Scott Lahteine
10 years ago
5 changed files with 170 additions and 229 deletions
@ -1,145 +0,0 @@ |
|||
/*
|
|||
motion_control.c - high level interface for issuing motion commands |
|||
Part of Grbl |
|||
|
|||
Copyright (c) 2009-2011 Simen Svale Skogsrud |
|||
Copyright (c) 2011 Sungeun K. Jeon |
|||
|
|||
Grbl is free software: you can redistribute it and/or modify |
|||
it under the terms of the GNU General Public License as published by |
|||
the Free Software Foundation, either version 3 of the License, or |
|||
(at your option) any later version. |
|||
|
|||
Grbl is distributed in the hope that it will be useful, |
|||
but WITHOUT ANY WARRANTY; without even the implied warranty of |
|||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|||
GNU General Public License for more details. |
|||
|
|||
You should have received a copy of the GNU General Public License |
|||
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
|
|||
*/ |
|||
|
|||
#include "Marlin.h" |
|||
#include "stepper.h" |
|||
#include "planner.h" |
|||
|
|||
// The arc is approximated by generating a huge number of tiny, linear segments. The length of each
|
|||
// segment is configured in settings.mm_per_arc_segment.
|
|||
void mc_arc(float *position, float *target, float *offset, uint8_t axis_0, uint8_t axis_1, |
|||
uint8_t axis_linear, float feed_rate, float radius, uint8_t isclockwise, uint8_t extruder) |
|||
{ |
|||
// int acceleration_manager_was_enabled = plan_is_acceleration_manager_enabled();
|
|||
// plan_set_acceleration_manager_enabled(false); // disable acceleration management for the duration of the arc
|
|||
float center_axis0 = position[axis_0] + offset[axis_0]; |
|||
float center_axis1 = position[axis_1] + offset[axis_1]; |
|||
float linear_travel = target[axis_linear] - position[axis_linear]; |
|||
float extruder_travel = target[E_AXIS] - position[E_AXIS]; |
|||
float r_axis0 = -offset[axis_0]; // Radius vector from center to current location
|
|||
float r_axis1 = -offset[axis_1]; |
|||
float rt_axis0 = target[axis_0] - center_axis0; |
|||
float rt_axis1 = target[axis_1] - center_axis1; |
|||
|
|||
// CCW angle between position and target from circle center. Only one atan2() trig computation required.
|
|||
float angular_travel = atan2(r_axis0*rt_axis1-r_axis1*rt_axis0, r_axis0*rt_axis0+r_axis1*rt_axis1); |
|||
if (angular_travel < 0) { angular_travel += 2*M_PI; } |
|||
if (isclockwise) { angular_travel -= 2*M_PI; } |
|||
|
|||
//20141002:full circle for G03 did not work, e.g. G03 X80 Y80 I20 J0 F2000 is giving an Angle of zero so head is not moving
|
|||
//to compensate when start pos = target pos && angle is zero -> angle = 2Pi
|
|||
if (position[axis_0] == target[axis_0] && position[axis_1] == target[axis_1] && angular_travel == 0) |
|||
{ |
|||
angular_travel += 2*M_PI; |
|||
} |
|||
//end fix G03
|
|||
|
|||
float millimeters_of_travel = hypot(angular_travel*radius, fabs(linear_travel)); |
|||
if (millimeters_of_travel < 0.001) { return; } |
|||
uint16_t segments = floor(millimeters_of_travel/MM_PER_ARC_SEGMENT); |
|||
if(segments == 0) segments = 1; |
|||
|
|||
/*
|
|||
// Multiply inverse feed_rate to compensate for the fact that this movement is approximated
|
|||
// by a number of discrete segments. The inverse feed_rate should be correct for the sum of
|
|||
// all segments.
|
|||
if (invert_feed_rate) { feed_rate *= segments; } |
|||
*/ |
|||
float theta_per_segment = angular_travel/segments; |
|||
float linear_per_segment = linear_travel/segments; |
|||
float extruder_per_segment = extruder_travel/segments; |
|||
|
|||
/* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
|
|||
and phi is the angle of rotation. Based on the solution approach by Jens Geisler. |
|||
r_T = [cos(phi) -sin(phi); |
|||
sin(phi) cos(phi] * r ; |
|||
|
|||
For arc generation, the center of the circle is the axis of rotation and the radius vector is |
|||
defined from the circle center to the initial position. Each line segment is formed by successive |
|||
vector rotations. This requires only two cos() and sin() computations to form the rotation |
|||
matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since |
|||
all double numbers are single precision on the Arduino. (True double precision will not have |
|||
round off issues for CNC applications.) Single precision error can accumulate to be greater than |
|||
tool precision in some cases. Therefore, arc path correction is implemented. |
|||
|
|||
Small angle approximation may be used to reduce computation overhead further. This approximation |
|||
holds for everything, but very small circles and large mm_per_arc_segment values. In other words, |
|||
theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large |
|||
to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for |
|||
numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an |
|||
issue for CNC machines with the single precision Arduino calculations. |
|||
|
|||
This approximation also allows mc_arc to immediately insert a line segment into the planner |
|||
without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied |
|||
a correction, the planner should have caught up to the lag caused by the initial mc_arc overhead. |
|||
This is important when there are successive arc motions. |
|||
*/ |
|||
// Vector rotation matrix values
|
|||
float cos_T = 1-0.5*theta_per_segment*theta_per_segment; // Small angle approximation
|
|||
float sin_T = theta_per_segment; |
|||
|
|||
float arc_target[4]; |
|||
float sin_Ti; |
|||
float cos_Ti; |
|||
float r_axisi; |
|||
uint16_t i; |
|||
int8_t count = 0; |
|||
|
|||
// Initialize the linear axis
|
|||
arc_target[axis_linear] = position[axis_linear]; |
|||
|
|||
// Initialize the extruder axis
|
|||
arc_target[E_AXIS] = position[E_AXIS]; |
|||
|
|||
for (i = 1; i<segments; i++) { // Increment (segments-1)
|
|||
|
|||
if (count < N_ARC_CORRECTION) { |
|||
// Apply vector rotation matrix
|
|||
r_axisi = r_axis0*sin_T + r_axis1*cos_T; |
|||
r_axis0 = r_axis0*cos_T - r_axis1*sin_T; |
|||
r_axis1 = r_axisi; |
|||
count++; |
|||
} else { |
|||
// Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
|
|||
// Compute exact location by applying transformation matrix from initial radius vector(=-offset).
|
|||
cos_Ti = cos(i*theta_per_segment); |
|||
sin_Ti = sin(i*theta_per_segment); |
|||
r_axis0 = -offset[axis_0]*cos_Ti + offset[axis_1]*sin_Ti; |
|||
r_axis1 = -offset[axis_0]*sin_Ti - offset[axis_1]*cos_Ti; |
|||
count = 0; |
|||
} |
|||
|
|||
// Update arc_target location
|
|||
arc_target[axis_0] = center_axis0 + r_axis0; |
|||
arc_target[axis_1] = center_axis1 + r_axis1; |
|||
arc_target[axis_linear] += linear_per_segment; |
|||
arc_target[E_AXIS] += extruder_per_segment; |
|||
|
|||
clamp_to_software_endstops(arc_target); |
|||
plan_buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, extruder); |
|||
|
|||
} |
|||
// Ensure last segment arrives at target location.
|
|||
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, extruder); |
|||
|
|||
// plan_set_acceleration_manager_enabled(acceleration_manager_was_enabled);
|
|||
} |
|||
|
@ -1,32 +0,0 @@ |
|||
/*
|
|||
motion_control.h - high level interface for issuing motion commands |
|||
Part of Grbl |
|||
|
|||
Copyright (c) 2009-2011 Simen Svale Skogsrud |
|||
Copyright (c) 2011 Sungeun K. Jeon |
|||
|
|||
Grbl is free software: you can redistribute it and/or modify |
|||
it under the terms of the GNU General Public License as published by |
|||
the Free Software Foundation, either version 3 of the License, or |
|||
(at your option) any later version. |
|||
|
|||
Grbl is distributed in the hope that it will be useful, |
|||
but WITHOUT ANY WARRANTY; without even the implied warranty of |
|||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|||
GNU General Public License for more details. |
|||
|
|||
You should have received a copy of the GNU General Public License |
|||
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
|
|||
*/ |
|||
|
|||
#ifndef motion_control_h |
|||
#define motion_control_h |
|||
|
|||
// Execute an arc in offset mode format. position == current xyz, target == target xyz,
|
|||
// offset == offset from current xyz, axis_XXX defines circle plane in tool space, axis_linear is
|
|||
// the direction of helical travel, radius == circle radius, isclockwise boolean. Used
|
|||
// for vector transformation direction.
|
|||
void mc_arc(float *position, float *target, float *offset, unsigned char axis_0, unsigned char axis_1, |
|||
unsigned char axis_linear, float feed_rate, float radius, unsigned char isclockwise, uint8_t extruder); |
|||
|
|||
#endif |
Loading…
Reference in new issue