|
@ -575,8 +575,9 @@ static uint8_t target_extruder; |
|
|
#endif |
|
|
#endif |
|
|
|
|
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_BILINEAR) |
|
|
#if ENABLED(AUTO_BED_LEVELING_BILINEAR) |
|
|
int bilinear_grid_spacing[2] = { 0 }, bilinear_start[2] = { 0 }; |
|
|
#define UNPROBED 9999.0f |
|
|
float bed_level_grid[ABL_GRID_POINTS_X][ABL_GRID_POINTS_Y]; |
|
|
int bilinear_grid_spacing[2], bilinear_start[2]; |
|
|
|
|
|
float bed_level_grid[ABL_GRID_MAX_POINTS_X][ABL_GRID_MAX_POINTS_Y]; |
|
|
#endif |
|
|
#endif |
|
|
|
|
|
|
|
|
#if IS_SCARA |
|
|
#if IS_SCARA |
|
@ -2228,7 +2229,7 @@ static void clean_up_after_endstop_or_probe_move() { |
|
|
* Disable: Current position = physical position |
|
|
* Disable: Current position = physical position |
|
|
* Enable: Current position = "unleveled" physical position |
|
|
* Enable: Current position = "unleveled" physical position |
|
|
*/ |
|
|
*/ |
|
|
void set_bed_leveling_enabled(bool enable=true) { |
|
|
void set_bed_leveling_enabled(bool enable/*=true*/) { |
|
|
#if ENABLED(MESH_BED_LEVELING) |
|
|
#if ENABLED(MESH_BED_LEVELING) |
|
|
|
|
|
|
|
|
if (enable != mbl.active()) { |
|
|
if (enable != mbl.active()) { |
|
@ -2243,7 +2244,13 @@ static void clean_up_after_endstop_or_probe_move() { |
|
|
|
|
|
|
|
|
#elif HAS_ABL |
|
|
#elif HAS_ABL |
|
|
|
|
|
|
|
|
if (enable != planner.abl_enabled) { |
|
|
#if ENABLED(AUTO_BED_LEVELING_BILINEAR) |
|
|
|
|
|
const bool can_change = (!enable || (bilinear_grid_spacing[0] && bilinear_grid_spacing[1])); |
|
|
|
|
|
#else |
|
|
|
|
|
constexpr bool can_change = true; |
|
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
|
|
if (can_change && enable != planner.abl_enabled) { |
|
|
planner.abl_enabled = enable; |
|
|
planner.abl_enabled = enable; |
|
|
if (!enable) |
|
|
if (!enable) |
|
|
set_current_from_steppers_for_axis( |
|
|
set_current_from_steppers_for_axis( |
|
@ -2289,23 +2296,24 @@ static void clean_up_after_endstop_or_probe_move() { |
|
|
* Reset calibration results to zero. |
|
|
* Reset calibration results to zero. |
|
|
*/ |
|
|
*/ |
|
|
void reset_bed_level() { |
|
|
void reset_bed_level() { |
|
|
|
|
|
set_bed_leveling_enabled(false); |
|
|
#if ENABLED(MESH_BED_LEVELING) |
|
|
#if ENABLED(MESH_BED_LEVELING) |
|
|
if (mbl.has_mesh()) { |
|
|
if (mbl.has_mesh()) { |
|
|
set_bed_leveling_enabled(false); |
|
|
|
|
|
mbl.reset(); |
|
|
mbl.reset(); |
|
|
mbl.set_has_mesh(false); |
|
|
mbl.set_has_mesh(false); |
|
|
} |
|
|
} |
|
|
#else |
|
|
#else |
|
|
planner.abl_enabled = false; |
|
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE) |
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE) |
|
|
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level"); |
|
|
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level"); |
|
|
#endif |
|
|
#endif |
|
|
#if ABL_PLANAR |
|
|
#if ABL_PLANAR |
|
|
planner.bed_level_matrix.set_to_identity(); |
|
|
planner.bed_level_matrix.set_to_identity(); |
|
|
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR) |
|
|
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR) |
|
|
for (uint8_t x = 0; x < ABL_GRID_POINTS_X; x++) |
|
|
bilinear_start[X_AXIS] = bilinear_start[Y_AXIS] = |
|
|
for (uint8_t y = 0; y < ABL_GRID_POINTS_Y; y++) |
|
|
bilinear_grid_spacing[X_AXIS] = bilinear_grid_spacing[Y_AXIS] = 0; |
|
|
bed_level_grid[x][y] = 1000.0; |
|
|
for (uint8_t x = 0; x < ABL_GRID_MAX_POINTS_X; x++) |
|
|
|
|
|
for (uint8_t y = 0; y < ABL_GRID_MAX_POINTS_Y; y++) |
|
|
|
|
|
bed_level_grid[x][y] = UNPROBED; |
|
|
#endif |
|
|
#endif |
|
|
#endif |
|
|
#endif |
|
|
} |
|
|
} |
|
@ -2331,7 +2339,7 @@ static void clean_up_after_endstop_or_probe_move() { |
|
|
SERIAL_CHAR(']'); |
|
|
SERIAL_CHAR(']'); |
|
|
} |
|
|
} |
|
|
#endif |
|
|
#endif |
|
|
if (bed_level_grid[x][y] < 999.0) { |
|
|
if (bed_level_grid[x][y] != UNPROBED) { |
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE) |
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE) |
|
|
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM(" (done)"); |
|
|
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM(" (done)"); |
|
|
#endif |
|
|
#endif |
|
@ -2345,13 +2353,13 @@ static void clean_up_after_endstop_or_probe_move() { |
|
|
c1 = bed_level_grid[x + xdir][y + ydir], c2 = bed_level_grid[x + xdir * 2][y + ydir * 2]; |
|
|
c1 = bed_level_grid[x + xdir][y + ydir], c2 = bed_level_grid[x + xdir * 2][y + ydir * 2]; |
|
|
|
|
|
|
|
|
// Treat far unprobed points as zero, near as equal to far
|
|
|
// Treat far unprobed points as zero, near as equal to far
|
|
|
if (a2 > 999.0) a2 = 0.0; if (a1 > 999.0) a1 = a2; |
|
|
if (a2 == UNPROBED) a2 = 0.0; if (a1 == UNPROBED) a1 = a2; |
|
|
if (b2 > 999.0) b2 = 0.0; if (b1 > 999.0) b1 = b2; |
|
|
if (b2 == UNPROBED) b2 = 0.0; if (b1 == UNPROBED) b1 = b2; |
|
|
if (c2 > 999.0) c2 = 0.0; if (c1 > 999.0) c1 = c2; |
|
|
if (c2 == UNPROBED) c2 = 0.0; if (c1 == UNPROBED) c1 = c2; |
|
|
|
|
|
|
|
|
float a = 2 * a1 - a2, b = 2 * b1 - b2, c = 2 * c1 - c2; |
|
|
float a = 2 * a1 - a2, b = 2 * b1 - b2, c = 2 * c1 - c2; |
|
|
|
|
|
|
|
|
// Take the average intstead of the median
|
|
|
// Take the average instead of the median
|
|
|
bed_level_grid[x][y] = (a + b + c) / 3.0; |
|
|
bed_level_grid[x][y] = (a + b + c) / 3.0; |
|
|
|
|
|
|
|
|
// Median is robust (ignores outliers).
|
|
|
// Median is robust (ignores outliers).
|
|
@ -2363,9 +2371,9 @@ static void clean_up_after_endstop_or_probe_move() { |
|
|
//#define EXTRAPOLATE_FROM_EDGE
|
|
|
//#define EXTRAPOLATE_FROM_EDGE
|
|
|
|
|
|
|
|
|
#if ENABLED(EXTRAPOLATE_FROM_EDGE) |
|
|
#if ENABLED(EXTRAPOLATE_FROM_EDGE) |
|
|
#if ABL_GRID_POINTS_X < ABL_GRID_POINTS_Y |
|
|
#if ABL_GRID_MAX_POINTS_X < ABL_GRID_MAX_POINTS_Y |
|
|
#define HALF_IN_X |
|
|
#define HALF_IN_X |
|
|
#elif ABL_GRID_POINTS_Y < ABL_GRID_POINTS_X |
|
|
#elif ABL_GRID_MAX_POINTS_Y < ABL_GRID_MAX_POINTS_X |
|
|
#define HALF_IN_Y |
|
|
#define HALF_IN_Y |
|
|
#endif |
|
|
#endif |
|
|
#endif |
|
|
#endif |
|
@ -2376,18 +2384,18 @@ static void clean_up_after_endstop_or_probe_move() { |
|
|
*/ |
|
|
*/ |
|
|
static void extrapolate_unprobed_bed_level() { |
|
|
static void extrapolate_unprobed_bed_level() { |
|
|
#ifdef HALF_IN_X |
|
|
#ifdef HALF_IN_X |
|
|
const uint8_t ctrx2 = 0, xlen = ABL_GRID_POINTS_X - 1; |
|
|
const uint8_t ctrx2 = 0, xlen = ABL_GRID_MAX_POINTS_X - 1; |
|
|
#else |
|
|
#else |
|
|
const uint8_t ctrx1 = (ABL_GRID_POINTS_X - 1) / 2, // left-of-center
|
|
|
const uint8_t ctrx1 = (ABL_GRID_MAX_POINTS_X - 1) / 2, // left-of-center
|
|
|
ctrx2 = ABL_GRID_POINTS_X / 2, // right-of-center
|
|
|
ctrx2 = ABL_GRID_MAX_POINTS_X / 2, // right-of-center
|
|
|
xlen = ctrx1; |
|
|
xlen = ctrx1; |
|
|
#endif |
|
|
#endif |
|
|
|
|
|
|
|
|
#ifdef HALF_IN_Y |
|
|
#ifdef HALF_IN_Y |
|
|
const uint8_t ctry2 = 0, ylen = ABL_GRID_POINTS_Y - 1; |
|
|
const uint8_t ctry2 = 0, ylen = ABL_GRID_MAX_POINTS_Y - 1; |
|
|
#else |
|
|
#else |
|
|
const uint8_t ctry1 = (ABL_GRID_POINTS_Y - 1) / 2, // top-of-center
|
|
|
const uint8_t ctry1 = (ABL_GRID_MAX_POINTS_Y - 1) / 2, // top-of-center
|
|
|
ctry2 = ABL_GRID_POINTS_Y / 2, // bottom-of-center
|
|
|
ctry2 = ABL_GRID_MAX_POINTS_Y / 2, // bottom-of-center
|
|
|
ylen = ctry1; |
|
|
ylen = ctry1; |
|
|
#endif |
|
|
#endif |
|
|
|
|
|
|
|
@ -2415,21 +2423,21 @@ static void clean_up_after_endstop_or_probe_move() { |
|
|
/**
|
|
|
/**
|
|
|
* Print calibration results for plotting or manual frame adjustment. |
|
|
* Print calibration results for plotting or manual frame adjustment. |
|
|
*/ |
|
|
*/ |
|
|
static void print_bed_level() { |
|
|
static void print_bilinear_leveling_grid() { |
|
|
SERIAL_ECHOPGM("Bilinear Leveling Grid:\n "); |
|
|
SERIAL_ECHOPGM("Bilinear Leveling Grid:\n "); |
|
|
for (uint8_t x = 0; x < ABL_GRID_POINTS_X; x++) { |
|
|
for (uint8_t x = 0; x < ABL_GRID_MAX_POINTS_X; x++) { |
|
|
SERIAL_PROTOCOLPGM(" "); |
|
|
SERIAL_PROTOCOLPGM(" "); |
|
|
if (x < 10) SERIAL_PROTOCOLCHAR(' '); |
|
|
if (x < 10) SERIAL_PROTOCOLCHAR(' '); |
|
|
SERIAL_PROTOCOL((int)x); |
|
|
SERIAL_PROTOCOL((int)x); |
|
|
} |
|
|
} |
|
|
SERIAL_EOL; |
|
|
SERIAL_EOL; |
|
|
for (uint8_t y = 0; y < ABL_GRID_POINTS_Y; y++) { |
|
|
for (uint8_t y = 0; y < ABL_GRID_MAX_POINTS_Y; y++) { |
|
|
if (y < 10) SERIAL_PROTOCOLCHAR(' '); |
|
|
if (y < 10) SERIAL_PROTOCOLCHAR(' '); |
|
|
SERIAL_PROTOCOL((int)y); |
|
|
SERIAL_PROTOCOL((int)y); |
|
|
for (uint8_t x = 0; x < ABL_GRID_POINTS_X; x++) { |
|
|
for (uint8_t x = 0; x < ABL_GRID_MAX_POINTS_X; x++) { |
|
|
SERIAL_PROTOCOLCHAR(' '); |
|
|
SERIAL_PROTOCOLCHAR(' '); |
|
|
float offset = bed_level_grid[x][y]; |
|
|
float offset = bed_level_grid[x][y]; |
|
|
if (offset < 999.0) { |
|
|
if (offset != UNPROBED) { |
|
|
if (offset > 0) SERIAL_CHAR('+'); |
|
|
if (offset > 0) SERIAL_CHAR('+'); |
|
|
SERIAL_PROTOCOL_F(offset, 2); |
|
|
SERIAL_PROTOCOL_F(offset, 2); |
|
|
} |
|
|
} |
|
@ -2442,10 +2450,10 @@ static void clean_up_after_endstop_or_probe_move() { |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
#if ENABLED(ABL_BILINEAR_SUBDIVISION) |
|
|
#if ENABLED(ABL_BILINEAR_SUBDIVISION) |
|
|
#define ABL_GRID_POINTS_VIRT_X (ABL_GRID_POINTS_X - 1) * (BILINEAR_SUBDIVISIONS) + 1 |
|
|
#define ABL_GRID_POINTS_VIRT_X (ABL_GRID_MAX_POINTS_X - 1) * (BILINEAR_SUBDIVISIONS) + 1 |
|
|
#define ABL_GRID_POINTS_VIRT_Y (ABL_GRID_POINTS_Y - 1) * (BILINEAR_SUBDIVISIONS) + 1 |
|
|
#define ABL_GRID_POINTS_VIRT_Y (ABL_GRID_MAX_POINTS_Y - 1) * (BILINEAR_SUBDIVISIONS) + 1 |
|
|
float bed_level_grid_virt[ABL_GRID_POINTS_VIRT_X][ABL_GRID_POINTS_VIRT_Y]; |
|
|
float bed_level_grid_virt[ABL_GRID_POINTS_VIRT_X][ABL_GRID_POINTS_VIRT_Y]; |
|
|
float bed_level_grid_virt_temp[ABL_GRID_POINTS_X + 2][ABL_GRID_POINTS_Y + 2]; //temporary for calculation (maybe dynamical?)
|
|
|
float bed_level_grid_virt_temp[ABL_GRID_MAX_POINTS_X + 2][ABL_GRID_MAX_POINTS_Y + 2]; //temporary for calculation (maybe dynamical?)
|
|
|
int bilinear_grid_spacing_virt[2] = { 0 }; |
|
|
int bilinear_grid_spacing_virt[2] = { 0 }; |
|
|
|
|
|
|
|
|
static void bed_level_virt_print() { |
|
|
static void bed_level_virt_print() { |
|
@ -2462,7 +2470,7 @@ static void clean_up_after_endstop_or_probe_move() { |
|
|
for (uint8_t x = 0; x < ABL_GRID_POINTS_VIRT_X; x++) { |
|
|
for (uint8_t x = 0; x < ABL_GRID_POINTS_VIRT_X; x++) { |
|
|
SERIAL_PROTOCOLCHAR(' '); |
|
|
SERIAL_PROTOCOLCHAR(' '); |
|
|
float offset = bed_level_grid_virt[x][y]; |
|
|
float offset = bed_level_grid_virt[x][y]; |
|
|
if (offset < 999.0) { |
|
|
if (offset != UNPROBED) { |
|
|
if (offset > 0) SERIAL_CHAR('+'); |
|
|
if (offset > 0) SERIAL_CHAR('+'); |
|
|
SERIAL_PROTOCOL_F(offset, 5); |
|
|
SERIAL_PROTOCOL_F(offset, 5); |
|
|
} |
|
|
} |
|
@ -2474,10 +2482,10 @@ static void clean_up_after_endstop_or_probe_move() { |
|
|
SERIAL_EOL; |
|
|
SERIAL_EOL; |
|
|
} |
|
|
} |
|
|
#define LINEAR_EXTRAPOLATION(E, I) (E * 2 - I) |
|
|
#define LINEAR_EXTRAPOLATION(E, I) (E * 2 - I) |
|
|
static void bed_level_virt_prepare() { |
|
|
void bed_level_virt_prepare() { |
|
|
for (uint8_t y = 1; y <= ABL_GRID_POINTS_Y; y++) { |
|
|
for (uint8_t y = 1; y <= ABL_GRID_MAX_POINTS_Y; y++) { |
|
|
|
|
|
|
|
|
for (uint8_t x = 1; x <= ABL_GRID_POINTS_X; x++) |
|
|
for (uint8_t x = 1; x <= ABL_GRID_MAX_POINTS_X; x++) |
|
|
bed_level_grid_virt_temp[x][y] = bed_level_grid[x - 1][y - 1]; |
|
|
bed_level_grid_virt_temp[x][y] = bed_level_grid[x - 1][y - 1]; |
|
|
|
|
|
|
|
|
bed_level_grid_virt_temp[0][y] = LINEAR_EXTRAPOLATION( |
|
|
bed_level_grid_virt_temp[0][y] = LINEAR_EXTRAPOLATION( |
|
@ -2485,21 +2493,21 @@ static void clean_up_after_endstop_or_probe_move() { |
|
|
bed_level_grid_virt_temp[2][y] |
|
|
bed_level_grid_virt_temp[2][y] |
|
|
); |
|
|
); |
|
|
|
|
|
|
|
|
bed_level_grid_virt_temp[(ABL_GRID_POINTS_X + 2) - 1][y] = |
|
|
bed_level_grid_virt_temp[(ABL_GRID_MAX_POINTS_X + 2) - 1][y] = |
|
|
LINEAR_EXTRAPOLATION( |
|
|
LINEAR_EXTRAPOLATION( |
|
|
bed_level_grid_virt_temp[(ABL_GRID_POINTS_X + 2) - 2][y], |
|
|
bed_level_grid_virt_temp[(ABL_GRID_MAX_POINTS_X + 2) - 2][y], |
|
|
bed_level_grid_virt_temp[(ABL_GRID_POINTS_X + 2) - 3][y] |
|
|
bed_level_grid_virt_temp[(ABL_GRID_MAX_POINTS_X + 2) - 3][y] |
|
|
); |
|
|
); |
|
|
} |
|
|
} |
|
|
for (uint8_t x = 0; x < ABL_GRID_POINTS_X + 2; x++) { |
|
|
for (uint8_t x = 0; x < ABL_GRID_MAX_POINTS_X + 2; x++) { |
|
|
bed_level_grid_virt_temp[x][0] = LINEAR_EXTRAPOLATION( |
|
|
bed_level_grid_virt_temp[x][0] = LINEAR_EXTRAPOLATION( |
|
|
bed_level_grid_virt_temp[x][1], |
|
|
bed_level_grid_virt_temp[x][1], |
|
|
bed_level_grid_virt_temp[x][2] |
|
|
bed_level_grid_virt_temp[x][2] |
|
|
); |
|
|
); |
|
|
bed_level_grid_virt_temp[x][(ABL_GRID_POINTS_Y + 2) - 1] = |
|
|
bed_level_grid_virt_temp[x][(ABL_GRID_MAX_POINTS_Y + 2) - 1] = |
|
|
LINEAR_EXTRAPOLATION( |
|
|
LINEAR_EXTRAPOLATION( |
|
|
bed_level_grid_virt_temp[x][(ABL_GRID_POINTS_Y + 2) - 2], |
|
|
bed_level_grid_virt_temp[x][(ABL_GRID_MAX_POINTS_Y + 2) - 2], |
|
|
bed_level_grid_virt_temp[x][(ABL_GRID_POINTS_Y + 2) - 3] |
|
|
bed_level_grid_virt_temp[x][(ABL_GRID_MAX_POINTS_Y + 2) - 3] |
|
|
); |
|
|
); |
|
|
} |
|
|
} |
|
|
} |
|
|
} |
|
@ -2520,12 +2528,12 @@ static void clean_up_after_endstop_or_probe_move() { |
|
|
} |
|
|
} |
|
|
return bed_level_virt_cmr(row, 1, tx); |
|
|
return bed_level_virt_cmr(row, 1, tx); |
|
|
} |
|
|
} |
|
|
static void bed_level_virt_interpolate() { |
|
|
void bed_level_virt_interpolate() { |
|
|
for (uint8_t y = 0; y < ABL_GRID_POINTS_Y; y++) |
|
|
for (uint8_t y = 0; y < ABL_GRID_MAX_POINTS_Y; y++) |
|
|
for (uint8_t x = 0; x < ABL_GRID_POINTS_X; x++) |
|
|
for (uint8_t x = 0; x < ABL_GRID_MAX_POINTS_X; x++) |
|
|
for (uint8_t ty = 0; ty < BILINEAR_SUBDIVISIONS; ty++) |
|
|
for (uint8_t ty = 0; ty < BILINEAR_SUBDIVISIONS; ty++) |
|
|
for (uint8_t tx = 0; tx < BILINEAR_SUBDIVISIONS; tx++) { |
|
|
for (uint8_t tx = 0; tx < BILINEAR_SUBDIVISIONS; tx++) { |
|
|
if ((ty && y == ABL_GRID_POINTS_Y - 1) || (tx && x == ABL_GRID_POINTS_X - 1)) |
|
|
if ((ty && y == ABL_GRID_MAX_POINTS_Y - 1) || (tx && x == ABL_GRID_MAX_POINTS_X - 1)) |
|
|
continue; |
|
|
continue; |
|
|
bed_level_grid_virt[x * (BILINEAR_SUBDIVISIONS) + tx][y * (BILINEAR_SUBDIVISIONS) + ty] = |
|
|
bed_level_grid_virt[x * (BILINEAR_SUBDIVISIONS) + tx][y * (BILINEAR_SUBDIVISIONS) + ty] = |
|
|
bed_level_virt_2cmr( |
|
|
bed_level_virt_2cmr( |
|
@ -3422,9 +3430,9 @@ inline void gcode_G28() { |
|
|
// Wait for planner moves to finish!
|
|
|
// Wait for planner moves to finish!
|
|
|
stepper.synchronize(); |
|
|
stepper.synchronize(); |
|
|
|
|
|
|
|
|
// For auto bed leveling, clear the level matrix
|
|
|
// Disable the leveling matrix before homing
|
|
|
#if HAS_ABL |
|
|
#if PLANNER_LEVELING |
|
|
reset_bed_level(); |
|
|
set_bed_leveling_enabled(false); |
|
|
#endif |
|
|
#endif |
|
|
|
|
|
|
|
|
// Always home with tool 0 active
|
|
|
// Always home with tool 0 active
|
|
@ -3693,6 +3701,20 @@ inline void gcode_G28() { |
|
|
// Save 130 bytes with non-duplication of PSTR
|
|
|
// Save 130 bytes with non-duplication of PSTR
|
|
|
void say_not_entered() { SERIAL_PROTOCOLLNPGM(" not entered."); } |
|
|
void say_not_entered() { SERIAL_PROTOCOLLNPGM(" not entered."); } |
|
|
|
|
|
|
|
|
|
|
|
void mbl_mesh_report() { |
|
|
|
|
|
SERIAL_PROTOCOLLNPGM("Num X,Y: " STRINGIFY(MESH_NUM_X_POINTS) "," STRINGIFY(MESH_NUM_Y_POINTS)); |
|
|
|
|
|
SERIAL_PROTOCOLLNPGM("Z search height: " STRINGIFY(MESH_HOME_SEARCH_Z)); |
|
|
|
|
|
SERIAL_PROTOCOLPGM("Z offset: "); SERIAL_PROTOCOL_F(mbl.z_offset, 5); |
|
|
|
|
|
SERIAL_PROTOCOLLNPGM("\nMeasured points:"); |
|
|
|
|
|
for (uint8_t py = 0; py < MESH_NUM_Y_POINTS; py++) { |
|
|
|
|
|
for (uint8_t px = 0; px < MESH_NUM_X_POINTS; px++) { |
|
|
|
|
|
SERIAL_PROTOCOLPGM(" "); |
|
|
|
|
|
SERIAL_PROTOCOL_F(mbl.z_values[py][px], 5); |
|
|
|
|
|
} |
|
|
|
|
|
SERIAL_EOL; |
|
|
|
|
|
} |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
/**
|
|
|
/**
|
|
|
* G29: Mesh-based Z probe, probes a grid and produces a |
|
|
* G29: Mesh-based Z probe, probes a grid and produces a |
|
|
* mesh to compensate for variable bed height |
|
|
* mesh to compensate for variable bed height |
|
@ -3728,21 +3750,11 @@ inline void gcode_G28() { |
|
|
switch (state) { |
|
|
switch (state) { |
|
|
case MeshReport: |
|
|
case MeshReport: |
|
|
if (mbl.has_mesh()) { |
|
|
if (mbl.has_mesh()) { |
|
|
SERIAL_PROTOCOLPAIR("State: ", mbl.active() ? MSG_ON : MSG_OFF); |
|
|
SERIAL_PROTOCOLLNPAIR("State: ", mbl.active() ? MSG_ON : MSG_OFF); |
|
|
SERIAL_PROTOCOLLNPGM("\nNum X,Y: " STRINGIFY(MESH_NUM_X_POINTS) "," STRINGIFY(MESH_NUM_Y_POINTS)); |
|
|
mbl_mesh_report(); |
|
|
SERIAL_PROTOCOLLNPGM("Z search height: " STRINGIFY(MESH_HOME_SEARCH_Z)); |
|
|
|
|
|
SERIAL_PROTOCOLPGM("Z offset: "); SERIAL_PROTOCOL_F(mbl.z_offset, 5); |
|
|
|
|
|
SERIAL_PROTOCOLLNPGM("\nMeasured points:"); |
|
|
|
|
|
for (py = 0; py < MESH_NUM_Y_POINTS; py++) { |
|
|
|
|
|
for (px = 0; px < MESH_NUM_X_POINTS; px++) { |
|
|
|
|
|
SERIAL_PROTOCOLPGM(" "); |
|
|
|
|
|
SERIAL_PROTOCOL_F(mbl.z_values[py][px], 5); |
|
|
|
|
|
} |
|
|
|
|
|
SERIAL_EOL; |
|
|
|
|
|
} |
|
|
|
|
|
} |
|
|
} |
|
|
else |
|
|
else |
|
|
SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active."); |
|
|
SERIAL_PROTOCOLLNPGM("Mesh bed leveling has no data."); |
|
|
break; |
|
|
break; |
|
|
|
|
|
|
|
|
case MeshStart: |
|
|
case MeshStart: |
|
@ -3863,7 +3875,7 @@ inline void gcode_G28() { |
|
|
* |
|
|
* |
|
|
* Enhanced G29 Auto Bed Leveling Probe Routine |
|
|
* Enhanced G29 Auto Bed Leveling Probe Routine |
|
|
* |
|
|
* |
|
|
* Parameters With ABL_GRID: |
|
|
* Parameters With LINEAR and BILINEAR: |
|
|
* |
|
|
* |
|
|
* P Set the size of the grid that will be probed (P x P points). |
|
|
* P Set the size of the grid that will be probed (P x P points). |
|
|
* Not supported by non-linear delta printer bed leveling. |
|
|
* Not supported by non-linear delta printer bed leveling. |
|
@ -3887,6 +3899,10 @@ inline void gcode_G28() { |
|
|
* L Set the Left limit of the probing grid |
|
|
* L Set the Left limit of the probing grid |
|
|
* R Set the Right limit of the probing grid |
|
|
* R Set the Right limit of the probing grid |
|
|
* |
|
|
* |
|
|
|
|
|
* Parameters with BILINEAR only: |
|
|
|
|
|
* |
|
|
|
|
|
* Z Supply an additional Z probe offset |
|
|
|
|
|
* |
|
|
* Global Parameters: |
|
|
* Global Parameters: |
|
|
* |
|
|
* |
|
|
* E/e By default G29 will engage the Z probe, test the bed, then disengage. |
|
|
* E/e By default G29 will engage the Z probe, test the bed, then disengage. |
|
@ -3934,8 +3950,8 @@ inline void gcode_G28() { |
|
|
|
|
|
|
|
|
// X and Y specify points in each direction, overriding the default
|
|
|
// X and Y specify points in each direction, overriding the default
|
|
|
// These values may be saved with the completed mesh
|
|
|
// These values may be saved with the completed mesh
|
|
|
int abl_grid_points_x = code_seen('X') ? code_value_int() : ABL_GRID_POINTS_X, |
|
|
int abl_grid_points_x = code_seen('X') ? code_value_int() : ABL_GRID_MAX_POINTS_X, |
|
|
abl_grid_points_y = code_seen('Y') ? code_value_int() : ABL_GRID_POINTS_Y; |
|
|
abl_grid_points_y = code_seen('Y') ? code_value_int() : ABL_GRID_MAX_POINTS_Y; |
|
|
|
|
|
|
|
|
if (code_seen('P')) abl_grid_points_x = abl_grid_points_y = code_value_int(); |
|
|
if (code_seen('P')) abl_grid_points_x = abl_grid_points_y = code_value_int(); |
|
|
|
|
|
|
|
@ -3946,7 +3962,7 @@ inline void gcode_G28() { |
|
|
|
|
|
|
|
|
#else |
|
|
#else |
|
|
|
|
|
|
|
|
const int abl_grid_points_x = ABL_GRID_POINTS_X, abl_grid_points_y = ABL_GRID_POINTS_Y; |
|
|
const uint8_t abl_grid_points_x = ABL_GRID_MAX_POINTS_X, abl_grid_points_y = ABL_GRID_MAX_POINTS_Y; |
|
|
|
|
|
|
|
|
#endif |
|
|
#endif |
|
|
|
|
|
|
|
@ -4030,7 +4046,11 @@ inline void gcode_G28() { |
|
|
|| left_probe_bed_position != bilinear_start[X_AXIS] |
|
|
|| left_probe_bed_position != bilinear_start[X_AXIS] |
|
|
|| front_probe_bed_position != bilinear_start[Y_AXIS] |
|
|
|| front_probe_bed_position != bilinear_start[Y_AXIS] |
|
|
) { |
|
|
) { |
|
|
|
|
|
// Before reset bed level, re-enable to correct the position
|
|
|
|
|
|
planner.abl_enabled = abl_should_enable; |
|
|
|
|
|
// Reset grid to 0.0 or "not probed". (Also disables ABL)
|
|
|
reset_bed_level(); |
|
|
reset_bed_level(); |
|
|
|
|
|
|
|
|
#if ENABLED(ABL_BILINEAR_SUBDIVISION) |
|
|
#if ENABLED(ABL_BILINEAR_SUBDIVISION) |
|
|
bilinear_grid_spacing_virt[X_AXIS] = xGridSpacing / (BILINEAR_SUBDIVISIONS); |
|
|
bilinear_grid_spacing_virt[X_AXIS] = xGridSpacing / (BILINEAR_SUBDIVISIONS); |
|
|
bilinear_grid_spacing_virt[Y_AXIS] = yGridSpacing / (BILINEAR_SUBDIVISIONS); |
|
|
bilinear_grid_spacing_virt[Y_AXIS] = yGridSpacing / (BILINEAR_SUBDIVISIONS); |
|
@ -4039,6 +4059,7 @@ inline void gcode_G28() { |
|
|
bilinear_grid_spacing[Y_AXIS] = yGridSpacing; |
|
|
bilinear_grid_spacing[Y_AXIS] = yGridSpacing; |
|
|
bilinear_start[X_AXIS] = RAW_X_POSITION(left_probe_bed_position); |
|
|
bilinear_start[X_AXIS] = RAW_X_POSITION(left_probe_bed_position); |
|
|
bilinear_start[Y_AXIS] = RAW_Y_POSITION(front_probe_bed_position); |
|
|
bilinear_start[Y_AXIS] = RAW_Y_POSITION(front_probe_bed_position); |
|
|
|
|
|
|
|
|
// Can't re-enable (on error) until the new grid is written
|
|
|
// Can't re-enable (on error) until the new grid is written
|
|
|
abl_should_enable = false; |
|
|
abl_should_enable = false; |
|
|
} |
|
|
} |
|
@ -4203,7 +4224,7 @@ inline void gcode_G28() { |
|
|
#if ENABLED(AUTO_BED_LEVELING_BILINEAR) |
|
|
#if ENABLED(AUTO_BED_LEVELING_BILINEAR) |
|
|
|
|
|
|
|
|
if (!dryrun) extrapolate_unprobed_bed_level(); |
|
|
if (!dryrun) extrapolate_unprobed_bed_level(); |
|
|
print_bed_level(); |
|
|
print_bilinear_leveling_grid(); |
|
|
|
|
|
|
|
|
#if ENABLED(ABL_BILINEAR_SUBDIVISION) |
|
|
#if ENABLED(ABL_BILINEAR_SUBDIVISION) |
|
|
bed_level_virt_prepare(); |
|
|
bed_level_virt_prepare(); |
|
@ -4322,45 +4343,34 @@ inline void gcode_G28() { |
|
|
// Correct the current XYZ position based on the tilted plane.
|
|
|
// Correct the current XYZ position based on the tilted plane.
|
|
|
//
|
|
|
//
|
|
|
|
|
|
|
|
|
// 1. Get the distance from the current position to the reference point.
|
|
|
|
|
|
float x_dist = RAW_CURRENT_POSITION(X_AXIS) - X_TILT_FULCRUM, |
|
|
|
|
|
y_dist = RAW_CURRENT_POSITION(Y_AXIS) - Y_TILT_FULCRUM, |
|
|
|
|
|
z_real = current_position[Z_AXIS], |
|
|
|
|
|
z_zero = 0; |
|
|
|
|
|
|
|
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE) |
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE) |
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("G29 uncorrected XYZ", current_position); |
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("G29 uncorrected XYZ", current_position); |
|
|
#endif |
|
|
#endif |
|
|
|
|
|
|
|
|
matrix_3x3 inverse = matrix_3x3::transpose(planner.bed_level_matrix); |
|
|
float converted[XYZ]; |
|
|
|
|
|
memcpy(converted, current_position, sizeof(converted)); |
|
|
// 2. Apply the inverse matrix to the distance
|
|
|
|
|
|
// from the reference point to X, Y, and zero.
|
|
|
|
|
|
apply_rotation_xyz(inverse, x_dist, y_dist, z_zero); |
|
|
|
|
|
|
|
|
|
|
|
// 3. Get the matrix-based corrected Z.
|
|
|
planner.abl_enabled = true; |
|
|
// (Even if not used, get it for comparison.)
|
|
|
planner.unapply_leveling(converted); // use conversion machinery
|
|
|
float new_z = z_real + z_zero; |
|
|
planner.abl_enabled = false; |
|
|
|
|
|
|
|
|
// 4. Use the last measured distance to the bed, if possible
|
|
|
// Use the last measured distance to the bed, if possible
|
|
|
if ( NEAR(current_position[X_AXIS], xProbe - (X_PROBE_OFFSET_FROM_EXTRUDER)) |
|
|
if ( NEAR(current_position[X_AXIS], xProbe - (X_PROBE_OFFSET_FROM_EXTRUDER)) |
|
|
&& NEAR(current_position[Y_AXIS], yProbe - (Y_PROBE_OFFSET_FROM_EXTRUDER)) |
|
|
&& NEAR(current_position[Y_AXIS], yProbe - (Y_PROBE_OFFSET_FROM_EXTRUDER)) |
|
|
) { |
|
|
) { |
|
|
float simple_z = z_real - (measured_z - (-zprobe_zoffset)); |
|
|
float simple_z = current_position[Z_AXIS] - (measured_z - (-zprobe_zoffset)); |
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE) |
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE) |
|
|
if (DEBUGGING(LEVELING)) { |
|
|
if (DEBUGGING(LEVELING)) { |
|
|
SERIAL_ECHOPAIR("Z from Probe:", simple_z); |
|
|
SERIAL_ECHOPAIR("Z from Probe:", simple_z); |
|
|
SERIAL_ECHOPAIR(" Matrix:", new_z); |
|
|
SERIAL_ECHOPAIR(" Matrix:", converted[Z_AXIS]); |
|
|
SERIAL_ECHOLNPAIR(" Discrepancy:", simple_z - new_z); |
|
|
SERIAL_ECHOLNPAIR(" Discrepancy:", simple_z - converted[Z_AXIS]); |
|
|
} |
|
|
} |
|
|
#endif |
|
|
#endif |
|
|
new_z = simple_z; |
|
|
converted[Z_AXIS] = simple_z; |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
// 5. The rotated XY and corrected Z are now current_position
|
|
|
// The rotated XY and corrected Z are now current_position
|
|
|
current_position[X_AXIS] = LOGICAL_X_POSITION(x_dist) + X_TILT_FULCRUM; |
|
|
memcpy(current_position, converted, sizeof(converted)); |
|
|
current_position[Y_AXIS] = LOGICAL_Y_POSITION(y_dist) + Y_TILT_FULCRUM; |
|
|
|
|
|
current_position[Z_AXIS] = new_z; |
|
|
|
|
|
|
|
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE) |
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE) |
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("G29 corrected XYZ", current_position); |
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("G29 corrected XYZ", current_position); |
|
@ -5041,7 +5051,8 @@ inline void gcode_M42() { |
|
|
|
|
|
|
|
|
// Disable bed level correction in M48 because we want the raw data when we probe
|
|
|
// Disable bed level correction in M48 because we want the raw data when we probe
|
|
|
#if HAS_ABL |
|
|
#if HAS_ABL |
|
|
reset_bed_level(); |
|
|
const bool abl_was_enabled = planner.abl_enabled; |
|
|
|
|
|
set_bed_leveling_enabled(false); |
|
|
#endif |
|
|
#endif |
|
|
|
|
|
|
|
|
setup_for_endstop_or_probe_move(); |
|
|
setup_for_endstop_or_probe_move(); |
|
@ -5192,6 +5203,11 @@ inline void gcode_M42() { |
|
|
|
|
|
|
|
|
clean_up_after_endstop_or_probe_move(); |
|
|
clean_up_after_endstop_or_probe_move(); |
|
|
|
|
|
|
|
|
|
|
|
// Re-enable bed level correction if it has been on
|
|
|
|
|
|
#if HAS_ABL |
|
|
|
|
|
set_bed_leveling_enabled(abl_was_enabled); |
|
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
report_current_position(); |
|
|
report_current_position(); |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
@ -7000,12 +7016,54 @@ void quickstop_stepper() { |
|
|
* |
|
|
* |
|
|
* S[bool] Turns leveling on or off |
|
|
* S[bool] Turns leveling on or off |
|
|
* Z[height] Sets the Z fade height (0 or none to disable) |
|
|
* Z[height] Sets the Z fade height (0 or none to disable) |
|
|
|
|
|
* V[bool] Verbose - Print the levelng grid |
|
|
*/ |
|
|
*/ |
|
|
inline void gcode_M420() { |
|
|
inline void gcode_M420() { |
|
|
if (code_seen('S')) set_bed_leveling_enabled(code_value_bool()); |
|
|
bool to_enable = false; |
|
|
|
|
|
|
|
|
|
|
|
if (code_seen('S')) { |
|
|
|
|
|
to_enable = code_value_bool(); |
|
|
|
|
|
set_bed_leveling_enabled(to_enable); |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) |
|
|
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) |
|
|
if (code_seen('Z')) set_z_fade_height(code_value_linear_units()); |
|
|
if (code_seen('Z')) set_z_fade_height(code_value_linear_units()); |
|
|
#endif |
|
|
#endif |
|
|
|
|
|
|
|
|
|
|
|
if (to_enable && !( |
|
|
|
|
|
#if ENABLED(MESH_BED_LEVELING) |
|
|
|
|
|
mbl.active() |
|
|
|
|
|
#else |
|
|
|
|
|
planner.abl_enabled |
|
|
|
|
|
#endif |
|
|
|
|
|
) ) { |
|
|
|
|
|
to_enable = false; |
|
|
|
|
|
SERIAL_ERROR_START; |
|
|
|
|
|
SERIAL_ERRORLNPGM(MSG_ERR_M420_FAILED); |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
SERIAL_ECHO_START; |
|
|
|
|
|
SERIAL_ECHOLNPAIR("Bed Leveling ", to_enable ? MSG_ON : MSG_OFF); |
|
|
|
|
|
|
|
|
|
|
|
// V to print the matrix or mesh
|
|
|
|
|
|
if (code_seen('V')) { |
|
|
|
|
|
#if ABL_PLANAR |
|
|
|
|
|
planner.bed_level_matrix.debug("Bed Level Correction Matrix:"); |
|
|
|
|
|
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR) |
|
|
|
|
|
if (bilinear_grid_spacing[X_AXIS]) { |
|
|
|
|
|
print_bilinear_leveling_grid(); |
|
|
|
|
|
#if ENABLED(ABL_BILINEAR_SUBDIVISION) |
|
|
|
|
|
bed_level_virt_print(); |
|
|
|
|
|
#endif |
|
|
|
|
|
} |
|
|
|
|
|
#elif ENABLED(MESH_BED_LEVELING) |
|
|
|
|
|
if (mbl.has_mesh()) { |
|
|
|
|
|
SERIAL_ECHOLNPGM("Mesh Bed Level data:"); |
|
|
|
|
|
mbl_mesh_report(); |
|
|
|
|
|
} |
|
|
|
|
|
#endif |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
} |
|
|
} |
|
|
#endif |
|
|
#endif |
|
|
|
|
|
|
|
@ -7048,6 +7106,40 @@ void quickstop_stepper() { |
|
|
} |
|
|
} |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR) |
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
|
* M421: Set a single Mesh Bed Leveling Z coordinate |
|
|
|
|
|
* |
|
|
|
|
|
* M421 I<xindex> J<yindex> Z<linear> |
|
|
|
|
|
*/ |
|
|
|
|
|
inline void gcode_M421() { |
|
|
|
|
|
int8_t px = 0, py = 0; |
|
|
|
|
|
float z = 0; |
|
|
|
|
|
bool hasI, hasJ, hasZ; |
|
|
|
|
|
if ((hasI = code_seen('I'))) px = code_value_axis_units(X_AXIS); |
|
|
|
|
|
if ((hasJ = code_seen('J'))) py = code_value_axis_units(Y_AXIS); |
|
|
|
|
|
if ((hasZ = code_seen('Z'))) z = code_value_axis_units(Z_AXIS); |
|
|
|
|
|
|
|
|
|
|
|
if (hasI && hasJ && hasZ) { |
|
|
|
|
|
if (px >= 0 && px < ABL_GRID_MAX_POINTS_X && py >= 0 && py < ABL_GRID_MAX_POINTS_X) { |
|
|
|
|
|
bed_level_grid[px][py] = z; |
|
|
|
|
|
#if ENABLED(ABL_BILINEAR_SUBDIVISION) |
|
|
|
|
|
bed_level_virt_prepare(); |
|
|
|
|
|
bed_level_virt_interpolate(); |
|
|
|
|
|
#endif |
|
|
|
|
|
} |
|
|
|
|
|
else { |
|
|
|
|
|
SERIAL_ERROR_START; |
|
|
|
|
|
SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY); |
|
|
|
|
|
} |
|
|
|
|
|
} |
|
|
|
|
|
else { |
|
|
|
|
|
SERIAL_ERROR_START; |
|
|
|
|
|
SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS); |
|
|
|
|
|
} |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
#endif |
|
|
#endif |
|
|
|
|
|
|
|
|
/**
|
|
|
/**
|
|
@ -8757,8 +8849,8 @@ void ok_to_send() { |
|
|
#define ABL_BG_GRID(X,Y) bed_level_grid_virt[X][Y] |
|
|
#define ABL_BG_GRID(X,Y) bed_level_grid_virt[X][Y] |
|
|
#else |
|
|
#else |
|
|
#define ABL_BG_SPACING(A) bilinear_grid_spacing[A] |
|
|
#define ABL_BG_SPACING(A) bilinear_grid_spacing[A] |
|
|
#define ABL_BG_POINTS_X ABL_GRID_POINTS_X |
|
|
#define ABL_BG_POINTS_X ABL_GRID_MAX_POINTS_X |
|
|
#define ABL_BG_POINTS_Y ABL_GRID_POINTS_Y |
|
|
#define ABL_BG_POINTS_Y ABL_GRID_MAX_POINTS_Y |
|
|
#define ABL_BG_GRID(X,Y) bed_level_grid[X][Y] |
|
|
#define ABL_BG_GRID(X,Y) bed_level_grid[X][Y] |
|
|
#endif |
|
|
#endif |
|
|
|
|
|
|
|
|