|
@ -1566,6 +1566,11 @@ inline void gcode_G28() { |
|
|
plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
|
|
|
plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
|
|
|
#endif |
|
|
#endif |
|
|
|
|
|
|
|
|
|
|
|
#if defined(MESH_BED_LEVELING) |
|
|
|
|
|
uint8_t mbl_was_active = mbl.active; |
|
|
|
|
|
mbl.active = 0; |
|
|
|
|
|
#endif // MESH_BED_LEVELING
|
|
|
|
|
|
|
|
|
saved_feedrate = feedrate; |
|
|
saved_feedrate = feedrate; |
|
|
saved_feedmultiply = feedmultiply; |
|
|
saved_feedmultiply = feedmultiply; |
|
|
feedmultiply = 100; |
|
|
feedmultiply = 100; |
|
@ -1780,6 +1785,23 @@ inline void gcode_G28() { |
|
|
enable_endstops(false); |
|
|
enable_endstops(false); |
|
|
#endif |
|
|
#endif |
|
|
|
|
|
|
|
|
|
|
|
#if defined(MESH_BED_LEVELING) |
|
|
|
|
|
if (mbl_was_active) { |
|
|
|
|
|
current_position[X_AXIS] = mbl.get_x(0); |
|
|
|
|
|
current_position[Y_AXIS] = mbl.get_y(0); |
|
|
|
|
|
destination[X_AXIS] = current_position[X_AXIS]; |
|
|
|
|
|
destination[Y_AXIS] = current_position[Y_AXIS]; |
|
|
|
|
|
destination[Z_AXIS] = current_position[Z_AXIS]; |
|
|
|
|
|
destination[E_AXIS] = current_position[E_AXIS]; |
|
|
|
|
|
feedrate = homing_feedrate[X_AXIS]; |
|
|
|
|
|
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder); |
|
|
|
|
|
st_synchronize(); |
|
|
|
|
|
current_position[Z_AXIS] = MESH_HOME_SEARCH_Z; |
|
|
|
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); |
|
|
|
|
|
mbl.active = 1; |
|
|
|
|
|
} |
|
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
feedrate = saved_feedrate; |
|
|
feedrate = saved_feedrate; |
|
|
feedmultiply = saved_feedmultiply; |
|
|
feedmultiply = saved_feedmultiply; |
|
|
previous_millis_cmd = millis(); |
|
|
previous_millis_cmd = millis(); |
|
@ -4998,6 +5020,13 @@ void calculate_delta(float cartesian[3]) |
|
|
// This function is used to split lines on mesh borders so each segment is only part of one mesh area
|
|
|
// This function is used to split lines on mesh borders so each segment is only part of one mesh area
|
|
|
void mesh_plan_buffer_line(float x, float y, float z, const float &e, float feed_rate, const uint8_t &extruder, uint8_t x_splits=0xff, uint8_t y_splits=0xff) |
|
|
void mesh_plan_buffer_line(float x, float y, float z, const float &e, float feed_rate, const uint8_t &extruder, uint8_t x_splits=0xff, uint8_t y_splits=0xff) |
|
|
{ |
|
|
{ |
|
|
|
|
|
if (!mbl.active) { |
|
|
|
|
|
plan_buffer_line(x, y, z, e, feed_rate, extruder); |
|
|
|
|
|
for(int8_t i=0; i < NUM_AXIS; i++) { |
|
|
|
|
|
current_position[i] = destination[i]; |
|
|
|
|
|
} |
|
|
|
|
|
return; |
|
|
|
|
|
} |
|
|
int pix = mbl.select_x_index(current_position[X_AXIS]); |
|
|
int pix = mbl.select_x_index(current_position[X_AXIS]); |
|
|
int piy = mbl.select_y_index(current_position[Y_AXIS]); |
|
|
int piy = mbl.select_y_index(current_position[Y_AXIS]); |
|
|
int ix = mbl.select_x_index(x); |
|
|
int ix = mbl.select_x_index(x); |
|
@ -5012,7 +5041,13 @@ void mesh_plan_buffer_line(float x, float y, float z, const float &e, float feed |
|
|
float ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist; |
|
|
float ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist; |
|
|
float ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist; |
|
|
float ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist; |
|
|
x_splits ^= 1 << ix; |
|
|
x_splits ^= 1 << ix; |
|
|
|
|
|
destination[X_AXIS] = nx; |
|
|
|
|
|
destination[Y_AXIS] = ny; |
|
|
|
|
|
destination[E_AXIS] = ne; |
|
|
mesh_plan_buffer_line(nx, ny, z, ne, feed_rate, extruder, x_splits, y_splits); |
|
|
mesh_plan_buffer_line(nx, ny, z, ne, feed_rate, extruder, x_splits, y_splits); |
|
|
|
|
|
destination[X_AXIS] = x; |
|
|
|
|
|
destination[Y_AXIS] = y; |
|
|
|
|
|
destination[E_AXIS] = e; |
|
|
mesh_plan_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits); |
|
|
mesh_plan_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits); |
|
|
return; |
|
|
return; |
|
|
} else if (ix < pix && (x_splits)&(1<<pix)) { |
|
|
} else if (ix < pix && (x_splits)&(1<<pix)) { |
|
@ -5021,7 +5056,13 @@ void mesh_plan_buffer_line(float x, float y, float z, const float &e, float feed |
|
|
float ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist; |
|
|
float ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist; |
|
|
float ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist; |
|
|
float ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist; |
|
|
x_splits ^= 1 << pix; |
|
|
x_splits ^= 1 << pix; |
|
|
|
|
|
destination[X_AXIS] = nx; |
|
|
|
|
|
destination[Y_AXIS] = ny; |
|
|
|
|
|
destination[E_AXIS] = ne; |
|
|
mesh_plan_buffer_line(nx, ny, z, ne, feed_rate, extruder, x_splits, y_splits); |
|
|
mesh_plan_buffer_line(nx, ny, z, ne, feed_rate, extruder, x_splits, y_splits); |
|
|
|
|
|
destination[X_AXIS] = x; |
|
|
|
|
|
destination[Y_AXIS] = y; |
|
|
|
|
|
destination[E_AXIS] = e; |
|
|
mesh_plan_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits); |
|
|
mesh_plan_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits); |
|
|
return; |
|
|
return; |
|
|
} else if (iy > piy && (y_splits)&(1<<iy)) { |
|
|
} else if (iy > piy && (y_splits)&(1<<iy)) { |
|
@ -5030,7 +5071,13 @@ void mesh_plan_buffer_line(float x, float y, float z, const float &e, float feed |
|
|
float nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist; |
|
|
float nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist; |
|
|
float ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist; |
|
|
float ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist; |
|
|
y_splits ^= 1 << iy; |
|
|
y_splits ^= 1 << iy; |
|
|
|
|
|
destination[X_AXIS] = nx; |
|
|
|
|
|
destination[Y_AXIS] = ny; |
|
|
|
|
|
destination[E_AXIS] = ne; |
|
|
mesh_plan_buffer_line(nx, ny, z, ne, feed_rate, extruder, x_splits, y_splits); |
|
|
mesh_plan_buffer_line(nx, ny, z, ne, feed_rate, extruder, x_splits, y_splits); |
|
|
|
|
|
destination[X_AXIS] = x; |
|
|
|
|
|
destination[Y_AXIS] = y; |
|
|
|
|
|
destination[E_AXIS] = e; |
|
|
mesh_plan_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits); |
|
|
mesh_plan_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits); |
|
|
return; |
|
|
return; |
|
|
} else if (iy < piy && (y_splits)&(1<<piy)) { |
|
|
} else if (iy < piy && (y_splits)&(1<<piy)) { |
|
@ -5039,11 +5086,17 @@ void mesh_plan_buffer_line(float x, float y, float z, const float &e, float feed |
|
|
float nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist; |
|
|
float nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist; |
|
|
float ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist; |
|
|
float ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist; |
|
|
y_splits ^= 1 << piy; |
|
|
y_splits ^= 1 << piy; |
|
|
|
|
|
destination[X_AXIS] = nx; |
|
|
|
|
|
destination[Y_AXIS] = ny; |
|
|
|
|
|
destination[E_AXIS] = ne; |
|
|
mesh_plan_buffer_line(nx, ny, z, ne, feed_rate, extruder, x_splits, y_splits); |
|
|
mesh_plan_buffer_line(nx, ny, z, ne, feed_rate, extruder, x_splits, y_splits); |
|
|
|
|
|
destination[X_AXIS] = x; |
|
|
|
|
|
destination[Y_AXIS] = y; |
|
|
|
|
|
destination[E_AXIS] = e; |
|
|
mesh_plan_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits); |
|
|
mesh_plan_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits); |
|
|
return; |
|
|
return; |
|
|
} |
|
|
} |
|
|
plan_buffer_line(x, y, z, e, feedrate, extruder); |
|
|
plan_buffer_line(x, y, z, e, feed_rate, extruder); |
|
|
for(int8_t i=0; i < NUM_AXIS; i++) { |
|
|
for(int8_t i=0; i < NUM_AXIS; i++) { |
|
|
current_position[i] = destination[i]; |
|
|
current_position[i] = destination[i]; |
|
|
} |
|
|
} |
|
|