|
|
@ -5009,7 +5009,7 @@ inline void gcode_G28() { |
|
|
|
#endif |
|
|
|
|
|
|
|
const int8_t pp = code_seen('C') ? code_value_int() : DELTA_CALIBRATION_DEFAULT_POINTS, |
|
|
|
probe_points = (WITHIN(pp, 1, 4) || pp == -2) ? pp : DELTA_CALIBRATION_DEFAULT_POINTS; |
|
|
|
probe_points = (WITHIN(pp, 1, 7) || pp == -2) ? pp : DELTA_CALIBRATION_DEFAULT_POINTS; |
|
|
|
|
|
|
|
int8_t verbose_level = code_seen('V') ? code_value_byte() : 1; |
|
|
|
|
|
|
@ -5066,39 +5066,47 @@ inline void gcode_G28() { |
|
|
|
|
|
|
|
int16_t center_points = 0; |
|
|
|
|
|
|
|
if (probe_points != 3) { |
|
|
|
if (probe_points != 3 && probe_points != 6) { // probe centre
|
|
|
|
z_at_pt[0] += probe_pt(0.0, 0.0 , true, 1); |
|
|
|
center_points = 1; |
|
|
|
} |
|
|
|
|
|
|
|
int16_t step_axis = 4; |
|
|
|
if (probe_points >= 3) { |
|
|
|
for (int8_t axis = 9; axis > 0; axis -= step_axis) { // uint8_t starts endless loop
|
|
|
|
int16_t step_axis = (probe_points > 4) ? 2 : 4; |
|
|
|
if (probe_points >= 3) { // probe extra 3 or 6 centre points
|
|
|
|
for (int8_t axis = (probe_points > 4) ? 11 : 9; axis > 0; axis -= step_axis) { |
|
|
|
z_at_pt[0] += probe_pt( |
|
|
|
0.1 * cos(RADIANS(180 + 30 * axis)) * (delta_calibration_radius), |
|
|
|
0.1 * sin(RADIANS(180 + 30 * axis)) * (delta_calibration_radius), true, 1); |
|
|
|
cos(RADIANS(180 + 30 * axis)) * (0.1 * delta_calibration_radius), |
|
|
|
sin(RADIANS(180 + 30 * axis)) * (0.1 * delta_calibration_radius), true, 1); |
|
|
|
} |
|
|
|
center_points += 3; |
|
|
|
center_points += (probe_points > 4) ? 6 : 3; // average centre points
|
|
|
|
z_at_pt[0] /= center_points; |
|
|
|
} |
|
|
|
|
|
|
|
float S1 = z_at_pt[0], S2 = sq(S1); |
|
|
|
|
|
|
|
int16_t N = 1, start = (probe_points == -2) ? 3 : 1; |
|
|
|
step_axis = (abs(probe_points) == 2) ? 4 : (probe_points == 3) ? 2 : 1; |
|
|
|
step_axis = (abs(probe_points) == 2) ? 4 : (probe_points == 4 || probe_points > 5) ? 1 : 2; |
|
|
|
float start_circles = (probe_points > 6) ? -1.5 : (probe_points > 4) ? -1 : 0, // one or multi radius points
|
|
|
|
end_circles = (probe_points > 6) ? 1.5 : (probe_points > 4) ? 1 : 0; // one or multi radius points
|
|
|
|
int8_t zig_zag = 1; |
|
|
|
|
|
|
|
if (probe_points != 1) { |
|
|
|
for (uint8_t axis = start; axis < 13; axis += step_axis) |
|
|
|
for (uint8_t axis = start; axis < 13; axis += step_axis) { // probes 3, 6 or 12 points on the calibration radius
|
|
|
|
for (float circles = start_circles ; circles <= end_circles; circles++) // one or multi radius points
|
|
|
|
z_at_pt[axis] += probe_pt( |
|
|
|
cos(RADIANS(180 + 30 * axis)) * (delta_calibration_radius), |
|
|
|
sin(RADIANS(180 + 30 * axis)) * (delta_calibration_radius), true, 1 |
|
|
|
); |
|
|
|
cos(RADIANS(180 + 30 * axis)) * ((1 + circles * 0.1 * zig_zag) * delta_calibration_radius), |
|
|
|
sin(RADIANS(180 + 30 * axis)) * ((1 + circles * 0.1 * zig_zag) * delta_calibration_radius), true, 1); |
|
|
|
|
|
|
|
if (probe_points == 4) step_axis = 2; |
|
|
|
if (probe_points > 5) start_circles += (zig_zag == 1) ? +0.5 : -0.5; // opposite one radius point less
|
|
|
|
if (probe_points > 5) end_circles += (zig_zag == 1) ? -0.5 : +0.5; |
|
|
|
zig_zag = -zig_zag; |
|
|
|
if (probe_points > 4) z_at_pt[axis] /= (zig_zag == 1) ? 3.0 : 2.0; // average between radius points
|
|
|
|
} |
|
|
|
} |
|
|
|
if (probe_points == 4 || probe_points > 5) step_axis = 2; |
|
|
|
|
|
|
|
for (uint8_t axis = start; axis < 13; axis += step_axis) { |
|
|
|
if (probe_points == 4) |
|
|
|
for (uint8_t axis = start; axis < 13; axis += step_axis) { // average half intermediates to tower and opposite
|
|
|
|
if (probe_points == 4 || probe_points > 5) |
|
|
|
z_at_pt[axis] = (z_at_pt[axis] + (z_at_pt[axis + 1] + z_at_pt[(axis + 10) % 12 + 1]) / 2.0) / 2.0; |
|
|
|
|
|
|
|
S1 += z_at_pt[axis]; |
|
|
|