0; }
return 1.0;
}
#endif #endif
FORCE_INLINE static float mesh_index_to_xpos(const uint8_t i) { return pgm_read_float(&_mesh_index_to_xpos[i]); }
FORCE_INLINE static float mesh_index_to_ypos(const uint8_t i) { return pgm_read_float(&_mesh_index_to_ypos[i]); }
static bool prepare_linear_move_to(const float ltarget[XYZE], const float &feedrate);
static void line_to_destination_cartesian(const float &fr, uint8_t e);
}; // class unified_bed_leveling }; // class unified_bed_leveling
extern unified_bed_leveling ubl; extern unified_bed_leveling ubl;
#if ENABLED(UBL_G26_MESH_VALIDATION)
FORCE_INLINE void gcode_G26() { ubl.G26(); }
#endif
FORCE_INLINE void gcode_G29() { ubl.G29(); }
#endif // AUTO_BED_LEVELING_UBL #endif // AUTO_BED_LEVELING_UBL
#endif // UNIFIED_BED_LEVELING_H #endif // UNIFIED_BED_LEVELING_H

453
Marlin/ubl_G29.cpp

File diff suppressed because it is too large

128
Marlin/ubl_motion.cpp

@ -85,7 +85,7 @@
} }
void ubl_line_to_destination_cartesian(const float &feed_rate, uint8_t extruder) { void unified_bed_leveling::line_to_destination_cartesian(const float &feed_rate, uint8_t extruder) {
/** /**
* Much of the nozzle movement will be within the same cell. So we will do as little computation * Much of the nozzle movement will be within the same cell. So we will do as little computation
* as possible to determine if this is the case. If this move is within the same cell, we will * as possible to determine if this is the case. If this move is within the same cell, we will
@ -104,19 +104,19 @@
destination[E_AXIS] destination[E_AXIS]
}; };
const int cell_start_xi = ubl.get_cell_index_x(RAW_X_POSITION(start[X_AXIS])), const int cell_start_xi = get_cell_index_x(RAW_X_POSITION(start[X_AXIS])),
cell_start_yi = ubl.get_cell_index_y(RAW_Y_POSITION(start[Y_AXIS])), cell_start_yi = get_cell_index_y(RAW_Y_POSITION(start[Y_AXIS])),
cell_dest_xi = ubl.get_cell_index_x(RAW_X_POSITION(end[X_AXIS])), cell_dest_xi = get_cell_index_x(RAW_X_POSITION(end[X_AXIS])),
cell_dest_yi = ubl.get_cell_index_y(RAW_Y_POSITION(end[Y_AXIS])); cell_dest_yi = get_cell_index_y(RAW_Y_POSITION(end[Y_AXIS]));
if (ubl.g26_debug_flag) { if (g26_debug_flag) {
SERIAL_ECHOPAIR(" ubl_line_to_destination(xe=", end[X_AXIS]); SERIAL_ECHOPAIR(" ubl.line_to_destination(xe=", end[X_AXIS]);
SERIAL_ECHOPAIR(", ye=", end[Y_AXIS]); SERIAL_ECHOPAIR(", ye=", end[Y_AXIS]);
SERIAL_ECHOPAIR(", ze=", end[Z_AXIS]); SERIAL_ECHOPAIR(", ze=", end[Z_AXIS]);
SERIAL_ECHOPAIR(", ee=", end[E_AXIS]); SERIAL_ECHOPAIR(", ee=", end[E_AXIS]);
SERIAL_CHAR(')'); SERIAL_CHAR(')');
SERIAL_EOL; SERIAL_EOL;
debug_current_and_destination(PSTR("Start of ubl_line_to_destination()")); debug_current_and_destination(PSTR("Start of ubl.line_to_destination()"));
} }
if (cell_start_xi == cell_dest_xi && cell_start_yi == cell_dest_yi) { // if the whole move is within the same cell, if (cell_start_xi == cell_dest_xi && cell_start_yi == cell_dest_yi) { // if the whole move is within the same cell,
@ -132,11 +132,11 @@
// Note: There is no Z Correction in this case. We are off the grid and don't know what // Note: There is no Z Correction in this case. We are off the grid and don't know what
// a reasonable correction would be. // a reasonable correction would be.
planner._buffer_line(end[X_AXIS], end[Y_AXIS], end[Z_AXIS] + ubl.state.z_offset, end[E_AXIS], feed_rate, extruder); planner._buffer_line(end[X_AXIS], end[Y_AXIS], end[Z_AXIS] + state.z_offset, end[E_AXIS], feed_rate, extruder);
set_current_to_destination(); set_current_to_destination();
if (ubl.g26_debug_flag) if (g26_debug_flag)
debug_current_and_destination(PSTR("out of bounds in ubl_line_to_destination()")); debug_current_and_destination(PSTR("out of bounds in ubl.line_to_destination()"));
return; return;
} }
@ -152,20 +152,20 @@
* to create a 1-over number for us. That will allow us to do a floating point multiply instead of a floating point divide. * to create a 1-over number for us. That will allow us to do a floating point multiply instead of a floating point divide.
*/ */
const float xratio = (RAW_X_POSITION(end[X_AXIS]) - pgm_read_float(&ubl.mesh_index_to_xpos[cell_dest_xi])) * (1.0 / (MESH_X_DIST)), const float xratio = (RAW_X_POSITION(end[X_AXIS]) - mesh_index_to_xpos(cell_dest_xi)) * (1.0 / (MESH_X_DIST)),
z1 = ubl.z_values[cell_dest_xi ][cell_dest_yi ] + xratio * z1 = z_values[cell_dest_xi ][cell_dest_yi ] + xratio *
(ubl.z_values[cell_dest_xi + 1][cell_dest_yi ] - ubl.z_values[cell_dest_xi][cell_dest_yi ]), (z_values[cell_dest_xi + 1][cell_dest_yi ] - z_values[cell_dest_xi][cell_dest_yi ]),
z2 = ubl.z_values[cell_dest_xi ][cell_dest_yi + 1] + xratio * z2 = z_values[cell_dest_xi ][cell_dest_yi + 1] + xratio *
(ubl.z_values[cell_dest_xi + 1][cell_dest_yi + 1] - ubl.z_values[cell_dest_xi][cell_dest_yi + 1]); (z_values[cell_dest_xi + 1][cell_dest_yi + 1] - z_values[cell_dest_xi][cell_dest_yi + 1]);
// we are done with the fractional X distance into the cell. Now with the two Z-Heights we have calculated, we // we are done with the fractional X distance into the cell. Now with the two Z-Heights we have calculated, we
// are going to apply the Y-Distance into the cell to interpolate the final Z correction. // are going to apply the Y-Distance into the cell to interpolate the final Z correction.
const float yratio = (RAW_Y_POSITION(end[Y_AXIS]) - pgm_read_float(&ubl.mesh_index_to_ypos[cell_dest_yi])) * (1.0 / (MESH_Y_DIST)); const float yratio = (RAW_Y_POSITION(end[Y_AXIS]) - mesh_index_to_ypos(cell_dest_yi)) * (1.0 / (MESH_Y_DIST));
float z0 = z1 + (z2 - z1) * yratio; float z0 = z1 + (z2 - z1) * yratio;
z0 *= ubl.fade_scaling_factor_for_z(end[Z_AXIS]); z0 *= fade_scaling_factor_for_z(end[Z_AXIS]);
/** /**
* If part of the Mesh is undefined, it will show up as NAN * If part of the Mesh is undefined, it will show up as NAN
@ -176,10 +176,10 @@
*/ */
if (isnan(z0)) z0 = 0.0; if (isnan(z0)) z0 = 0.0;
planner._buffer_line(end[X_AXIS], end[Y_AXIS], end[Z_AXIS] + z0 + ubl.state.z_offset, end[E_AXIS], feed_rate, extruder); planner._buffer_line(end[X_AXIS], end[Y_AXIS], end[Z_AXIS] + z0 + state.z_offset, end[E_AXIS], feed_rate, extruder);
if (ubl.g26_debug_flag) if (g26_debug_flag)
debug_current_and_destination(PSTR("FINAL_MOVE in ubl_line_to_destination()")); debug_current_and_destination(PSTR("FINAL_MOVE in ubl.line_to_destination()"));
set_current_to_destination(); set_current_to_destination();
return; return;
@ -240,7 +240,7 @@
current_yi += down_flag; // Line is heading down, we just want to go to the bottom current_yi += down_flag; // Line is heading down, we just want to go to the bottom
while (current_yi != cell_dest_yi + down_flag) { while (current_yi != cell_dest_yi + down_flag) {
current_yi += dyi; current_yi += dyi;
const float next_mesh_line_y = LOGICAL_Y_POSITION(pgm_read_float(&ubl.mesh_index_to_ypos[current_yi])); const float next_mesh_line_y = LOGICAL_Y_POSITION(mesh_index_to_ypos(current_yi));
/** /**
* if the slope of the line is infinite, we won't do the calculations * if the slope of the line is infinite, we won't do the calculations
@ -249,9 +249,9 @@
*/ */
const float x = inf_m_flag ? start[X_AXIS] : (next_mesh_line_y - c) / m; const float x = inf_m_flag ? start[X_AXIS] : (next_mesh_line_y - c) / m;
float z0 = ubl.z_correction_for_x_on_horizontal_mesh_line(x, current_xi, current_yi); float z0 = z_correction_for_x_on_horizontal_mesh_line(x, current_xi, current_yi);
z0 *= ubl.fade_scaling_factor_for_z(end[Z_AXIS]); z0 *= fade_scaling_factor_for_z(end[Z_AXIS]);
/** /**
* If part of the Mesh is undefined, it will show up as NAN * If part of the Mesh is undefined, it will show up as NAN
@ -262,7 +262,7 @@
*/ */
if (isnan(z0)) z0 = 0.0; if (isnan(z0)) z0 = 0.0;
const float y = LOGICAL_Y_POSITION(pgm_read_float(&ubl.mesh_index_to_ypos[current_yi])); const float y = LOGICAL_Y_POSITION(mesh_index_to_ypos(current_yi));
/** /**
* Without this check, it is possible for the algorithm to generate a zero length move in the case * Without this check, it is possible for the algorithm to generate a zero length move in the case
@ -281,12 +281,12 @@
z_position = end[Z_AXIS]; z_position = end[Z_AXIS];
} }
planner._buffer_line(x, y, z_position + z0 + ubl.state.z_offset, e_position, feed_rate, extruder); planner._buffer_line(x, y, z_position + z0 + state.z_offset, e_position, feed_rate, extruder);
} //else printf("FIRST MOVE PRUNED "); } //else printf("FIRST MOVE PRUNED ");
} }
if (ubl.g26_debug_flag) if (g26_debug_flag)
debug_current_and_destination(PSTR("vertical move done in ubl_line_to_destination()")); debug_current_and_destination(PSTR("vertical move done in ubl.line_to_destination()"));
// //
// Check if we are at the final destination. Usually, we won't be, but if it is on a Y Mesh Line, we are done. // Check if we are at the final destination. Usually, we won't be, but if it is on a Y Mesh Line, we are done.
@ -311,12 +311,12 @@
// edge of this cell for the first move. // edge of this cell for the first move.
while (current_xi != cell_dest_xi + left_flag) { while (current_xi != cell_dest_xi + left_flag) {
current_xi += dxi; current_xi += dxi;
const float next_mesh_line_x = LOGICAL_X_POSITION(pgm_read_float(&ubl.mesh_index_to_xpos[current_xi])), const float next_mesh_line_x = LOGICAL_X_POSITION(mesh_index_to_xpos(current_xi)),
y = m * next_mesh_line_x + c; // Calculate Y at the next X mesh line y = m * next_mesh_line_x + c; // Calculate Y at the next X mesh line
float z0 = ubl.z_correction_for_y_on_vertical_mesh_line(y, current_xi, current_yi); float z0 = z_correction_for_y_on_vertical_mesh_line(y, current_xi, current_yi);
z0 *= ubl.fade_scaling_factor_for_z(end[Z_AXIS]); z0 *= fade_scaling_factor_for_z(end[Z_AXIS]);
/** /**
* If part of the Mesh is undefined, it will show up as NAN * If part of the Mesh is undefined, it will show up as NAN
@ -327,7 +327,7 @@
*/ */
if (isnan(z0)) z0 = 0.0; if (isnan(z0)) z0 = 0.0;
const float x = LOGICAL_X_POSITION(pgm_read_float(&ubl.mesh_index_to_xpos[current_xi])); const float x = LOGICAL_X_POSITION(mesh_index_to_xpos(current_xi));
/** /**
* Without this check, it is possible for the algorithm to generate a zero length move in the case * Without this check, it is possible for the algorithm to generate a zero length move in the case
@ -346,12 +346,12 @@
z_position = end[Z_AXIS]; z_position = end[Z_AXIS];
} }
planner._buffer_line(x, y, z_position + z0 + ubl.state.z_offset, e_position, feed_rate, extruder); planner._buffer_line(x, y, z_position + z0 + state.z_offset, e_position, feed_rate, extruder);
} //else printf("FIRST MOVE PRUNED "); } //else printf("FIRST MOVE PRUNED ");
} }
if (ubl.g26_debug_flag) if (g26_debug_flag)
debug_current_and_destination(PSTR("horizontal move done in ubl_line_to_destination()")); debug_current_and_destination(PSTR("horizontal move done in ubl.line_to_destination()"));
if (current_position[X_AXIS] != end[X_AXIS] || current_position[Y_AXIS] != end[Y_AXIS]) if (current_position[X_AXIS] != end[X_AXIS] || current_position[Y_AXIS] != end[Y_AXIS])
goto FINAL_MOVE; goto FINAL_MOVE;
@ -377,8 +377,8 @@
while (xi_cnt > 0 || yi_cnt > 0) { while (xi_cnt > 0 || yi_cnt > 0) {
const float next_mesh_line_x = LOGICAL_X_POSITION(pgm_read_float(&ubl.mesh_index_to_xpos[current_xi + dxi])), const float next_mesh_line_x = LOGICAL_X_POSITION(mesh_index_to_xpos(current_xi + dxi)),
next_mesh_line_y = LOGICAL_Y_POSITION(pgm_read_float(&ubl.mesh_index_to_ypos[current_yi + dyi])), next_mesh_line_y = LOGICAL_Y_POSITION(mesh_index_to_ypos(current_yi + dyi)),
y = m * next_mesh_line_x + c, // Calculate Y at the next X mesh line y = m * next_mesh_line_x + c, // Calculate Y at the next X mesh line
x = (next_mesh_line_y - c) / m; // Calculate X at the next Y mesh line x = (next_mesh_line_y - c) / m; // Calculate X at the next Y mesh line
// (No need to worry about m being zero. // (No need to worry about m being zero.
@ -387,9 +387,9 @@
if (left_flag == (x > next_mesh_line_x)) { // Check if we hit the Y line first if (left_flag == (x > next_mesh_line_x)) { // Check if we hit the Y line first
// Yes! Crossing a Y Mesh Line next // Yes! Crossing a Y Mesh Line next
float z0 = ubl.z_correction_for_x_on_horizontal_mesh_line(x, current_xi - left_flag, current_yi + dyi); float z0 = z_correction_for_x_on_horizontal_mesh_line(x, current_xi - left_flag, current_yi + dyi);
z0 *= ubl.fade_scaling_factor_for_z(end[Z_AXIS]); z0 *= fade_scaling_factor_for_z(end[Z_AXIS]);
/** /**
* If part of the Mesh is undefined, it will show up as NAN * If part of the Mesh is undefined, it will show up as NAN
@ -409,15 +409,15 @@
e_position = end[E_AXIS]; e_position = end[E_AXIS];
z_position = end[Z_AXIS]; z_position = end[Z_AXIS];
} }
planner._buffer_line(x, next_mesh_line_y, z_position + z0 + ubl.state.z_offset, e_position, feed_rate, extruder); planner._buffer_line(x, next_mesh_line_y, z_position + z0 + state.z_offset, e_position, feed_rate, extruder);
current_yi += dyi; current_yi += dyi;
yi_cnt--; yi_cnt--;
} }
else { else {
// Yes! Crossing a X Mesh Line next // Yes! Crossing a X Mesh Line next
float z0 = ubl.z_correction_for_y_on_vertical_mesh_line(y, current_xi + dxi, current_yi - down_flag); float z0 = z_correction_for_y_on_vertical_mesh_line(y, current_xi + dxi, current_yi - down_flag);
z0 *= ubl.fade_scaling_factor_for_z(end[Z_AXIS]); z0 *= fade_scaling_factor_for_z(end[Z_AXIS]);
/** /**
* If part of the Mesh is undefined, it will show up as NAN * If part of the Mesh is undefined, it will show up as NAN
@ -438,7 +438,7 @@
z_position = end[Z_AXIS]; z_position = end[Z_AXIS];
} }
planner._buffer_line(next_mesh_line_x, y, z_position + z0 + ubl.state.z_offset, e_position, feed_rate, extruder); planner._buffer_line(next_mesh_line_x, y, z_position + z0 + state.z_offset, e_position, feed_rate, extruder);
current_xi += dxi; current_xi += dxi;
xi_cnt--; xi_cnt--;
} }
@ -446,8 +446,8 @@
if (xi_cnt < 0 || yi_cnt < 0) break; // we've gone too far, so exit the loop and move on to FINAL_MOVE if (xi_cnt < 0 || yi_cnt < 0) break; // we've gone too far, so exit the loop and move on to FINAL_MOVE
} }
if (ubl.g26_debug_flag) if (g26_debug_flag)
debug_current_and_destination(PSTR("generic move done in ubl_line_to_destination()")); debug_current_and_destination(PSTR("generic move done in ubl.line_to_destination()"));
if (current_position[X_AXIS] != end[X_AXIS] || current_position[Y_AXIS] != end[Y_AXIS]) if (current_position[X_AXIS] != end[X_AXIS] || current_position[Y_AXIS] != end[Y_AXIS])
goto FINAL_MOVE; goto FINAL_MOVE;
@ -502,7 +502,7 @@
* Returns true if the caller did NOT update current_position, otherwise false. * Returns true if the caller did NOT update current_position, otherwise false.
*/ */
static bool ubl_prepare_linear_move_to(const float ltarget[XYZE], const float &feedrate) { static bool unified_bed_leveling::prepare_linear_move_to(const float ltarget[XYZE], const float &feedrate) {
if (!position_is_reachable_xy(ltarget[X_AXIS], ltarget[Y_AXIS])) // fail if moving outside reachable boundary if (!position_is_reachable_xy(ltarget[X_AXIS], ltarget[Y_AXIS])) // fail if moving outside reachable boundary
return true; // did not move, so current_position still accurate return true; // did not move, so current_position still accurate
@ -554,9 +554,9 @@
// Only compute leveling per segment if ubl active and target below z_fade_height. // Only compute leveling per segment if ubl active and target below z_fade_height.
if (!ubl.state.active || above_fade_height) { // no mesh leveling if (!state.active || above_fade_height) { // no mesh leveling
const float z_offset = ubl.state.active ? ubl.state.z_offset : 0.0; const float z_offset = state.active ? state.z_offset : 0.0;
float seg_dest[XYZE]; // per-segment destination, float seg_dest[XYZE]; // per-segment destination,
COPY_XYZE(seg_dest, current_position); // starting from current position COPY_XYZE(seg_dest, current_position); // starting from current position
@ -579,7 +579,7 @@
// Otherwise perform per-segment leveling // Otherwise perform per-segment leveling
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
const float fade_scaling_factor = ubl.fade_scaling_factor_for_z(ltarget[Z_AXIS]); const float fade_scaling_factor = fade_scaling_factor_for_z(ltarget[Z_AXIS]);
#endif #endif
float seg_dest[XYZE]; // per-segment destination, initialize to first segment float seg_dest[XYZE]; // per-segment destination, initialize to first segment
@ -591,7 +591,7 @@
float rx = RAW_X_POSITION(seg_dest[X_AXIS]), // assume raw vs logical coordinates shifted but not scaled. float rx = RAW_X_POSITION(seg_dest[X_AXIS]), // assume raw vs logical coordinates shifted but not scaled.
ry = RAW_Y_POSITION(seg_dest[Y_AXIS]); ry = RAW_Y_POSITION(seg_dest[Y_AXIS]);
do { // for each mesh cell encountered during the move for(;;) { // for each mesh cell encountered during the move
// Compute mesh cell invariants that remain constant for all segments within cell. // Compute mesh cell invariants that remain constant for all segments within cell.
// Note for cell index, if point is outside the mesh grid (in MESH_INSET perimeter) // Note for cell index, if point is outside the mesh grid (in MESH_INSET perimeter)
@ -606,19 +606,19 @@
cell_xi = constrain(cell_xi, 0, (GRID_MAX_POINTS_X) - 1); cell_xi = constrain(cell_xi, 0, (GRID_MAX_POINTS_X) - 1);
cell_yi = constrain(cell_yi, 0, (GRID_MAX_POINTS_Y) - 1); cell_yi = constrain(cell_yi, 0, (GRID_MAX_POINTS_Y) - 1);
const float x0 = pgm_read_float(&(ubl.mesh_index_to_xpos[cell_xi ])), // 64 byte table lookup avoids mul+add const float x0 = pgm_read_float(&(mesh_index_to_xpos[cell_xi ])), // 64 byte table lookup avoids mul+add
y0 = pgm_read_float(&(ubl.mesh_index_to_ypos[cell_yi ])), // 64 byte table lookup avoids mul+add y0 = pgm_read_float(&(mesh_index_to_ypos[cell_yi ])), // 64 byte table lookup avoids mul+add
x1 = pgm_read_float(&(ubl.mesh_index_to_xpos[cell_xi+1])), // 64 byte table lookup avoids mul+add x1 = pgm_read_float(&(mesh_index_to_xpos[cell_xi+1])), // 64 byte table lookup avoids mul+add
y1 = pgm_read_float(&(ubl.mesh_index_to_ypos[cell_yi+1])); // 64 byte table lookup avoids mul+add y1 = pgm_read_float(&(mesh_index_to_ypos[cell_yi+1])); // 64 byte table lookup avoids mul+add
float cx = rx - x0, // cell-relative x float cx = rx - x0, // cell-relative x
cy = ry - y0, // cell-relative y cy = ry - y0, // cell-relative y
z_x0y0 = ubl.z_values[cell_xi ][cell_yi ], // z at lower left corner z_x0y0 = z_values[cell_xi ][cell_yi ], // z at lower left corner
z_x1y0 = ubl.z_values[cell_xi+1][cell_yi ], // z at upper left corner z_x1y0 = z_values[cell_xi+1][cell_yi ], // z at upper left corner
z_x0y1 = ubl.z_values[cell_xi ][cell_yi+1], // z at lower right corner z_x0y1 = z_values[cell_xi ][cell_yi+1], // z at lower right corner
z_x1y1 = ubl.z_values[cell_xi+1][cell_yi+1]; // z at upper right corner z_x1y1 = z_values[cell_xi+1][cell_yi+1]; // z at upper right corner
if (isnan(z_x0y0)) z_x0y0 = 0; // ideally activating ubl.state.active (G29 A) if (isnan(z_x0y0)) z_x0y0 = 0; // ideally activating state.active (G29 A)
if (isnan(z_x1y0)) z_x1y0 = 0; // should refuse if any invalid mesh points if (isnan(z_x1y0)) z_x1y0 = 0; // should refuse if any invalid mesh points
if (isnan(z_x0y1)) z_x0y1 = 0; // in order to avoid isnan tests per cell, if (isnan(z_x0y1)) z_x0y1 = 0; // in order to avoid isnan tests per cell,
if (isnan(z_x1y1)) z_x1y1 = 0; // thus guessing zero for undefined points if (isnan(z_x1y1)) z_x1y1 = 0; // thus guessing zero for undefined points
@ -642,7 +642,7 @@
const float z_sxy0 = z_xmy0 * dx_seg, // per-segment adjustment to z_cxy0 const float z_sxy0 = z_xmy0 * dx_seg, // per-segment adjustment to z_cxy0
z_sxym = (z_xmy1 - z_xmy0) * (1.0 / (MESH_Y_DIST)) * dx_seg; // per-segment adjustment to z_cxym z_sxym = (z_xmy1 - z_xmy0) * (1.0 / (MESH_Y_DIST)) * dx_seg; // per-segment adjustment to z_cxym
do { // for all segments within this mesh cell for(;;) { // for all segments within this mesh cell
float z_cxcy = z_cxy0 + z_cxym * cy; // interpolated mesh z height along cx at cy float z_cxcy = z_cxy0 + z_cxym * cy; // interpolated mesh z height along cx at cy
@ -650,7 +650,7 @@
z_cxcy *= fade_scaling_factor; // apply fade factor to interpolated mesh height z_cxcy *= fade_scaling_factor; // apply fade factor to interpolated mesh height
#endif #endif
z_cxcy += ubl.state.z_offset; // add fixed mesh offset from G29 Z z_cxcy += state.z_offset; // add fixed mesh offset from G29 Z
if (--segments == 0) { // if this is last segment, use ltarget for exact if (--segments == 0) { // if this is last segment, use ltarget for exact
COPY_XYZE(seg_dest, ltarget); COPY_XYZE(seg_dest, ltarget);
@ -681,9 +681,9 @@
z_cxy0 += z_sxy0; // adjust z_cxy0 by per-segment z_sxy0 z_cxy0 += z_sxy0; // adjust z_cxy0 by per-segment z_sxy0
z_cxym += z_sxym; // adjust z_cxym by per-segment z_sxym z_cxym += z_sxym; // adjust z_cxym by per-segment z_sxym
} while (true); // per-segment loop exits by break after last segment within cell, or by return on final segment } // segment loop
} while (true); // per-cell loop } // cell loop
} // end of function }
#endif // UBL_DELTA #endif // UBL_DELTA

Loading…
Cancel
Save