Scott Lahteine
8 years ago
committed by
GitHub
9 changed files with 348 additions and 347 deletions
@ -1,339 +0,0 @@ |
|||||
/**
|
|
||||
* Marlin 3D Printer Firmware |
|
||||
* Copyright (C) 2016, 2017 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
|
||||
* |
|
||||
* Based on Sprinter and grbl. |
|
||||
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm |
|
||||
* |
|
||||
* This program is free software: you can redistribute it and/or modify |
|
||||
* it under the terms of the GNU General Public License as published by |
|
||||
* the Free Software Foundation, either version 3 of the License, or |
|
||||
* (at your option) any later version. |
|
||||
* |
|
||||
* This program is distributed in the hope that it will be useful, |
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
||||
* GNU General Public License for more details. |
|
||||
* |
|
||||
* You should have received a copy of the GNU General Public License |
|
||||
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
||||
* |
|
||||
*/ |
|
||||
|
|
||||
#include "Marlin.h" |
|
||||
#include "math.h" |
|
||||
#include "vector_3.h" |
|
||||
|
|
||||
#ifndef UNIFIED_BED_LEVELING_H |
|
||||
#define UNIFIED_BED_LEVELING_H |
|
||||
|
|
||||
#if ENABLED(AUTO_BED_LEVELING_UBL) |
|
||||
|
|
||||
#define UBL_VERSION "1.00" |
|
||||
#define UBL_OK false |
|
||||
#define UBL_ERR true |
|
||||
|
|
||||
typedef struct { |
|
||||
int8_t x_index, y_index; |
|
||||
float distance; // When populated, the distance from the search location
|
|
||||
} mesh_index_pair; |
|
||||
|
|
||||
enum MeshPointType { INVALID, REAL, SET_IN_BITMAP }; |
|
||||
|
|
||||
void dump(char * const str, const float &f); |
|
||||
bool ubl_lcd_clicked(); |
|
||||
void probe_entire_mesh(const float&, const float&, const bool, const bool, const bool); |
|
||||
void debug_current_and_destination(char *title); |
|
||||
void ubl_line_to_destination(const float&, uint8_t); |
|
||||
void manually_probe_remaining_mesh(const float&, const float&, const float&, const float&, const bool); |
|
||||
vector_3 tilt_mesh_based_on_3pts(const float&, const float&, const float&); |
|
||||
float measure_business_card_thickness(const float&); |
|
||||
mesh_index_pair find_closest_mesh_point_of_type(const MeshPointType, const float&, const float&, const bool, unsigned int[16], bool); |
|
||||
void find_mean_mesh_height(); |
|
||||
void shift_mesh_height(); |
|
||||
bool g29_parameter_parsing(); |
|
||||
void g29_what_command(); |
|
||||
void g29_eeprom_dump(); |
|
||||
void g29_compare_current_mesh_to_stored_mesh(); |
|
||||
void fine_tune_mesh(const float&, const float&, const bool); |
|
||||
void bit_clear(uint16_t bits[16], uint8_t x, uint8_t y); |
|
||||
void bit_set(uint16_t bits[16], uint8_t x, uint8_t y); |
|
||||
bool is_bit_set(uint16_t bits[16], uint8_t x, uint8_t y); |
|
||||
char *ftostr43sign(const float&, char); |
|
||||
|
|
||||
void gcode_G26(); |
|
||||
void gcode_G28(); |
|
||||
void gcode_G29(); |
|
||||
extern char conv[9]; |
|
||||
|
|
||||
void save_ubl_active_state_and_disable(); |
|
||||
void restore_ubl_active_state_and_leave(); |
|
||||
|
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
||||
|
|
||||
#if ENABLED(ULTRA_LCD) |
|
||||
extern char lcd_status_message[]; |
|
||||
void lcd_quick_feedback(); |
|
||||
#endif |
|
||||
|
|
||||
enum MBLStatus { MBL_STATUS_NONE = 0, MBL_STATUS_HAS_MESH_BIT = 0, MBL_STATUS_ACTIVE_BIT = 1 }; |
|
||||
|
|
||||
#define MESH_X_DIST (float(UBL_MESH_MAX_X - (UBL_MESH_MIN_X)) / float(GRID_MAX_POINTS_X - 1)) |
|
||||
#define MESH_Y_DIST (float(UBL_MESH_MAX_Y - (UBL_MESH_MIN_Y)) / float(GRID_MAX_POINTS_Y - 1)) |
|
||||
|
|
||||
typedef struct { |
|
||||
bool active = false; |
|
||||
float z_offset = 0.0; |
|
||||
int8_t eeprom_storage_slot = -1, |
|
||||
n_x = GRID_MAX_POINTS_X, |
|
||||
n_y = GRID_MAX_POINTS_Y; |
|
||||
|
|
||||
float mesh_x_min = UBL_MESH_MIN_X, |
|
||||
mesh_y_min = UBL_MESH_MIN_Y, |
|
||||
mesh_x_max = UBL_MESH_MAX_X, |
|
||||
mesh_y_max = UBL_MESH_MAX_Y, |
|
||||
mesh_x_dist = MESH_X_DIST, |
|
||||
mesh_y_dist = MESH_Y_DIST; |
|
||||
|
|
||||
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) |
|
||||
float g29_correction_fade_height = 10.0, |
|
||||
g29_fade_height_multiplier = 1.0 / 10.0; // It's cheaper to do a floating point multiply than divide,
|
|
||||
// so keep this value and its reciprocal.
|
|
||||
#endif |
|
||||
|
|
||||
// If you change this struct, adjust TOTAL_STRUCT_SIZE
|
|
||||
|
|
||||
#define TOTAL_STRUCT_SIZE 40 // Total size of the above fields
|
|
||||
|
|
||||
// padding provides space to add state variables without
|
|
||||
// changing the location of data structures in the EEPROM.
|
|
||||
// This is for compatibility with future versions to keep
|
|
||||
// users from having to regenerate their mesh data.
|
|
||||
unsigned char padding[64 - TOTAL_STRUCT_SIZE]; |
|
||||
|
|
||||
} ubl_state; |
|
||||
|
|
||||
class unified_bed_leveling { |
|
||||
private: |
|
||||
|
|
||||
static float last_specified_z; |
|
||||
|
|
||||
public: |
|
||||
|
|
||||
static ubl_state state, pre_initialized; |
|
||||
|
|
||||
static float z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y], |
|
||||
mesh_index_to_xpos[GRID_MAX_POINTS_X + 1], // +1 safety margin for now, until determinism prevails
|
|
||||
mesh_index_to_ypos[GRID_MAX_POINTS_Y + 1]; |
|
||||
|
|
||||
static bool g26_debug_flag, |
|
||||
has_control_of_lcd_panel; |
|
||||
|
|
||||
static int8_t eeprom_start; |
|
||||
|
|
||||
static volatile int encoder_diff; // Volatile because it's changed at interrupt time.
|
|
||||
|
|
||||
unified_bed_leveling(); |
|
||||
|
|
||||
static void display_map(const int); |
|
||||
|
|
||||
static void reset(); |
|
||||
static void invalidate(); |
|
||||
|
|
||||
static void store_state(); |
|
||||
static void load_state(); |
|
||||
static void store_mesh(const int16_t); |
|
||||
static void load_mesh(const int16_t); |
|
||||
|
|
||||
static bool sanity_check(); |
|
||||
|
|
||||
static FORCE_INLINE void set_z(const int8_t px, const int8_t py, const float &z) { z_values[px][py] = z; } |
|
||||
|
|
||||
static int8_t get_cell_index_x(const float &x) { |
|
||||
const int8_t cx = (x - (UBL_MESH_MIN_X)) * (1.0 / (MESH_X_DIST)); |
|
||||
return constrain(cx, 0, (GRID_MAX_POINTS_X) - 1); // -1 is appropriate if we want all movement to the X_MAX
|
|
||||
} // position. But with this defined this way, it is possible
|
|
||||
// to extrapolate off of this point even further out. Probably
|
|
||||
// that is OK because something else should be keeping that from
|
|
||||
// happening and should not be worried about at this level.
|
|
||||
static int8_t get_cell_index_y(const float &y) { |
|
||||
const int8_t cy = (y - (UBL_MESH_MIN_Y)) * (1.0 / (MESH_Y_DIST)); |
|
||||
return constrain(cy, 0, (GRID_MAX_POINTS_Y) - 1); // -1 is appropriate if we want all movement to the Y_MAX
|
|
||||
} // position. But with this defined this way, it is possible
|
|
||||
// to extrapolate off of this point even further out. Probably
|
|
||||
// that is OK because something else should be keeping that from
|
|
||||
// happening and should not be worried about at this level.
|
|
||||
|
|
||||
static int8_t find_closest_x_index(const float &x) { |
|
||||
const int8_t px = (x - (UBL_MESH_MIN_X) + (MESH_X_DIST) * 0.5) * (1.0 / (MESH_X_DIST)); |
|
||||
return WITHIN(px, 0, GRID_MAX_POINTS_X - 1) ? px : -1; |
|
||||
} |
|
||||
|
|
||||
static int8_t find_closest_y_index(const float &y) { |
|
||||
const int8_t py = (y - (UBL_MESH_MIN_Y) + (MESH_Y_DIST) * 0.5) * (1.0 / (MESH_Y_DIST)); |
|
||||
return WITHIN(py, 0, GRID_MAX_POINTS_Y - 1) ? py : -1; |
|
||||
} |
|
||||
|
|
||||
/**
|
|
||||
* z2 --| |
|
||||
* z0 | | |
|
||||
* | | + (z2-z1) |
|
||||
* z1 | | | |
|
||||
* ---+-------------+--------+-- --| |
|
||||
* a1 a0 a2 |
|
||||
* |<---delta_a---------->| |
|
||||
* |
|
||||
* calc_z0 is the basis for all the Mesh Based correction. It is used to |
|
||||
* find the expected Z Height at a position between two known Z-Height locations. |
|
||||
* |
|
||||
* It is fairly expensive with its 4 floating point additions and 2 floating point |
|
||||
* multiplications. |
|
||||
*/ |
|
||||
static FORCE_INLINE float calc_z0(const float &a0, const float &a1, const float &z1, const float &a2, const float &z2) { |
|
||||
return z1 + (z2 - z1) * (a0 - a1) / (a2 - a1); |
|
||||
} |
|
||||
|
|
||||
/**
|
|
||||
* z_correction_for_x_on_horizontal_mesh_line is an optimization for |
|
||||
* the rare occasion when a point lies exactly on a Mesh line (denoted by index yi). |
|
||||
*/ |
|
||||
static inline float z_correction_for_x_on_horizontal_mesh_line(const float &lx0, const int x1_i, const int yi) { |
|
||||
if (!WITHIN(x1_i, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(yi, 0, GRID_MAX_POINTS_Y - 1)) { |
|
||||
SERIAL_ECHOPAIR("? in z_correction_for_x_on_horizontal_mesh_line(lx0=", lx0); |
|
||||
SERIAL_ECHOPAIR(",x1_i=", x1_i); |
|
||||
SERIAL_ECHOPAIR(",yi=", yi); |
|
||||
SERIAL_CHAR(')'); |
|
||||
SERIAL_EOL; |
|
||||
return NAN; |
|
||||
} |
|
||||
|
|
||||
const float xratio = (RAW_X_POSITION(lx0) - mesh_index_to_xpos[x1_i]) * (1.0 / (MESH_X_DIST)), |
|
||||
z1 = z_values[x1_i][yi]; |
|
||||
|
|
||||
return z1 + xratio * (z_values[x1_i + 1][yi] - z1); |
|
||||
} |
|
||||
|
|
||||
//
|
|
||||
// See comments above for z_correction_for_x_on_horizontal_mesh_line
|
|
||||
//
|
|
||||
static inline float z_correction_for_y_on_vertical_mesh_line(const float &ly0, const int xi, const int y1_i) { |
|
||||
if (!WITHIN(xi, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(y1_i, 0, GRID_MAX_POINTS_Y - 1)) { |
|
||||
SERIAL_ECHOPAIR("? in get_z_correction_along_vertical_mesh_line_at_specific_x(ly0=", ly0); |
|
||||
SERIAL_ECHOPAIR(", x1_i=", xi); |
|
||||
SERIAL_ECHOPAIR(", yi=", y1_i); |
|
||||
SERIAL_CHAR(')'); |
|
||||
SERIAL_EOL; |
|
||||
return NAN; |
|
||||
} |
|
||||
|
|
||||
const float yratio = (RAW_Y_POSITION(ly0) - mesh_index_to_ypos[y1_i]) * (1.0 / (MESH_Y_DIST)), |
|
||||
z1 = z_values[xi][y1_i]; |
|
||||
|
|
||||
return z1 + yratio * (z_values[xi][y1_i + 1] - z1); |
|
||||
} |
|
||||
|
|
||||
/**
|
|
||||
* This is the generic Z-Correction. It works anywhere within a Mesh Cell. It first |
|
||||
* does a linear interpolation along both of the bounding X-Mesh-Lines to find the |
|
||||
* Z-Height at both ends. Then it does a linear interpolation of these heights based |
|
||||
* on the Y position within the cell. |
|
||||
*/ |
|
||||
static float get_z_correction(const float &lx0, const float &ly0) { |
|
||||
const int8_t cx = get_cell_index_x(RAW_X_POSITION(lx0)), |
|
||||
cy = get_cell_index_y(RAW_Y_POSITION(ly0)); |
|
||||
|
|
||||
if (!WITHIN(cx, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(cy, 0, GRID_MAX_POINTS_Y - 1)) { |
|
||||
|
|
||||
SERIAL_ECHOPAIR("? in get_z_correction(lx0=", lx0); |
|
||||
SERIAL_ECHOPAIR(", ly0=", ly0); |
|
||||
SERIAL_CHAR(')'); |
|
||||
SERIAL_EOL; |
|
||||
|
|
||||
#if ENABLED(ULTRA_LCD) |
|
||||
strcpy(lcd_status_message, "get_z_correction() indexes out of range."); |
|
||||
lcd_quick_feedback(); |
|
||||
#endif |
|
||||
return 0.0; // this used to return state.z_offset
|
|
||||
} |
|
||||
|
|
||||
const float z1 = calc_z0(RAW_X_POSITION(lx0), |
|
||||
mesh_index_to_xpos[cx], z_values[cx][cy], |
|
||||
mesh_index_to_xpos[cx + 1], z_values[cx + 1][cy]), |
|
||||
z2 = calc_z0(RAW_X_POSITION(lx0), |
|
||||
mesh_index_to_xpos[cx], z_values[cx][cy + 1], |
|
||||
mesh_index_to_xpos[cx + 1], z_values[cx + 1][cy + 1]); |
|
||||
float z0 = calc_z0(RAW_Y_POSITION(ly0), |
|
||||
mesh_index_to_ypos[cy], z1, |
|
||||
mesh_index_to_ypos[cy + 1], z2); |
|
||||
|
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE) |
|
||||
if (DEBUGGING(MESH_ADJUST)) { |
|
||||
SERIAL_ECHOPAIR(" raw get_z_correction(", lx0); |
|
||||
SERIAL_CHAR(',') |
|
||||
SERIAL_ECHO(ly0); |
|
||||
SERIAL_ECHOPGM(") = "); |
|
||||
SERIAL_ECHO_F(z0, 6); |
|
||||
} |
|
||||
#endif |
|
||||
|
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE) |
|
||||
if (DEBUGGING(MESH_ADJUST)) { |
|
||||
SERIAL_ECHOPGM(" >>>---> "); |
|
||||
SERIAL_ECHO_F(z0, 6); |
|
||||
SERIAL_EOL; |
|
||||
} |
|
||||
#endif |
|
||||
|
|
||||
if (isnan(z0)) { // if part of the Mesh is undefined, it will show up as NAN
|
|
||||
z0 = 0.0; // in ubl.z_values[][] and propagate through the
|
|
||||
// calculations. If our correction is NAN, we throw it out
|
|
||||
// because part of the Mesh is undefined and we don't have the
|
|
||||
// information we need to complete the height correction.
|
|
||||
|
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE) |
|
||||
if (DEBUGGING(MESH_ADJUST)) { |
|
||||
SERIAL_ECHOPAIR("??? Yikes! NAN in get_z_correction(", lx0); |
|
||||
SERIAL_CHAR(','); |
|
||||
SERIAL_ECHO(ly0); |
|
||||
SERIAL_CHAR(')'); |
|
||||
SERIAL_EOL; |
|
||||
} |
|
||||
#endif |
|
||||
} |
|
||||
return z0; // there used to be a +state.z_offset on this line
|
|
||||
} |
|
||||
|
|
||||
/**
|
|
||||
* This function sets the Z leveling fade factor based on the given Z height, |
|
||||
* only re-calculating when necessary. |
|
||||
* |
|
||||
* Returns 1.0 if g29_correction_fade_height is 0.0. |
|
||||
* Returns 0.0 if Z is past the specified 'Fade Height'. |
|
||||
*/ |
|
||||
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) |
|
||||
|
|
||||
static FORCE_INLINE float fade_scaling_factor_for_z(const float &lz) { |
|
||||
if (state.g29_correction_fade_height == 0.0) return 1.0; |
|
||||
|
|
||||
static float fade_scaling_factor = 1.0; |
|
||||
const float rz = RAW_Z_POSITION(lz); |
|
||||
if (last_specified_z != rz) { |
|
||||
last_specified_z = rz; |
|
||||
fade_scaling_factor = |
|
||||
rz < state.g29_correction_fade_height |
|
||||
? 1.0 - (rz * state.g29_fade_height_multiplier) |
|
||||
: 0.0; |
|
||||
} |
|
||||
return fade_scaling_factor; |
|
||||
} |
|
||||
|
|
||||
#endif |
|
||||
|
|
||||
}; // class unified_bed_leveling
|
|
||||
|
|
||||
extern unified_bed_leveling ubl; |
|
||||
|
|
||||
#define UBL_LAST_EEPROM_INDEX (E2END - sizeof(unified_bed_leveling::state)) |
|
||||
|
|
||||
#endif // AUTO_BED_LEVELING_UBL
|
|
||||
#endif // UNIFIED_BED_LEVELING_H
|
|
@ -0,0 +1,341 @@ |
|||||
|
/**
|
||||
|
* Marlin 3D Printer Firmware |
||||
|
* Copyright (C) 2016, 2017 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
||||
|
* |
||||
|
* Based on Sprinter and grbl. |
||||
|
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm |
||||
|
* |
||||
|
* This program is free software: you can redistribute it and/or modify |
||||
|
* it under the terms of the GNU General Public License as published by |
||||
|
* the Free Software Foundation, either version 3 of the License, or |
||||
|
* (at your option) any later version. |
||||
|
* |
||||
|
* This program is distributed in the hope that it will be useful, |
||||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
||||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
||||
|
* GNU General Public License for more details. |
||||
|
* |
||||
|
* You should have received a copy of the GNU General Public License |
||||
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
* |
||||
|
*/ |
||||
|
|
||||
|
#ifndef UNIFIED_BED_LEVELING_H |
||||
|
#define UNIFIED_BED_LEVELING_H |
||||
|
|
||||
|
#include "MarlinConfig.h" |
||||
|
|
||||
|
#if ENABLED(AUTO_BED_LEVELING_UBL) |
||||
|
|
||||
|
#include "Marlin.h" |
||||
|
#include "math.h" |
||||
|
#include "vector_3.h" |
||||
|
|
||||
|
#define UBL_VERSION "1.00" |
||||
|
#define UBL_OK false |
||||
|
#define UBL_ERR true |
||||
|
|
||||
|
typedef struct { |
||||
|
int8_t x_index, y_index; |
||||
|
float distance; // When populated, the distance from the search location
|
||||
|
} mesh_index_pair; |
||||
|
|
||||
|
enum MeshPointType { INVALID, REAL, SET_IN_BITMAP }; |
||||
|
|
||||
|
void dump(char * const str, const float &f); |
||||
|
bool ubl_lcd_clicked(); |
||||
|
void probe_entire_mesh(const float&, const float&, const bool, const bool, const bool); |
||||
|
void debug_current_and_destination(char *title); |
||||
|
void ubl_line_to_destination(const float&, uint8_t); |
||||
|
void manually_probe_remaining_mesh(const float&, const float&, const float&, const float&, const bool); |
||||
|
vector_3 tilt_mesh_based_on_3pts(const float&, const float&, const float&); |
||||
|
float measure_business_card_thickness(const float&); |
||||
|
mesh_index_pair find_closest_mesh_point_of_type(const MeshPointType, const float&, const float&, const bool, unsigned int[16], bool); |
||||
|
void find_mean_mesh_height(); |
||||
|
void shift_mesh_height(); |
||||
|
bool g29_parameter_parsing(); |
||||
|
void g29_what_command(); |
||||
|
void g29_eeprom_dump(); |
||||
|
void g29_compare_current_mesh_to_stored_mesh(); |
||||
|
void fine_tune_mesh(const float&, const float&, const bool); |
||||
|
void bit_clear(uint16_t bits[16], uint8_t x, uint8_t y); |
||||
|
void bit_set(uint16_t bits[16], uint8_t x, uint8_t y); |
||||
|
bool is_bit_set(uint16_t bits[16], uint8_t x, uint8_t y); |
||||
|
char *ftostr43sign(const float&, char); |
||||
|
|
||||
|
void gcode_G26(); |
||||
|
void gcode_G28(); |
||||
|
void gcode_G29(); |
||||
|
extern char conv[9]; |
||||
|
|
||||
|
void save_ubl_active_state_and_disable(); |
||||
|
void restore_ubl_active_state_and_leave(); |
||||
|
|
||||
|
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
|
||||
|
#if ENABLED(ULTRA_LCD) |
||||
|
extern char lcd_status_message[]; |
||||
|
void lcd_quick_feedback(); |
||||
|
#endif |
||||
|
|
||||
|
enum MBLStatus { MBL_STATUS_NONE = 0, MBL_STATUS_HAS_MESH_BIT = 0, MBL_STATUS_ACTIVE_BIT = 1 }; |
||||
|
|
||||
|
#define MESH_X_DIST (float(UBL_MESH_MAX_X - (UBL_MESH_MIN_X)) / float(GRID_MAX_POINTS_X - 1)) |
||||
|
#define MESH_Y_DIST (float(UBL_MESH_MAX_Y - (UBL_MESH_MIN_Y)) / float(GRID_MAX_POINTS_Y - 1)) |
||||
|
|
||||
|
typedef struct { |
||||
|
bool active = false; |
||||
|
float z_offset = 0.0; |
||||
|
int8_t eeprom_storage_slot = -1, |
||||
|
n_x = GRID_MAX_POINTS_X, |
||||
|
n_y = GRID_MAX_POINTS_Y; |
||||
|
|
||||
|
float mesh_x_min = UBL_MESH_MIN_X, |
||||
|
mesh_y_min = UBL_MESH_MIN_Y, |
||||
|
mesh_x_max = UBL_MESH_MAX_X, |
||||
|
mesh_y_max = UBL_MESH_MAX_Y, |
||||
|
mesh_x_dist = MESH_X_DIST, |
||||
|
mesh_y_dist = MESH_Y_DIST; |
||||
|
|
||||
|
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) |
||||
|
float g29_correction_fade_height = 10.0, |
||||
|
g29_fade_height_multiplier = 1.0 / 10.0; // It's cheaper to do a floating point multiply than divide,
|
||||
|
// so keep this value and its reciprocal.
|
||||
|
#endif |
||||
|
|
||||
|
// If you change this struct, adjust TOTAL_STRUCT_SIZE
|
||||
|
|
||||
|
#define TOTAL_STRUCT_SIZE 40 // Total size of the above fields
|
||||
|
|
||||
|
// padding provides space to add state variables without
|
||||
|
// changing the location of data structures in the EEPROM.
|
||||
|
// This is for compatibility with future versions to keep
|
||||
|
// users from having to regenerate their mesh data.
|
||||
|
unsigned char padding[64 - TOTAL_STRUCT_SIZE]; |
||||
|
|
||||
|
} ubl_state; |
||||
|
|
||||
|
class unified_bed_leveling { |
||||
|
private: |
||||
|
|
||||
|
static float last_specified_z; |
||||
|
|
||||
|
public: |
||||
|
|
||||
|
static ubl_state state, pre_initialized; |
||||
|
|
||||
|
static float z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y], |
||||
|
mesh_index_to_xpos[GRID_MAX_POINTS_X + 1], // +1 safety margin for now, until determinism prevails
|
||||
|
mesh_index_to_ypos[GRID_MAX_POINTS_Y + 1]; |
||||
|
|
||||
|
static bool g26_debug_flag, |
||||
|
has_control_of_lcd_panel; |
||||
|
|
||||
|
static int8_t eeprom_start; |
||||
|
|
||||
|
static volatile int encoder_diff; // Volatile because it's changed at interrupt time.
|
||||
|
|
||||
|
unified_bed_leveling(); |
||||
|
|
||||
|
static void display_map(const int); |
||||
|
|
||||
|
static void reset(); |
||||
|
static void invalidate(); |
||||
|
|
||||
|
static void store_state(); |
||||
|
static void load_state(); |
||||
|
static void store_mesh(const int16_t); |
||||
|
static void load_mesh(const int16_t); |
||||
|
|
||||
|
static bool sanity_check(); |
||||
|
|
||||
|
static FORCE_INLINE void set_z(const int8_t px, const int8_t py, const float &z) { z_values[px][py] = z; } |
||||
|
|
||||
|
static int8_t get_cell_index_x(const float &x) { |
||||
|
const int8_t cx = (x - (UBL_MESH_MIN_X)) * (1.0 / (MESH_X_DIST)); |
||||
|
return constrain(cx, 0, (GRID_MAX_POINTS_X) - 1); // -1 is appropriate if we want all movement to the X_MAX
|
||||
|
} // position. But with this defined this way, it is possible
|
||||
|
// to extrapolate off of this point even further out. Probably
|
||||
|
// that is OK because something else should be keeping that from
|
||||
|
// happening and should not be worried about at this level.
|
||||
|
static int8_t get_cell_index_y(const float &y) { |
||||
|
const int8_t cy = (y - (UBL_MESH_MIN_Y)) * (1.0 / (MESH_Y_DIST)); |
||||
|
return constrain(cy, 0, (GRID_MAX_POINTS_Y) - 1); // -1 is appropriate if we want all movement to the Y_MAX
|
||||
|
} // position. But with this defined this way, it is possible
|
||||
|
// to extrapolate off of this point even further out. Probably
|
||||
|
// that is OK because something else should be keeping that from
|
||||
|
// happening and should not be worried about at this level.
|
||||
|
|
||||
|
static int8_t find_closest_x_index(const float &x) { |
||||
|
const int8_t px = (x - (UBL_MESH_MIN_X) + (MESH_X_DIST) * 0.5) * (1.0 / (MESH_X_DIST)); |
||||
|
return WITHIN(px, 0, GRID_MAX_POINTS_X - 1) ? px : -1; |
||||
|
} |
||||
|
|
||||
|
static int8_t find_closest_y_index(const float &y) { |
||||
|
const int8_t py = (y - (UBL_MESH_MIN_Y) + (MESH_Y_DIST) * 0.5) * (1.0 / (MESH_Y_DIST)); |
||||
|
return WITHIN(py, 0, GRID_MAX_POINTS_Y - 1) ? py : -1; |
||||
|
} |
||||
|
|
||||
|
/**
|
||||
|
* z2 --| |
||||
|
* z0 | | |
||||
|
* | | + (z2-z1) |
||||
|
* z1 | | | |
||||
|
* ---+-------------+--------+-- --| |
||||
|
* a1 a0 a2 |
||||
|
* |<---delta_a---------->| |
||||
|
* |
||||
|
* calc_z0 is the basis for all the Mesh Based correction. It is used to |
||||
|
* find the expected Z Height at a position between two known Z-Height locations. |
||||
|
* |
||||
|
* It is fairly expensive with its 4 floating point additions and 2 floating point |
||||
|
* multiplications. |
||||
|
*/ |
||||
|
static FORCE_INLINE float calc_z0(const float &a0, const float &a1, const float &z1, const float &a2, const float &z2) { |
||||
|
return z1 + (z2 - z1) * (a0 - a1) / (a2 - a1); |
||||
|
} |
||||
|
|
||||
|
/**
|
||||
|
* z_correction_for_x_on_horizontal_mesh_line is an optimization for |
||||
|
* the rare occasion when a point lies exactly on a Mesh line (denoted by index yi). |
||||
|
*/ |
||||
|
static inline float z_correction_for_x_on_horizontal_mesh_line(const float &lx0, const int x1_i, const int yi) { |
||||
|
if (!WITHIN(x1_i, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(yi, 0, GRID_MAX_POINTS_Y - 1)) { |
||||
|
SERIAL_ECHOPAIR("? in z_correction_for_x_on_horizontal_mesh_line(lx0=", lx0); |
||||
|
SERIAL_ECHOPAIR(",x1_i=", x1_i); |
||||
|
SERIAL_ECHOPAIR(",yi=", yi); |
||||
|
SERIAL_CHAR(')'); |
||||
|
SERIAL_EOL; |
||||
|
return NAN; |
||||
|
} |
||||
|
|
||||
|
const float xratio = (RAW_X_POSITION(lx0) - mesh_index_to_xpos[x1_i]) * (1.0 / (MESH_X_DIST)), |
||||
|
z1 = z_values[x1_i][yi]; |
||||
|
|
||||
|
return z1 + xratio * (z_values[x1_i + 1][yi] - z1); |
||||
|
} |
||||
|
|
||||
|
//
|
||||
|
// See comments above for z_correction_for_x_on_horizontal_mesh_line
|
||||
|
//
|
||||
|
static inline float z_correction_for_y_on_vertical_mesh_line(const float &ly0, const int xi, const int y1_i) { |
||||
|
if (!WITHIN(xi, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(y1_i, 0, GRID_MAX_POINTS_Y - 1)) { |
||||
|
SERIAL_ECHOPAIR("? in get_z_correction_along_vertical_mesh_line_at_specific_x(ly0=", ly0); |
||||
|
SERIAL_ECHOPAIR(", x1_i=", xi); |
||||
|
SERIAL_ECHOPAIR(", yi=", y1_i); |
||||
|
SERIAL_CHAR(')'); |
||||
|
SERIAL_EOL; |
||||
|
return NAN; |
||||
|
} |
||||
|
|
||||
|
const float yratio = (RAW_Y_POSITION(ly0) - mesh_index_to_ypos[y1_i]) * (1.0 / (MESH_Y_DIST)), |
||||
|
z1 = z_values[xi][y1_i]; |
||||
|
|
||||
|
return z1 + yratio * (z_values[xi][y1_i + 1] - z1); |
||||
|
} |
||||
|
|
||||
|
/**
|
||||
|
* This is the generic Z-Correction. It works anywhere within a Mesh Cell. It first |
||||
|
* does a linear interpolation along both of the bounding X-Mesh-Lines to find the |
||||
|
* Z-Height at both ends. Then it does a linear interpolation of these heights based |
||||
|
* on the Y position within the cell. |
||||
|
*/ |
||||
|
static float get_z_correction(const float &lx0, const float &ly0) { |
||||
|
const int8_t cx = get_cell_index_x(RAW_X_POSITION(lx0)), |
||||
|
cy = get_cell_index_y(RAW_Y_POSITION(ly0)); |
||||
|
|
||||
|
if (!WITHIN(cx, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(cy, 0, GRID_MAX_POINTS_Y - 1)) { |
||||
|
|
||||
|
SERIAL_ECHOPAIR("? in get_z_correction(lx0=", lx0); |
||||
|
SERIAL_ECHOPAIR(", ly0=", ly0); |
||||
|
SERIAL_CHAR(')'); |
||||
|
SERIAL_EOL; |
||||
|
|
||||
|
#if ENABLED(ULTRA_LCD) |
||||
|
strcpy(lcd_status_message, "get_z_correction() indexes out of range."); |
||||
|
lcd_quick_feedback(); |
||||
|
#endif |
||||
|
return 0.0; // this used to return state.z_offset
|
||||
|
} |
||||
|
|
||||
|
const float z1 = calc_z0(RAW_X_POSITION(lx0), |
||||
|
mesh_index_to_xpos[cx], z_values[cx][cy], |
||||
|
mesh_index_to_xpos[cx + 1], z_values[cx + 1][cy]), |
||||
|
z2 = calc_z0(RAW_X_POSITION(lx0), |
||||
|
mesh_index_to_xpos[cx], z_values[cx][cy + 1], |
||||
|
mesh_index_to_xpos[cx + 1], z_values[cx + 1][cy + 1]); |
||||
|
float z0 = calc_z0(RAW_Y_POSITION(ly0), |
||||
|
mesh_index_to_ypos[cy], z1, |
||||
|
mesh_index_to_ypos[cy + 1], z2); |
||||
|
|
||||
|
#if ENABLED(DEBUG_LEVELING_FEATURE) |
||||
|
if (DEBUGGING(MESH_ADJUST)) { |
||||
|
SERIAL_ECHOPAIR(" raw get_z_correction(", lx0); |
||||
|
SERIAL_CHAR(',') |
||||
|
SERIAL_ECHO(ly0); |
||||
|
SERIAL_ECHOPGM(") = "); |
||||
|
SERIAL_ECHO_F(z0, 6); |
||||
|
} |
||||
|
#endif |
||||
|
|
||||
|
#if ENABLED(DEBUG_LEVELING_FEATURE) |
||||
|
if (DEBUGGING(MESH_ADJUST)) { |
||||
|
SERIAL_ECHOPGM(" >>>---> "); |
||||
|
SERIAL_ECHO_F(z0, 6); |
||||
|
SERIAL_EOL; |
||||
|
} |
||||
|
#endif |
||||
|
|
||||
|
if (isnan(z0)) { // if part of the Mesh is undefined, it will show up as NAN
|
||||
|
z0 = 0.0; // in ubl.z_values[][] and propagate through the
|
||||
|
// calculations. If our correction is NAN, we throw it out
|
||||
|
// because part of the Mesh is undefined and we don't have the
|
||||
|
// information we need to complete the height correction.
|
||||
|
|
||||
|
#if ENABLED(DEBUG_LEVELING_FEATURE) |
||||
|
if (DEBUGGING(MESH_ADJUST)) { |
||||
|
SERIAL_ECHOPAIR("??? Yikes! NAN in get_z_correction(", lx0); |
||||
|
SERIAL_CHAR(','); |
||||
|
SERIAL_ECHO(ly0); |
||||
|
SERIAL_CHAR(')'); |
||||
|
SERIAL_EOL; |
||||
|
} |
||||
|
#endif |
||||
|
} |
||||
|
return z0; // there used to be a +state.z_offset on this line
|
||||
|
} |
||||
|
|
||||
|
/**
|
||||
|
* This function sets the Z leveling fade factor based on the given Z height, |
||||
|
* only re-calculating when necessary. |
||||
|
* |
||||
|
* Returns 1.0 if g29_correction_fade_height is 0.0. |
||||
|
* Returns 0.0 if Z is past the specified 'Fade Height'. |
||||
|
*/ |
||||
|
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) |
||||
|
|
||||
|
static FORCE_INLINE float fade_scaling_factor_for_z(const float &lz) { |
||||
|
if (state.g29_correction_fade_height == 0.0) return 1.0; |
||||
|
|
||||
|
static float fade_scaling_factor = 1.0; |
||||
|
const float rz = RAW_Z_POSITION(lz); |
||||
|
if (last_specified_z != rz) { |
||||
|
last_specified_z = rz; |
||||
|
fade_scaling_factor = |
||||
|
rz < state.g29_correction_fade_height |
||||
|
? 1.0 - (rz * state.g29_fade_height_multiplier) |
||||
|
: 0.0; |
||||
|
} |
||||
|
return fade_scaling_factor; |
||||
|
} |
||||
|
|
||||
|
#endif |
||||
|
|
||||
|
}; // class unified_bed_leveling
|
||||
|
|
||||
|
extern unified_bed_leveling ubl; |
||||
|
|
||||
|
#define UBL_LAST_EEPROM_INDEX (E2END - sizeof(unified_bed_leveling::state)) |
||||
|
|
||||
|
#endif // AUTO_BED_LEVELING_UBL
|
||||
|
#endif // UNIFIED_BED_LEVELING_H
|
Loading…
Reference in new issue