|
@ -301,10 +301,6 @@ volatile bool Temperature::temp_meas_ready = false; |
|
|
millis_t Temperature::preheat_end_time[HOTENDS] = { 0 }; |
|
|
millis_t Temperature::preheat_end_time[HOTENDS] = { 0 }; |
|
|
#endif |
|
|
#endif |
|
|
|
|
|
|
|
|
#if ENABLED(FILAMENT_WIDTH_SENSOR) |
|
|
|
|
|
int8_t Temperature::meas_shift_index; // Index of a delayed sample in buffer
|
|
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
|
|
#if HAS_AUTO_FAN |
|
|
#if HAS_AUTO_FAN |
|
|
millis_t Temperature::next_auto_fan_check_ms = 0; |
|
|
millis_t Temperature::next_auto_fan_check_ms = 0; |
|
|
#endif |
|
|
#endif |
|
@ -314,10 +310,6 @@ volatile bool Temperature::temp_meas_ready = false; |
|
|
Temperature::soft_pwm_count_fan[FAN_COUNT]; |
|
|
Temperature::soft_pwm_count_fan[FAN_COUNT]; |
|
|
#endif |
|
|
#endif |
|
|
|
|
|
|
|
|
#if ENABLED(FILAMENT_WIDTH_SENSOR) |
|
|
|
|
|
uint16_t Temperature::current_raw_filwidth = 0; // Measured filament diameter - one extruder only
|
|
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
|
|
#if ENABLED(PROBING_HEATERS_OFF) |
|
|
#if ENABLED(PROBING_HEATERS_OFF) |
|
|
bool Temperature::paused; |
|
|
bool Temperature::paused; |
|
|
#endif |
|
|
#endif |
|
@ -1082,16 +1074,11 @@ void Temperature::manage_heater() { |
|
|
|
|
|
|
|
|
#if ENABLED(FILAMENT_WIDTH_SENSOR) |
|
|
#if ENABLED(FILAMENT_WIDTH_SENSOR) |
|
|
/**
|
|
|
/**
|
|
|
* Filament Width Sensor dynamically sets the volumetric multiplier |
|
|
* Dynamically set the volumetric multiplier based |
|
|
* based on a delayed measurement of the filament diameter. |
|
|
* on the delayed Filament Width measurement. |
|
|
*/ |
|
|
*/ |
|
|
if (filament_sensor) { |
|
|
filwidth.update_volumetric(); |
|
|
meas_shift_index = filwidth_delay_index[0] - meas_delay_cm; |
|
|
#endif |
|
|
if (meas_shift_index < 0) meas_shift_index += MAX_MEASUREMENT_DELAY + 1; //loop around buffer if needed
|
|
|
|
|
|
LIMIT(meas_shift_index, 0, MAX_MEASUREMENT_DELAY); |
|
|
|
|
|
planner.calculate_volumetric_for_width_sensor(measurement_delay[meas_shift_index]); |
|
|
|
|
|
} |
|
|
|
|
|
#endif // FILAMENT_WIDTH_SENSOR
|
|
|
|
|
|
|
|
|
|
|
|
#if HAS_HEATED_BED |
|
|
#if HAS_HEATED_BED |
|
|
|
|
|
|
|
@ -1526,7 +1513,7 @@ void Temperature::updateTemperaturesFromRawValues() { |
|
|
redundant_temperature = analog_to_celsius_hotend(redundant_temperature_raw, 1); |
|
|
redundant_temperature = analog_to_celsius_hotend(redundant_temperature_raw, 1); |
|
|
#endif |
|
|
#endif |
|
|
#if ENABLED(FILAMENT_WIDTH_SENSOR) |
|
|
#if ENABLED(FILAMENT_WIDTH_SENSOR) |
|
|
filament_width_meas = analog_to_mm_fil_width(); |
|
|
filwidth.update_measured_mm(); |
|
|
#endif |
|
|
#endif |
|
|
|
|
|
|
|
|
#if ENABLED(USE_WATCHDOG) |
|
|
#if ENABLED(USE_WATCHDOG) |
|
@ -1537,30 +1524,6 @@ void Temperature::updateTemperaturesFromRawValues() { |
|
|
temp_meas_ready = false; |
|
|
temp_meas_ready = false; |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#if ENABLED(FILAMENT_WIDTH_SENSOR) |
|
|
|
|
|
|
|
|
|
|
|
// Convert raw Filament Width to millimeters
|
|
|
|
|
|
float Temperature::analog_to_mm_fil_width() { |
|
|
|
|
|
return current_raw_filwidth * 5.0f * (1.0f / 16383.0f); |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
|
* Convert Filament Width (mm) to a simple ratio |
|
|
|
|
|
* and reduce to an 8 bit value. |
|
|
|
|
|
* |
|
|
|
|
|
* A nominal width of 1.75 and measured width of 1.73 |
|
|
|
|
|
* gives (100 * 1.75 / 1.73) for a ratio of 101 and |
|
|
|
|
|
* a return value of 1. |
|
|
|
|
|
*/ |
|
|
|
|
|
int8_t Temperature::widthFil_to_size_ratio() { |
|
|
|
|
|
if (ABS(filament_width_nominal - filament_width_meas) <= FILWIDTH_ERROR_MARGIN) |
|
|
|
|
|
return int(100.0f * filament_width_nominal / filament_width_meas) - 100; |
|
|
|
|
|
return 0; |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
|
|
#if MAX6675_SEPARATE_SPI |
|
|
#if MAX6675_SEPARATE_SPI |
|
|
SPIclass<MAX6675_DO_PIN, MOSI_PIN, MAX6675_SCK_PIN> max6675_spi; |
|
|
SPIclass<MAX6675_DO_PIN, MOSI_PIN, MAX6675_SCK_PIN> max6675_spi; |
|
|
#endif |
|
|
#endif |
|
@ -2241,10 +2204,6 @@ void Temperature::set_current_temp_raw() { |
|
|
temp_meas_ready = true; |
|
|
temp_meas_ready = true; |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
#if ENABLED(FILAMENT_WIDTH_SENSOR) |
|
|
|
|
|
uint32_t raw_filwidth_value; // = 0
|
|
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
|
|
void Temperature::readings_ready() { |
|
|
void Temperature::readings_ready() { |
|
|
|
|
|
|
|
|
// Update the raw values if they've been read. Else we could be updating them during reading.
|
|
|
// Update the raw values if they've been read. Else we could be updating them during reading.
|
|
@ -2252,7 +2211,7 @@ void Temperature::readings_ready() { |
|
|
|
|
|
|
|
|
// Filament Sensor - can be read any time since IIR filtering is used
|
|
|
// Filament Sensor - can be read any time since IIR filtering is used
|
|
|
#if ENABLED(FILAMENT_WIDTH_SENSOR) |
|
|
#if ENABLED(FILAMENT_WIDTH_SENSOR) |
|
|
current_raw_filwidth = raw_filwidth_value >> 10; // Divide to get to 0-16384 range since we used 1/128 IIR filter approach
|
|
|
filwidth.reading_ready(); |
|
|
#endif |
|
|
#endif |
|
|
|
|
|
|
|
|
#if HOTENDS |
|
|
#if HOTENDS |
|
@ -2781,10 +2740,8 @@ void Temperature::isr() { |
|
|
case Measure_FILWIDTH: |
|
|
case Measure_FILWIDTH: |
|
|
if (!HAL_ADC_READY()) |
|
|
if (!HAL_ADC_READY()) |
|
|
next_sensor_state = adc_sensor_state; // redo this state
|
|
|
next_sensor_state = adc_sensor_state; // redo this state
|
|
|
else if (HAL_READ_ADC() > 102) { // Make sure ADC is reading > 0.5 volts, otherwise don't read.
|
|
|
else |
|
|
raw_filwidth_value -= raw_filwidth_value >> 7; // Subtract 1/128th of the raw_filwidth_value
|
|
|
filwidth.accumulate(HAL_READ_ADC()); |
|
|
raw_filwidth_value += uint32_t(HAL_READ_ADC()) << 7; // Add new ADC reading, scaled by 128
|
|
|
|
|
|
} |
|
|
|
|
|
break; |
|
|
break; |
|
|
#endif |
|
|
#endif |
|
|
|
|
|
|
|
|