|
|
@ -76,6 +76,13 @@ volatile long endstops_trigsteps[3] = { 0 }; |
|
|
|
volatile long endstops_stepsTotal, endstops_stepsDone; |
|
|
|
static volatile char endstop_hit_bits = 0; // use X_MIN, Y_MIN, Z_MIN and Z_PROBE as BIT value
|
|
|
|
|
|
|
|
#ifndef Z_DUAL_ENDSTOPS |
|
|
|
static byte |
|
|
|
#else |
|
|
|
static uint16_t |
|
|
|
#endif |
|
|
|
old_endstop_bits = 0; // use X_MIN, X_MAX... Z_MAX, Z_PROBE, Z2_MIN, Z2_MAX
|
|
|
|
|
|
|
|
#ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED |
|
|
|
bool abort_on_endstop_hit = false; |
|
|
|
#endif |
|
|
@ -84,31 +91,6 @@ static volatile char endstop_hit_bits = 0; // use X_MIN, Y_MIN, Z_MIN and Z_PROB |
|
|
|
int motor_current_setting[3] = DEFAULT_PWM_MOTOR_CURRENT; |
|
|
|
#endif |
|
|
|
|
|
|
|
#if HAS_X_MIN |
|
|
|
static bool old_x_min_endstop = false; |
|
|
|
#endif |
|
|
|
#if HAS_X_MAX |
|
|
|
static bool old_x_max_endstop = false; |
|
|
|
#endif |
|
|
|
#if HAS_Y_MIN |
|
|
|
static bool old_y_min_endstop = false; |
|
|
|
#endif |
|
|
|
#if HAS_Y_MAX |
|
|
|
static bool old_y_max_endstop = false; |
|
|
|
#endif |
|
|
|
|
|
|
|
static bool old_z_min_endstop = false; |
|
|
|
static bool old_z_max_endstop = false; |
|
|
|
|
|
|
|
#ifdef Z_DUAL_ENDSTOPS |
|
|
|
static bool old_z2_min_endstop = false; |
|
|
|
static bool old_z2_max_endstop = false; |
|
|
|
#endif |
|
|
|
|
|
|
|
#ifdef Z_PROBE_ENDSTOP // No need to check for valid pin, SanityCheck.h already does this.
|
|
|
|
static bool old_z_probe_endstop = false; |
|
|
|
#endif |
|
|
|
|
|
|
|
static bool check_endstops = true; |
|
|
|
|
|
|
|
volatile long count_position[NUM_AXIS] = { 0 }; |
|
|
@ -155,11 +137,11 @@ volatile signed char count_direction[NUM_AXIS] = { 1, 1, 1, 1 }; |
|
|
|
#define Z_APPLY_STEP(v,Q) \ |
|
|
|
if (performing_homing) { \ |
|
|
|
if (Z_HOME_DIR > 0) {\ |
|
|
|
if (!(old_z_max_endstop && (count_direction[Z_AXIS] > 0)) && !locked_z_motor) Z_STEP_WRITE(v); \ |
|
|
|
if (!(old_z2_max_endstop && (count_direction[Z_AXIS] > 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \ |
|
|
|
if (!(TEST(old_endstop_bits, Z_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z_motor) Z_STEP_WRITE(v); \ |
|
|
|
if (!(TEST(old_endstop_bits, Z2_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \ |
|
|
|
} else {\ |
|
|
|
if (!(old_z_min_endstop && (count_direction[Z_AXIS] < 0)) && !locked_z_motor) Z_STEP_WRITE(v); \ |
|
|
|
if (!(old_z2_min_endstop && (count_direction[Z_AXIS] < 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \ |
|
|
|
if (!(TEST(old_endstop_bits, Z_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z_motor) Z_STEP_WRITE(v); \ |
|
|
|
if (!(TEST(old_endstop_bits, Z2_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \ |
|
|
|
} \ |
|
|
|
} else { \ |
|
|
|
Z_STEP_WRITE(v); \ |
|
|
@ -266,7 +248,7 @@ void endstops_hit_on_purpose() { |
|
|
|
} |
|
|
|
|
|
|
|
void checkHitEndstops() { |
|
|
|
if (endstop_hit_bits) { // #ifdef || endstop_z_probe_hit to save space if needed.
|
|
|
|
if (endstop_hit_bits) { |
|
|
|
SERIAL_ECHO_START; |
|
|
|
SERIAL_ECHOPGM(MSG_ENDSTOPS_HIT); |
|
|
|
if (endstop_hit_bits & BIT(X_MIN)) { |
|
|
@ -492,22 +474,33 @@ ISR(TIMER1_COMPA_vect) { |
|
|
|
// Check endstops
|
|
|
|
if (check_endstops) { |
|
|
|
|
|
|
|
#define _ENDSTOP(axis, minmax) axis ##_## minmax ##_endstop |
|
|
|
#ifdef Z_DUAL_ENDSTOPS |
|
|
|
uint16_t |
|
|
|
#else |
|
|
|
byte |
|
|
|
#endif |
|
|
|
current_endstop_bits; |
|
|
|
|
|
|
|
#define _ENDSTOP_PIN(AXIS, MINMAX) AXIS ##_## MINMAX ##_PIN |
|
|
|
#define _ENDSTOP_INVERTING(AXIS, MINMAX) AXIS ##_## MINMAX ##_ENDSTOP_INVERTING |
|
|
|
#define _OLD_ENDSTOP(axis, minmax) old_## axis ##_## minmax ##_endstop |
|
|
|
#define _AXIS(AXIS) AXIS ##_AXIS |
|
|
|
#define _HIT_BIT(AXIS) AXIS ##_MIN |
|
|
|
#define _ENDSTOP_HIT(AXIS) endstop_hit_bits |= BIT(_HIT_BIT(AXIS)) |
|
|
|
|
|
|
|
#define UPDATE_ENDSTOP(axis,AXIS,minmax,MINMAX) \ |
|
|
|
bool _ENDSTOP(axis, minmax) = (READ(_ENDSTOP_PIN(AXIS, MINMAX)) != _ENDSTOP_INVERTING(AXIS, MINMAX)); \ |
|
|
|
if (_ENDSTOP(axis, minmax) && _OLD_ENDSTOP(axis, minmax) && (current_block->steps[_AXIS(AXIS)] > 0)) { \ |
|
|
|
#define _ENDSTOP_HIT(AXIS) endstop_hit_bits |= BIT(_ENDSTOP(AXIS, MIN)) |
|
|
|
#define _ENDSTOP(AXIS, MINMAX) AXIS ##_## MINMAX |
|
|
|
|
|
|
|
// SET_ENDSTOP_BIT: set the current endstop bits for an endstop to its status
|
|
|
|
#define SET_ENDSTOP_BIT(AXIS, MINMAX) SET_BIT(current_endstop_bits, _ENDSTOP(AXIS, MINMAX), (READ(_ENDSTOP_PIN(AXIS, MINMAX)) != _ENDSTOP_INVERTING(AXIS, MINMAX))) |
|
|
|
// COPY_BIT: copy the value of COPY_BIT to BIT in bits
|
|
|
|
#define COPY_BIT(bits, COPY_BIT, BIT) SET_BIT(bits, BIT, TEST(bits, COPY_BIT)) |
|
|
|
// TEST_ENDSTOP: test the old and the current status of an endstop
|
|
|
|
#define TEST_ENDSTOP(ENDSTOP) (TEST(current_endstop_bits, ENDSTOP) && TEST(old_endstop_bits, ENDSTOP)) |
|
|
|
|
|
|
|
#define UPDATE_ENDSTOP(AXIS,MINMAX) \ |
|
|
|
SET_ENDSTOP_BIT(AXIS, MINMAX); \ |
|
|
|
if (TEST_ENDSTOP(_ENDSTOP(AXIS, MINMAX)) && (current_block->steps[_AXIS(AXIS)] > 0)) { \ |
|
|
|
endstops_trigsteps[_AXIS(AXIS)] = count_position[_AXIS(AXIS)]; \ |
|
|
|
_ENDSTOP_HIT(AXIS); \ |
|
|
|
step_events_completed = current_block->step_event_count; \ |
|
|
|
} \ |
|
|
|
_OLD_ENDSTOP(axis, minmax) = _ENDSTOP(axis, minmax); |
|
|
|
} |
|
|
|
|
|
|
|
#ifdef COREXY |
|
|
|
// Head direction in -X axis for CoreXY bots.
|
|
|
@ -524,7 +517,7 @@ ISR(TIMER1_COMPA_vect) { |
|
|
|
#endif |
|
|
|
{ |
|
|
|
#if HAS_X_MIN |
|
|
|
UPDATE_ENDSTOP(x, X, min, MIN); |
|
|
|
UPDATE_ENDSTOP(X, MIN); |
|
|
|
#endif |
|
|
|
} |
|
|
|
} |
|
|
@ -535,7 +528,7 @@ ISR(TIMER1_COMPA_vect) { |
|
|
|
#endif |
|
|
|
{ |
|
|
|
#if HAS_X_MAX |
|
|
|
UPDATE_ENDSTOP(x, X, max, MAX); |
|
|
|
UPDATE_ENDSTOP(X, MAX); |
|
|
|
#endif |
|
|
|
} |
|
|
|
} |
|
|
@ -550,12 +543,12 @@ ISR(TIMER1_COMPA_vect) { |
|
|
|
#endif |
|
|
|
{ // -direction
|
|
|
|
#if HAS_Y_MIN |
|
|
|
UPDATE_ENDSTOP(y, Y, min, MIN); |
|
|
|
UPDATE_ENDSTOP(Y, MIN); |
|
|
|
#endif |
|
|
|
} |
|
|
|
else { // +direction
|
|
|
|
#if HAS_Y_MAX |
|
|
|
UPDATE_ENDSTOP(y, Y, max, MAX); |
|
|
|
UPDATE_ENDSTOP(Y, MAX); |
|
|
|
#endif |
|
|
|
} |
|
|
|
#ifdef COREXY |
|
|
@ -565,45 +558,36 @@ ISR(TIMER1_COMPA_vect) { |
|
|
|
#if HAS_Z_MIN |
|
|
|
|
|
|
|
#ifdef Z_DUAL_ENDSTOPS |
|
|
|
|
|
|
|
bool z_min_endstop = READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING, |
|
|
|
z2_min_endstop = |
|
|
|
SET_ENDSTOP_BIT(Z, MIN); |
|
|
|
#if HAS_Z2_MIN |
|
|
|
READ(Z2_MIN_PIN) != Z2_MIN_ENDSTOP_INVERTING |
|
|
|
SET_ENDSTOP_BIT(Z2, MIN); |
|
|
|
#else |
|
|
|
z_min_endstop |
|
|
|
COPY_BIT(current_endstop_bits, Z_MIN, Z2_MIN) |
|
|
|
#endif |
|
|
|
; |
|
|
|
|
|
|
|
bool z_min_both = z_min_endstop && old_z_min_endstop, |
|
|
|
z2_min_both = z2_min_endstop && old_z2_min_endstop; |
|
|
|
if ((z_min_both || z2_min_both) && current_block->steps[Z_AXIS] > 0) { |
|
|
|
byte z_test = TEST_ENDSTOP(Z_MIN) << 0 + TEST_ENDSTOP(Z2_MIN) << 1; // bit 0 for Z, bit 1 for Z2
|
|
|
|
|
|
|
|
if (z_test && current_block->steps[Z_AXIS] > 0) { // z_test = Z_MIN || Z2_MIN
|
|
|
|
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS]; |
|
|
|
endstop_hit_bits |= BIT(Z_MIN); |
|
|
|
if (!performing_homing || (performing_homing && z_min_both && z2_min_both)) //if not performing home or if both endstops were trigged during homing...
|
|
|
|
step_events_completed = current_block->step_event_count; |
|
|
|
if (!performing_homing || (performing_homing && !((~z_test) & 0x3))) //if not performing home or if both endstops were trigged during homing...
|
|
|
|
step_events_completed = current_block->step_event_count; //!((~z_test) & 0x3) = Z_MIN && Z2_MIN
|
|
|
|
} |
|
|
|
old_z_min_endstop = z_min_endstop; |
|
|
|
old_z2_min_endstop = z2_min_endstop; |
|
|
|
|
|
|
|
#else // !Z_DUAL_ENDSTOPS
|
|
|
|
|
|
|
|
UPDATE_ENDSTOP(z, Z, min, MIN); |
|
|
|
|
|
|
|
UPDATE_ENDSTOP(Z, MIN); |
|
|
|
#endif // !Z_DUAL_ENDSTOPS
|
|
|
|
|
|
|
|
#endif // Z_MIN_PIN
|
|
|
|
|
|
|
|
#ifdef Z_PROBE_ENDSTOP |
|
|
|
UPDATE_ENDSTOP(z, Z, probe, PROBE); |
|
|
|
z_probe_endstop=(READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING); |
|
|
|
if(z_probe_endstop && old_z_probe_endstop) |
|
|
|
UPDATE_ENDSTOP(Z, PROBE); |
|
|
|
SET_ENDSTOP_BIT(Z, PROBE); |
|
|
|
|
|
|
|
if (TEST_ENDSTOP(Z_PROBE)) |
|
|
|
{ |
|
|
|
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS]; |
|
|
|
endstop_hit_bits |= BIT(Z_PROBE); |
|
|
|
// if (z_probe_endstop && old_z_probe_endstop) SERIAL_ECHOLN("z_probe_endstop = true");
|
|
|
|
} |
|
|
|
old_z_probe_endstop = z_probe_endstop; |
|
|
|
#endif |
|
|
|
} |
|
|
|
else { // z +direction
|
|
|
@ -611,55 +595,43 @@ ISR(TIMER1_COMPA_vect) { |
|
|
|
|
|
|
|
#ifdef Z_DUAL_ENDSTOPS |
|
|
|
|
|
|
|
bool z_max_endstop = READ(Z_MAX_PIN) != Z_MAX_ENDSTOP_INVERTING, |
|
|
|
z2_max_endstop = |
|
|
|
SET_ENDSTOP_BIT(Z, MAX); |
|
|
|
#if HAS_Z2_MAX |
|
|
|
READ(Z2_MAX_PIN) != Z2_MAX_ENDSTOP_INVERTING |
|
|
|
SET_ENDSTOP_BIT(Z2, MAX); |
|
|
|
#else |
|
|
|
z_max_endstop |
|
|
|
COPY_BIT(current_endstop_bits, Z_MAX, Z2_MAX) |
|
|
|
#endif |
|
|
|
; |
|
|
|
|
|
|
|
bool z_max_both = z_max_endstop && old_z_max_endstop, |
|
|
|
z2_max_both = z2_max_endstop && old_z2_max_endstop; |
|
|
|
if ((z_max_both || z2_max_both) && current_block->steps[Z_AXIS] > 0) { |
|
|
|
byte z_test = TEST_ENDSTOP(Z_MAX) << 0 + TEST_ENDSTOP(Z2_MAX) << 1; // bit 0 for Z, bit 1 for Z2
|
|
|
|
|
|
|
|
if (z_test && current_block->steps[Z_AXIS] > 0) { // t_test = Z_MAX || Z2_MAX
|
|
|
|
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS]; |
|
|
|
endstop_hit_bits |= BIT(Z_MIN); |
|
|
|
|
|
|
|
// if (z_max_both) SERIAL_ECHOLN("z_max_endstop = true");
|
|
|
|
// if (z2_max_both) SERIAL_ECHOLN("z2_max_endstop = true");
|
|
|
|
|
|
|
|
if (!performing_homing || (performing_homing && z_max_both && z2_max_both)) //if not performing home or if both endstops were trigged during homing...
|
|
|
|
step_events_completed = current_block->step_event_count; |
|
|
|
if (!performing_homing || (performing_homing && !((~z_test) & 0x3))) //if not performing home or if both endstops were trigged during homing...
|
|
|
|
step_events_completed = current_block->step_event_count; //!((~z_test) & 0x3) = Z_MAX && Z2_MAX
|
|
|
|
} |
|
|
|
old_z_max_endstop = z_max_endstop; |
|
|
|
old_z2_max_endstop = z2_max_endstop; |
|
|
|
|
|
|
|
#else // !Z_DUAL_ENDSTOPS
|
|
|
|
|
|
|
|
UPDATE_ENDSTOP(z, Z, max, MAX); |
|
|
|
UPDATE_ENDSTOP(Z, MAX); |
|
|
|
|
|
|
|
#endif // !Z_DUAL_ENDSTOPS
|
|
|
|
|
|
|
|
#endif // Z_MAX_PIN
|
|
|
|
|
|
|
|
#ifdef Z_PROBE_ENDSTOP |
|
|
|
UPDATE_ENDSTOP(z, Z, probe, PROBE); |
|
|
|
z_probe_endstop=(READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING); |
|
|
|
if(z_probe_endstop && old_z_probe_endstop) |
|
|
|
UPDATE_ENDSTOP(Z, PROBE); |
|
|
|
SET_ENDSTOP_BIT(Z, PROBE); |
|
|
|
if (TEST_ENDSTOP(Z_PROBE)) |
|
|
|
{ |
|
|
|
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS]; |
|
|
|
endstop_hit_bits |= BIT(Z_PROBE); |
|
|
|
// if (z_probe_endstop && old_z_probe_endstop) SERIAL_ECHOLN("z_probe_endstop = true");
|
|
|
|
} |
|
|
|
old_z_probe_endstop = z_probe_endstop; |
|
|
|
#endif |
|
|
|
} |
|
|
|
|
|
|
|
old_endstop_bits = current_endstop_bits; |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Take multiple steps per interrupt (For high speed moves)
|
|
|
|
for (int8_t i = 0; i < step_loops; i++) { |
|
|
|
#ifndef AT90USB |
|
|
|