Browse Source

Improved Sw SPI on DUE HAL a bit more.

Now the USB MSD can transfer at 750k/s. Previously, it was 500k/s. I think this is the maximum achievable speed using Sw SPI.
pull/1/head
etagle 7 years ago
committed by Scott Lahteine
parent
commit
729a9f55fc
  1. 327
      Marlin/src/HAL/HAL_DUE/HAL_spi_Due.cpp
  2. 11
      Marlin/src/HAL/HAL_DUE/usb/conf_usb.h
  3. 267
      Marlin/src/HAL/HAL_DUE/usb/usb_task.c
  4. 14
      Marlin/src/HAL/HAL_DUE/usb/usb_task.h

327
Marlin/src/HAL/HAL_DUE/HAL_spi_Due.cpp

@ -111,6 +111,9 @@
#define DELAY_NS(x) DELAY_CYCLES( (x) * (F_CPU/1000000) / 1000) #define DELAY_NS(x) DELAY_CYCLES( (x) * (F_CPU/1000000) / 1000)
typedef uint8_t (*pfnSpiTransfer) (uint8_t b); typedef uint8_t (*pfnSpiTransfer) (uint8_t b);
typedef void (*pfnSpiRxBlock)(uint8_t* buf, uint32_t nbyte);
typedef void (*pfnSpiTxBlock)(const uint8_t* buf, uint32_t nbyte);
/* ---------------- Macros to be able to access definitions from asm */ /* ---------------- Macros to be able to access definitions from asm */
@ -183,26 +186,32 @@
/* Bit 0 */ /* Bit 0 */
" str %[mosi_mask],[%[mosi_port], %[idx],LSL #2]" "\n\t" /* Access the proper SODR or CODR registers based on that bit */ " str %[mosi_mask],[%[mosi_port], %[idx],LSL #2]" "\n\t" /* Access the proper SODR or CODR registers based on that bit */
" str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */ " str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */
" nop" "\n\t" " nop" "\n\t" /* Result will be 0 */
" str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */ " str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */
: [mosi_mask]"+r"( MOSI_MASK ), : [idx]"+r"( idx )
[mosi_port]"+r"( MOSI_PORT_PLUS30 ), : [txval]"r"( bout ) ,
[sck_mask]"+r"( SCK_MASK ), [mosi_mask]"r"( MOSI_MASK ),
[sck_port]"+r"( SCK_PORT_PLUS30 ), [mosi_port]"r"( MOSI_PORT_PLUS30 ),
[idx]"+r"( idx ), [sck_mask]"r"( SCK_MASK ),
[txval]"+r"( bout ) [sck_port]"r"( SCK_PORT_PLUS30 )
:
: "cc" : "cc"
); );
return 0; return 0;
} }
// Calculates the bit band alias address and returns a pointer address to word.
// addr: The byte address of bitbanding bit.
// bit: The bit position of bitbanding bit.
#define BITBAND_ADDRESS(addr, bit) \
(((uint32_t)(addr) & 0xF0000000) + 0x02000000 + ((uint32_t)(addr)&0xFFFFF)*32 + (bit)*4)
// run at ~8 .. ~10Mhz - Rx version (Tx line not altered) // run at ~8 .. ~10Mhz - Rx version (Tx line not altered)
static uint8_t spiTransferRx0(uint8_t bout) { // using Mode 0 static uint8_t spiTransferRx0(uint8_t bout) { // using Mode 0
int bin = 0, work = 0; register uint32_t bin;
register uint32_t MISO_PORT_PLUS3C = ((uint32_t) PORT(MISO_PIN)) + 0x3C; /* PDSR of port */ register uint32_t work;
register uint32_t BITBAND_MISO_PORT = BITBAND_ADDRESS( ((uint32_t)PORT(MISO_PIN))+0x3C, PIN_SHIFT(MISO_PIN)); /* PDSR of port in bitband area */
register uint32_t SCK_PORT_PLUS30 = ((uint32_t) PORT(SCK_PIN)) + 0x30; /* SODR of port */ register uint32_t SCK_PORT_PLUS30 = ((uint32_t) PORT(SCK_PIN)) + 0x30; /* SODR of port */
register uint32_t SCK_MASK = PIN_MASK(SCK_PIN); register uint32_t SCK_MASK = PIN_MASK(SCK_PIN);
UNUSED(bout); UNUSED(bout);
@ -213,70 +222,61 @@
/* bit 7 */ /* bit 7 */
" str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */ " str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */
" ldr %[work],[%[miso_port]]" "\n\t" /* PDSR */ " ldr %[work],[%[bitband_miso_port]]" "\n\t" /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */
" str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */ " str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */
" lsrs %[work],%[work],%[miso_shift]" "\n\t" /* Isolate input into carry */ " bfi %[bin],%[work],#7,#1" "\n\t" /* Store read bit as the bit 7 */
" adc %[bin],%[bin],%[bin]" "\n\t" /* Shift left result and add the carry */
/* bit 6 */ /* bit 6 */
" str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */ " str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */
" ldr %[work],[%[miso_port]]" "\n\t" /* PDSR */ " ldr %[work],[%[bitband_miso_port]]" "\n\t" /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */
" str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */ " str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */
" lsrs %[work],%[work],%[miso_shift]" "\n\t" /* Isolate input into carry */ " bfi %[bin],%[work],#6,#1" "\n\t" /* Store read bit as the bit 6 */
" adc %[bin],%[bin],%[bin]" "\n\t" /* Shift left result and add the carry */
/* bit 5 */ /* bit 5 */
" str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */ " str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */
" ldr %[work],[%[miso_port]]" "\n\t" /* PDSR */ " ldr %[work],[%[bitband_miso_port]]" "\n\t" /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */
" str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */ " str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */
" lsrs %[work],%[work],%[miso_shift]" "\n\t" /* Isolate input into carry */ " bfi %[bin],%[work],#5,#1" "\n\t" /* Store read bit as the bit 5 */
" adc %[bin],%[bin],%[bin]" "\n\t" /* Shift left result and add the carry */
/* bit 4 */ /* bit 4 */
" str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */ " str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */
" ldr %[work],[%[miso_port]]" "\n\t" /* PDSR */ " ldr %[work],[%[bitband_miso_port]]" "\n\t" /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */
" str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */ " str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */
" lsrs %[work],%[work],%[miso_shift]" "\n\t" /* Isolate input into carry */ " bfi %[bin],%[work],#4,#1" "\n\t" /* Store read bit as the bit 4 */
" adc %[bin],%[bin],%[bin]" "\n\t" /* Shift left result and add the carry */
/* bit 3 */ /* bit 3 */
" str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */ " str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */
" ldr %[work],[%[miso_port]]" "\n\t" /* PDSR */ " ldr %[work],[%[bitband_miso_port]]" "\n\t" /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */
" str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */ " str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */
" lsrs %[work],%[work],%[miso_shift]" "\n\t" /* Isolate input into carry */ " bfi %[bin],%[work],#3,#1" "\n\t" /* Store read bit as the bit 3 */
" adc %[bin],%[bin],%[bin]" "\n\t" /* Shift left result and add the carry */
/* bit 2 */ /* bit 2 */
" str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */ " str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */
" ldr %[work],[%[miso_port]]" "\n\t" /* PDSR */ " ldr %[work],[%[bitband_miso_port]]" "\n\t" /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */
" str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */ " str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */
" lsrs %[work],%[work],%[miso_shift]" "\n\t" /* Isolate input into carry */ " bfi %[bin],%[work],#2,#1" "\n\t" /* Store read bit as the bit 2 */
" adc %[bin],%[bin],%[bin]" "\n\t" /* Shift left result and add the carry */
/* bit 1 */ /* bit 1 */
" str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */ " str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */
" ldr %[work],[%[miso_port]]" "\n\t" /* PDSR */ " ldr %[work],[%[bitband_miso_port]]" "\n\t" /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */
" str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */ " str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */
" lsrs %[work],%[work],%[miso_shift]" "\n\t" /* Isolate input into carry */ " bfi %[bin],%[work],#1,#1" "\n\t" /* Store read bit as the bit 1 */
" adc %[bin],%[bin],%[bin]" "\n\t" /* Shift left result and add the carry */
/* bit 0 */ /* bit 0 */
" str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */ " str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */
" ldr %[work],[%[miso_port]]" "\n\t" /* PDSR */ " ldr %[work],[%[bitband_miso_port]]" "\n\t" /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */
" str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */ " str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */
" lsrs %[work],%[work],%[miso_shift]" "\n\t" /* Isolate input into carry */ " bfi %[bin],%[work],#0,#1" "\n\t" /* Store read bit as the bit 0 */
" adc %[bin],%[bin],%[bin]" "\n\t" /* Shift left result and add the carry */
: [miso_port]"+r"( MISO_PORT_PLUS3C ), : [bin]"+r"(bin),
[sck_mask]"+r"( SCK_MASK ),
[sck_port]"+r"( SCK_PORT_PLUS30 ),
[bin]"+r"(bin),
[work]"+r"(work) [work]"+r"(work)
: [miso_shift]"M"( PIN_SHIFT(MISO_PIN) + 1 ) /* So we move to the carry */ : [bitband_miso_port]"r"( BITBAND_MISO_PORT ),
[sck_mask]"r"( SCK_MASK ),
[sck_port]"r"( SCK_PORT_PLUS30 )
: "cc" : "cc"
); );
return (uint8_t)bin; return bin;
} }
// run at ~4Mhz // run at ~4Mhz
@ -317,10 +317,182 @@
return b; return b;
} }
// Pointers to generic functions // Pointers to generic functions for byte transfers
static pfnSpiTransfer spiTransferTx = spiTransferX; static pfnSpiTransfer spiTransferTx = spiTransferX;
static pfnSpiTransfer spiTransferRx = spiTransferX; static pfnSpiTransfer spiTransferRx = spiTransferX;
// Block transfers run at ~8 .. ~10Mhz - Tx version (Rx data discarded)
static void spiTxBlock0(const uint8_t* ptr, uint32_t todo) {
register uint32_t MOSI_PORT_PLUS30 = ((uint32_t) PORT(MOSI_PIN)) + 0x30; /* SODR of port */
register uint32_t MOSI_MASK = PIN_MASK(MOSI_PIN);
register uint32_t SCK_PORT_PLUS30 = ((uint32_t) PORT(SCK_PIN)) + 0x30; /* SODR of port */
register uint32_t SCK_MASK = PIN_MASK(SCK_PIN);
register uint32_t work;
register uint32_t txval;
/* The software SPI routine */
__asm__ __volatile__(
".syntax unified" "\n\t" // is to prevent CM0,CM1 non-unified syntax
" loop%=:" "\n\t"
" ldrb.w %[txval], [%[ptr]], #1" "\n\t" /* Load value to send, increment buffer */
" mvn %[txval],%[txval]" "\n\t" /* Negate value */
/* Bit 7 */
" ubfx %[work],%[txval],#7,#1" "\n\t" /* Place bit 7 in bit 0 of work*/
" str %[mosi_mask],[%[mosi_port], %[work],LSL #2]" "\n\t" /* Access the proper SODR or CODR registers based on that bit */
" str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */
" ubfx %[work],%[txval],#6,#1" "\n\t" /* Place bit 6 in bit 0 of work*/
" str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */
/* Bit 6 */
" str %[mosi_mask],[%[mosi_port], %[work],LSL #2]" "\n\t" /* Access the proper SODR or CODR registers based on that bit */
" str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */
" ubfx %[work],%[txval],#5,#1" "\n\t" /* Place bit 5 in bit 0 of work*/
" str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */
/* Bit 5 */
" str %[mosi_mask],[%[mosi_port], %[work],LSL #2]" "\n\t" /* Access the proper SODR or CODR registers based on that bit */
" str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */
" ubfx %[work],%[txval],#4,#1" "\n\t" /* Place bit 4 in bit 0 of work*/
" str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */
/* Bit 4 */
" str %[mosi_mask],[%[mosi_port], %[work],LSL #2]" "\n\t" /* Access the proper SODR or CODR registers based on that bit */
" str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */
" ubfx %[work],%[txval],#3,#1" "\n\t" /* Place bit 3 in bit 0 of work*/
" str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */
/* Bit 3 */
" str %[mosi_mask],[%[mosi_port], %[work],LSL #2]" "\n\t" /* Access the proper SODR or CODR registers based on that bit */
" str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */
" ubfx %[work],%[txval],#2,#1" "\n\t" /* Place bit 2 in bit 0 of work*/
" str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */
/* Bit 2 */
" str %[mosi_mask],[%[mosi_port], %[work],LSL #2]" "\n\t" /* Access the proper SODR or CODR registers based on that bit */
" str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */
" ubfx %[work],%[txval],#1,#1" "\n\t" /* Place bit 1 in bit 0 of work*/
" str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */
/* Bit 1 */
" str %[mosi_mask],[%[mosi_port], %[work],LSL #2]" "\n\t" /* Access the proper SODR or CODR registers based on that bit */
" str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */
" ubfx %[work],%[txval],#0,#1" "\n\t" /* Place bit 0 in bit 0 of work*/
" str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */
/* Bit 0 */
" str %[mosi_mask],[%[mosi_port], %[work],LSL #2]" "\n\t" /* Access the proper SODR or CODR registers based on that bit */
" str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */
" subs %[todo],#1" "\n\t" /* Decrement count of pending words to send, update status */
" str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */
" bne.n loop%=" "\n\t" /* Repeat until done */
: [ptr]"+r" ( ptr ) ,
[todo]"+r" ( todo ) ,
[work]"+r"( work ) ,
[txval]"+r"( txval )
: [mosi_mask]"r"( MOSI_MASK ),
[mosi_port]"r"( MOSI_PORT_PLUS30 ),
[sck_mask]"r"( SCK_MASK ),
[sck_port]"r"( SCK_PORT_PLUS30 )
: "cc"
);
}
static void spiRxBlock0(uint8_t* ptr, uint32_t todo) {
register uint32_t bin;
register uint32_t work;
register uint32_t BITBAND_MISO_PORT = BITBAND_ADDRESS( ((uint32_t)PORT(MISO_PIN))+0x3C, PIN_SHIFT(MISO_PIN)); /* PDSR of port in bitband area */
register uint32_t SCK_PORT_PLUS30 = ((uint32_t) PORT(SCK_PIN)) + 0x30; /* SODR of port */
register uint32_t SCK_MASK = PIN_MASK(SCK_PIN);
/* The software SPI routine */
__asm__ __volatile__(
".syntax unified" "\n\t" // is to prevent CM0,CM1 non-unified syntax
" loop%=:" "\n\t"
/* bit 7 */
" str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */
" ldr %[work],[%[bitband_miso_port]]" "\n\t" /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */
" str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */
" bfi %[bin],%[work],#7,#1" "\n\t" /* Store read bit as the bit 7 */
/* bit 6 */
" str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */
" ldr %[work],[%[bitband_miso_port]]" "\n\t" /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */
" str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */
" bfi %[bin],%[work],#6,#1" "\n\t" /* Store read bit as the bit 6 */
/* bit 5 */
" str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */
" ldr %[work],[%[bitband_miso_port]]" "\n\t" /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */
" str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */
" bfi %[bin],%[work],#5,#1" "\n\t" /* Store read bit as the bit 5 */
/* bit 4 */
" str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */
" ldr %[work],[%[bitband_miso_port]]" "\n\t" /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */
" str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */
" bfi %[bin],%[work],#4,#1" "\n\t" /* Store read bit as the bit 4 */
/* bit 3 */
" str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */
" ldr %[work],[%[bitband_miso_port]]" "\n\t" /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */
" str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */
" bfi %[bin],%[work],#3,#1" "\n\t" /* Store read bit as the bit 3 */
/* bit 2 */
" str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */
" ldr %[work],[%[bitband_miso_port]]" "\n\t" /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */
" str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */
" bfi %[bin],%[work],#2,#1" "\n\t" /* Store read bit as the bit 2 */
/* bit 1 */
" str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */
" ldr %[work],[%[bitband_miso_port]]" "\n\t" /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */
" str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */
" bfi %[bin],%[work],#1,#1" "\n\t" /* Store read bit as the bit 1 */
/* bit 0 */
" str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */
" ldr %[work],[%[bitband_miso_port]]" "\n\t" /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */
" str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */
" bfi %[bin],%[work],#0,#1" "\n\t" /* Store read bit as the bit 0 */
" subs %[todo],#1" "\n\t" /* Decrement count of pending words to send, update status */
" strb.w %[bin], [%[ptr]], #1" "\n\t" /* Store read value into buffer, increment buffer pointer */
" bne.n loop%=" "\n\t" /* Repeat until done */
: [ptr]"+r"(ptr),
[todo]"+r"(todo),
[bin]"+r"(bin),
[work]"+r"(work)
: [bitband_miso_port]"r"( BITBAND_MISO_PORT ),
[sck_mask]"r"( SCK_MASK ),
[sck_port]"r"( SCK_PORT_PLUS30 )
: "cc"
);
}
static void spiTxBlockX(const uint8_t* buf, uint32_t todo) {
do {
(void) spiTransferTx(*buf++);
} while (--todo);
}
static void spiRxBlockX(uint8_t* buf, uint32_t todo) {
do {
*buf++ = spiTransferRx(0xff);
} while (--todo);
}
// Pointers to generic functions for block tranfers
static pfnSpiTxBlock spiTxBlock = spiTxBlockX;
static pfnSpiRxBlock spiRxBlock = spiRxBlockX;
void spiBegin() { void spiBegin() {
SET_OUTPUT(SS_PIN); SET_OUTPUT(SS_PIN);
WRITE(SS_PIN, HIGH); WRITE(SS_PIN, HIGH);
@ -329,6 +501,38 @@
SET_OUTPUT(MOSI_PIN); SET_OUTPUT(MOSI_PIN);
} }
uint8_t spiRec() {
WRITE(SS_PIN, LOW);
WRITE(MOSI_PIN, 1); /* Output 1s 1*/
uint8_t b = spiTransferRx(0xFF);
WRITE(SS_PIN, HIGH);
return b;
}
void spiRead(uint8_t* buf, uint16_t nbyte) {
uint32_t todo = nbyte;
if (todo == 0) return;
WRITE(SS_PIN, LOW);
WRITE(MOSI_PIN, 1); /* Output 1s 1*/
spiRxBlock(buf,nbyte);
WRITE(SS_PIN, HIGH);
}
void spiSend(uint8_t b) {
WRITE(SS_PIN, LOW);
(void) spiTransferTx(b);
WRITE(SS_PIN, HIGH);
}
void spiSendBlock(uint8_t token, const uint8_t* buf) {
WRITE(SS_PIN, LOW);
(void) spiTransferTx(token);
spiTxBlock(buf,512);
WRITE(SS_PIN, HIGH);
}
/** /**
* spiRate should be * spiRate should be
* 0 : 8 - 10 MHz * 0 : 8 - 10 MHz
@ -344,15 +548,21 @@
case 0: case 0:
spiTransferTx = spiTransferTx0; spiTransferTx = spiTransferTx0;
spiTransferRx = spiTransferRx0; spiTransferRx = spiTransferRx0;
spiTxBlock = spiTxBlock0;
spiRxBlock = spiRxBlock0;
break; break;
case 1: case 1:
spiTransferTx = spiTransfer1; spiTransferTx = spiTransfer1;
spiTransferRx = spiTransfer1; spiTransferRx = spiTransfer1;
spiTxBlock = spiTxBlockX;
spiRxBlock = spiRxBlockX;
break; break;
default: default:
spiDelayCyclesX4 = (F_CPU/1000000) >> (6 - spiRate); spiDelayCyclesX4 = (F_CPU/1000000) >> (6 - spiRate);
spiTransferTx = spiTransferX; spiTransferTx = spiTransferX;
spiTransferRx = spiTransferX; spiTransferRx = spiTransferX;
spiTxBlock = spiTxBlockX;
spiRxBlock = spiRxBlockX;
break; break;
} }
@ -361,41 +571,6 @@
WRITE(SCK_PIN, LOW); WRITE(SCK_PIN, LOW);
} }
uint8_t spiRec() {
WRITE(SS_PIN, LOW);
WRITE(MOSI_PIN, 1); /* Output 1s 1*/
uint8_t b = spiTransferRx(0xFF);
WRITE(SS_PIN, HIGH);
return b;
}
void spiRead(uint8_t* buf, uint16_t nbyte) {
if (nbyte == 0) return;
WRITE(SS_PIN, LOW);
WRITE(MOSI_PIN, 1); /* Output 1s 1*/
for (int i = 0; i < nbyte; i++) {
buf[i] = spiTransferRx(0xff);
}
WRITE(SS_PIN, HIGH);
}
void spiSend(uint8_t b) {
WRITE(SS_PIN, LOW);
(void) spiTransferTx(b);
WRITE(SS_PIN, HIGH);
}
void spiSendBlock(uint8_t token, const uint8_t* buf) {
WRITE(SS_PIN, LOW);
(void) spiTransferTx(token);
for (uint16_t i = 0; i < 512; i++) {
(void) spiTransferTx(buf[i]);
}
WRITE(SS_PIN, HIGH);
}
#pragma GCC reset_options #pragma GCC reset_options
#else #else

11
Marlin/src/HAL/HAL_DUE/usb/conf_usb.h

@ -47,8 +47,12 @@
#ifndef _CONF_USB_H_ #ifndef _CONF_USB_H_
#define _CONF_USB_H_ #define _CONF_USB_H_
#undef UNUSED /* To avoid a macro clash as macros.h already defines it */
#include "../../../core/macros.h" /* For ENABLED()/DISABLED() */
#include "../../../../Configuration.h" /* For CUSTOM_MACHINE_NAME definition - We just need the name, no C++ allowed! */
#include "compiler.h" #include "compiler.h"
/** /**
* USB Device Configuration * USB Device Configuration
* @{ * @{
@ -67,9 +71,9 @@
// (USB_CONFIG_ATTR_REMOTE_WAKEUP|USB_CONFIG_ATTR_BUS_POWERED) // (USB_CONFIG_ATTR_REMOTE_WAKEUP|USB_CONFIG_ATTR_BUS_POWERED)
//! USB Device string definitions (Optional) //! USB Device string definitions (Optional)
#define USB_DEVICE_MANUFACTURE_NAME "MARLIN 3D" #define USB_DEVICE_MANUFACTURE_NAME "marlinfw.org"
#define USB_DEVICE_PRODUCT_NAME "CDC and MSC" #define USB_DEVICE_PRODUCT_NAME CUSTOM_MACHINE_NAME
#define USB_DEVICE_SERIAL_NAME "123985739853" // Disk SN for MSC #define USB_DEVICE_SERIAL_NAME "123985739853"
/** /**
* Device speeds support * Device speeds support
@ -98,6 +102,7 @@
#define UDC_SUSPEND_EVENT() #define UDC_SUSPEND_EVENT()
#define UDC_RESUME_EVENT() #define UDC_RESUME_EVENT()
#define UDC_GET_EXTRA_STRING() usb_task_extra_string() #define UDC_GET_EXTRA_STRING() usb_task_extra_string()
#define USB_DEVICE_SPECIFIC_REQUEST() usb_task_other_requests()
//@} //@}
/** /**

267
Marlin/src/HAL/HAL_DUE/usb/usb_task.c

@ -40,9 +40,8 @@
* \asf_license_stop * \asf_license_stop
* *
*/ */
/*
* Support and FAQ: visit <a href="http://www.atmel.com/design-support/">Atmel Support</a> // Support and FAQ: visit <a href="http://www.atmel.com/design-support/">Atmel Support</a>
*/
#ifdef ARDUINO_ARCH_SAM #ifdef ARDUINO_ARCH_SAM
@ -52,135 +51,241 @@
static volatile bool main_b_msc_enable = false; static volatile bool main_b_msc_enable = false;
static volatile bool main_b_cdc_enable = false; static volatile bool main_b_cdc_enable = false;
void HAL_init(void) { void HAL_idletask(void) {
udd_disable(); // Attend SD card access from the USB MSD -- Prioritize access to improve speed
UDD_SetStack(&USBD_ISR);
// Start USB stack to authorize VBus monitoring
udc_start();
}
void HAL_idletask(void)
{
// Attend SD card access from the USB MSD -- Priotize access to improve speed
int delay = 2; int delay = 2;
while (main_b_msc_enable && --delay > 0 ) { while (main_b_msc_enable && --delay > 0) {
if (udi_msc_process_trans()) { if (udi_msc_process_trans()) delay = 10000;
delay = 10000;
}
/* Reset the watchdog, just to be sure */ // Reset the watchdog, just to be sure
REG_WDT_CR = WDT_CR_WDRSTT | WDT_CR_KEY(0xA5); REG_WDT_CR = WDT_CR_WDRSTT | WDT_CR_KEY(0xA5);
} }
} }
/*! \brief Example of extra USB string management bool usb_task_msc_enable(void) { return ((main_b_msc_enable = true)); }
* This feature is available for single or composite device void usb_task_msc_disable(void) { main_b_msc_enable = false; }
* which want implement additional USB string than bool usb_task_msc_isenabled(void) { return main_b_msc_enable; }
* Manufacture, Product and serial number ID.
bool usb_task_cdc_enable(const uint8_t port) { return ((main_b_cdc_enable = true)); }
void usb_task_cdc_disable(const uint8_t port) { main_b_cdc_enable = false; }
bool usb_task_cdc_isenabled(void) { return main_b_cdc_enable; }
/*! \brief Called by CDC interface
* Callback running when CDC device have received data
*/
void usb_task_cdc_rx_notify(const uint8_t port) { }
/*! \brief Configures communication line
* *
* return true, if the string ID requested is know and managed by this functions * \param cfg line configuration
*/ */
bool usb_task_extra_string(void) void usb_task_cdc_config(const uint8_t port, usb_cdc_line_coding_t *cfg) { }
{
void usb_task_cdc_set_dtr(const uint8_t port, const bool b_enable) {
if (b_enable) {
} else {
}
}
/// Microsoft WCID descriptor
typedef struct USB_MicrosoftCompatibleDescriptor_Interface {
uint8_t bFirstInterfaceNumber;
uint8_t reserved1;
uint8_t compatibleID[8];
uint8_t subCompatibleID[8];
uint8_t reserved2[6];
} __attribute__((packed)) USB_MicrosoftCompatibleDescriptor_Interface;
typedef struct USB_MicrosoftCompatibleDescriptor {
uint32_t dwLength;
uint16_t bcdVersion;
uint16_t wIndex;
uint8_t bCount;
uint8_t reserved[7];
USB_MicrosoftCompatibleDescriptor_Interface interfaces[];
} __attribute__((packed)) USB_MicrosoftCompatibleDescriptor;
// 3D Printer compatible descriptor
static USB_MicrosoftCompatibleDescriptor microsoft_compatible_id_descriptor = {
.dwLength = sizeof(USB_MicrosoftCompatibleDescriptor) +
1*sizeof(USB_MicrosoftCompatibleDescriptor_Interface),
.bcdVersion = 0x0100,
.wIndex = 0x0004,
.bCount = 1,
.reserved = {0, 0, 0, 0, 0, 0, 0},
.interfaces = {
{
.bFirstInterfaceNumber = 0,
.reserved1 = 1,
.compatibleID = "3DPRINT",
.subCompatibleID = {0, 0, 0, 0, 0, 0, 0, 0},
.reserved2 = {0, 0, 0, 0, 0, 0},
}
}
};
#define xstr(s) str(s)
#define str(s) #s
#define MS3DPRINT_CONFIG u"MS3DPrintConfig"
#define MS3DPRINT_CONFIG_DATA \
u"Base=SD\0"\
u"Job3DOutputAreaWidth=" xstr(X_BED_SIZE) "000\0"\
u"Job3DOutputAreaDepth=" xstr(Y_BED_SIZE) "000\0"\
u"Job3DOutputAreaHeight=" xstr(Z_MAX_POS) "000\0"\
u"filamentdiameter=1750\0"
typedef struct USB_MicrosoftExtendedPropertiesDescriptor {
uint32_t dwLength;
uint16_t bcdVersion;
uint16_t wIndex;
uint16_t bCount;
uint32_t dwPropertySize;
uint32_t dwPropertyDataType;
uint16_t wPropertyNameLength;
uint16_t PropertyName[sizeof(MS3DPRINT_CONFIG)/sizeof(uint16_t)];
uint32_t dwPropertyDataLength;
uint16_t PropertyData[sizeof(MS3DPRINT_CONFIG_DATA)/sizeof(uint16_t)];
} __attribute__((packed)) USB_MicrosoftExtendedPropertiesDescriptor;
static USB_MicrosoftExtendedPropertiesDescriptor microsoft_extended_properties_descriptor = {
.dwLength = sizeof(USB_MicrosoftExtendedPropertiesDescriptor),
.bcdVersion = 0x0100,
.wIndex = 0x0005,
.bCount = 1,
.dwPropertySize = 4 + 4 + 2 + 4 + sizeof(MS3DPRINT_CONFIG) + sizeof(MS3DPRINT_CONFIG_DATA),
.dwPropertyDataType = 7, // (1=REG_SZ, 4=REG_DWORD, 7=REG_MULTI_SZ)
.wPropertyNameLength = sizeof(MS3DPRINT_CONFIG),
.PropertyName = MS3DPRINT_CONFIG,
.dwPropertyDataLength = sizeof(MS3DPRINT_CONFIG_DATA),
.PropertyData = MS3DPRINT_CONFIG_DATA
};
/**************************************************************************************************
** WCID configuration information
** Hooked into UDC via UDC_GET_EXTRA_STRING #define.
*/
bool usb_task_extra_string(void) {
static uint8_t udi_msft_magic[] = "MSFT100\xEE";
static uint8_t udi_cdc_name[] = "CDC interface"; static uint8_t udi_cdc_name[] = "CDC interface";
static uint8_t udi_msc_name[] = "MSC interface"; static uint8_t udi_msc_name[] = "MSC interface";
struct extra_strings_desc_t{ struct extra_strings_desc_t {
usb_str_desc_t header; usb_str_desc_t header;
le16_t string[Max(sizeof(udi_cdc_name)-1, sizeof(udi_msc_name)-1)]; le16_t string[Max(Max(sizeof(udi_cdc_name) - 1, sizeof(udi_msc_name) - 1), sizeof(udi_msft_magic) - 1)];
}; };
static UDC_DESC_STORAGE struct extra_strings_desc_t extra_strings_desc = { static UDC_DESC_STORAGE struct extra_strings_desc_t extra_strings_desc = {
.header.bDescriptorType = USB_DT_STRING .header.bDescriptorType = USB_DT_STRING
}; };
uint8_t i;
uint8_t *str; uint8_t *str;
uint8_t str_lgt=0; uint8_t str_lgt = 0;
// Link payload pointer to the string corresponding at request // Link payload pointer to the string corresponding at request
switch (udd_g_ctrlreq.req.wValue & 0xff) { switch (udd_g_ctrlreq.req.wValue & 0xff) {
case UDI_CDC_IAD_STRING_ID: case UDI_CDC_IAD_STRING_ID:
str_lgt = sizeof(udi_cdc_name)-1; str_lgt = sizeof(udi_cdc_name) - 1;
str = udi_cdc_name; str = udi_cdc_name;
break; break;
case UDI_MSC_STRING_ID: case UDI_MSC_STRING_ID:
str_lgt = sizeof(udi_msc_name)-1; str_lgt = sizeof(udi_msc_name) - 1;
str = udi_msc_name; str = udi_msc_name;
break; break;
case 0xEE:
str_lgt = sizeof(udi_msft_magic) - 1;
str = udi_msft_magic;
break;
default: default:
return false; return false;
} }
if (str_lgt!=0) { for (uint8_t i = 0; i < str_lgt; i++)
for( i=0; i<str_lgt; i++) {
extra_strings_desc.string[i] = cpu_to_le16((le16_t)str[i]); extra_strings_desc.string[i] = cpu_to_le16((le16_t)str[i]);
}
extra_strings_desc.header.bLength = 2+ (str_lgt)*2; extra_strings_desc.header.bLength = 2 + str_lgt * 2;
udd_g_ctrlreq.payload_size = extra_strings_desc.header.bLength; udd_g_ctrlreq.payload_size = extra_strings_desc.header.bLength;
udd_g_ctrlreq.payload = (uint8_t *) &extra_strings_desc; udd_g_ctrlreq.payload = (uint8_t*)&extra_strings_desc;
}
// if the string is larger than request length, then cut it // if the string is larger than request length, then cut it
if (udd_g_ctrlreq.payload_size > udd_g_ctrlreq.req.wLength) { if (udd_g_ctrlreq.payload_size > udd_g_ctrlreq.req.wLength) {
udd_g_ctrlreq.payload_size = udd_g_ctrlreq.req.wLength; udd_g_ctrlreq.payload_size = udd_g_ctrlreq.req.wLength;
} }
return true;
}
bool usb_task_msc_enable(void)
{
main_b_msc_enable = true;
return true; return true;
} }
void usb_task_msc_disable(void) /**************************************************************************************************
{ ** Handle device requests that the ASF stack doesn't
main_b_msc_enable = false; */
} bool usb_task_other_requests(void) {
uint8_t* ptr = 0;
uint16_t size = 0;
bool usb_task_msc_isenabled(void) if (Udd_setup_type() == USB_REQ_TYPE_VENDOR) {
{ //if (udd_g_ctrlreq.req.bRequest == 0x30)
return main_b_msc_enable; if (1) {
} if (udd_g_ctrlreq.req.wIndex == 0x04) {
ptr = (uint8_t*)&microsoft_compatible_id_descriptor;
size = (udd_g_ctrlreq.req.wLength);
if (size > microsoft_compatible_id_descriptor.dwLength)
size = microsoft_compatible_id_descriptor.dwLength;
}
else if (udd_g_ctrlreq.req.wIndex == 0x05) {
ptr = (uint8_t*)&microsoft_extended_properties_descriptor;
size = (udd_g_ctrlreq.req.wLength);
if (size > microsoft_extended_properties_descriptor.dwLength)
size = microsoft_extended_properties_descriptor.dwLength;
}
else
return false;
}
}
udd_g_ctrlreq.payload_size = size;
if (size == 0) {
udd_g_ctrlreq.callback = 0;
udd_g_ctrlreq.over_under_run = 0;
}
else
udd_g_ctrlreq.payload = ptr;
bool usb_task_cdc_enable(uint8_t port)
{
main_b_cdc_enable = true;
return true; return true;
} }
void usb_task_cdc_disable(uint8_t port) void HAL_init(void) {
{ uint16_t *ptr;
main_b_cdc_enable = false;
}
bool usb_task_cdc_isenabled(void) udd_disable();
{ UDD_SetStack(&USBD_ISR);
return main_b_cdc_enable;
}
/*! \brief Called by CDC interface // Start USB stack to authorize VBus monitoring
* Callback running when CDC device have received data udc_start();
*/
void usb_task_cdc_rx_notify(uint8_t port)
{
}
/*! \brief Configures communication line // Patch in filament diameter - Be careful: String is in UNICODE (2bytes per char)
* ptr = &microsoft_extended_properties_descriptor.PropertyData[0];
* \param cfg line configuration while (ptr[0] || ptr[1]) { // Double 0 flags end of resource
*/
void usb_task_cdc_config(uint8_t port, usb_cdc_line_coding_t * cfg)
{
}
void usb_task_cdc_set_dtr(uint8_t port, bool b_enable) // Found the filamentdiameter= unicode string
{ if (ptr[0] == 'r' && ptr[1] == '=') {
if (b_enable) { char diam[16];
} else { char *sptr;
// Patch in the filament diameter
sprintf_P(diam, PSTR("%d"), (int)((DEFAULT_NOMINAL_FILAMENT_DIA) * 1000.0));
// And copy it to the proper place, expanding it to unicode
sptr = &diam[0];
ptr += 2;
while (*sptr) *ptr++ = *sptr++;
// Done!
break;
}
// Go to the next character
ptr++;
} }
} }
#endif #endif // ARDUINO_ARCH_SAM

14
Marlin/src/HAL/HAL_DUE/usb/usb_task.h

@ -66,33 +66,37 @@ void usb_task_msc_disable(void);
* *
* \retval true if cdc startup is successfully done * \retval true if cdc startup is successfully done
*/ */
bool usb_task_cdc_enable(uint8_t port); bool usb_task_cdc_enable(const uint8_t port);
/*! \brief Closes the communication port /*! \brief Closes the communication port
* This is called by CDC interface when USB Host disable it. * This is called by CDC interface when USB Host disable it.
*/ */
void usb_task_cdc_disable(uint8_t port); void usb_task_cdc_disable(const uint8_t port);
/*! \brief Save new DTR state to change led behavior. /*! \brief Save new DTR state to change led behavior.
* The DTR notify that the terminal have open or close the communication port. * The DTR notify that the terminal have open or close the communication port.
*/ */
void usb_task_cdc_set_dtr(uint8_t port, bool b_enable); void usb_task_cdc_set_dtr(const uint8_t port, const bool b_enable);
/*! \brief Called by UDC when USB Host request a extra string different /*! \brief Called by UDC when USB Host request a extra string different
* of this specified in USB device descriptor * of this specified in USB device descriptor
*/ */
bool usb_task_extra_string(void); bool usb_task_extra_string(void);
/*! \brief Called by UDC when USB Host performs unknown requests
*/
bool usb_task_other_requests(void);
/*! \brief Called by CDC interface /*! \brief Called by CDC interface
* Callback running when CDC device have received data * Callback running when CDC device have received data
*/ */
void usb_task_cdc_rx_notify(uint8_t port); void usb_task_cdc_rx_notify(const uint8_t port);
/*! \brief Configures communication line /*! \brief Configures communication line
* *
* \param cfg line configuration * \param cfg line configuration
*/ */
void usb_task_cdc_config(uint8_t port, usb_cdc_line_coding_t * cfg); void usb_task_cdc_config(const uint8_t port, usb_cdc_line_coding_t *cfg);
/* The USB device interrupt /* The USB device interrupt
*/ */

Loading…
Cancel
Save