From 6d5fcac54ae76374065aed322e9f66f71756af70 Mon Sep 17 00:00:00 2001 From: Scott Lahteine Date: Sun, 24 Sep 2017 02:18:15 -0500 Subject: [PATCH] G33 changes from 1.1.x --- Marlin/src/gcode/calibrate/G33.cpp | 197 +++++++++++----------- Marlin/src/gcode/calibrate/M665.cpp | 7 +- Marlin/src/gcode/calibrate/M666.cpp | 7 +- Marlin/src/lcd/ultralcd.cpp | 2 +- Marlin/src/module/configuration_store.cpp | 29 ++-- Marlin/src/module/delta.cpp | 16 +- Marlin/src/module/delta.h | 4 +- Marlin/src/module/motion.cpp | 2 +- 8 files changed, 132 insertions(+), 132 deletions(-) diff --git a/Marlin/src/gcode/calibrate/G33.cpp b/Marlin/src/gcode/calibrate/G33.cpp index ce9e5431d1..abf86d49d2 100644 --- a/Marlin/src/gcode/calibrate/G33.cpp +++ b/Marlin/src/gcode/calibrate/G33.cpp @@ -45,6 +45,7 @@ * * Pn Number of probe points: * + * P0 No probe. Normalize only. * P1 Probe center and set height only. * P2 Probe center and towers. Set height, endstops, and delta radius. * P3 Probe all positions: center, towers and opposite towers. Set all. @@ -73,7 +74,7 @@ static void print_signed_float(const char * const prefix, const float &f) { SERIAL_PROTOCOL_F(f, 2); } -static void print_G33_settings(const bool end_stops, const bool tower_angles){ // TODO echo these to LCD ??? +static void print_G33_settings(const bool end_stops, const bool tower_angles) { SERIAL_PROTOCOLPAIR(".Height:", DELTA_HEIGHT + home_offset[Z_AXIS]); if (end_stops) { print_signed_float(PSTR(" Ex"), delta_endstop_adj[A_AXIS]); @@ -86,7 +87,8 @@ static void print_G33_settings(const bool end_stops, const bool tower_angles){ / SERIAL_PROTOCOLPGM(".Tower angle : "); print_signed_float(PSTR("Tx"), delta_tower_angle_trim[A_AXIS]); print_signed_float(PSTR("Ty"), delta_tower_angle_trim[B_AXIS]); - SERIAL_PROTOCOLLNPGM(" Tz:+0.00"); + print_signed_float(PSTR("Tz"), delta_tower_angle_trim[C_AXIS]); + SERIAL_EOL(); } } @@ -108,8 +110,8 @@ static void G33_cleanup( void GcodeSuite::G33() { const int8_t probe_points = parser.intval('P', DELTA_CALIBRATION_DEFAULT_POINTS); - if (!WITHIN(probe_points, 1, 7)) { - SERIAL_PROTOCOLLNPGM("?(P)oints is implausible (1-7)."); + if (!WITHIN(probe_points, 0, 7)) { + SERIAL_PROTOCOLLNPGM("?(P)oints is implausible (0-7)."); return; } @@ -132,11 +134,12 @@ void GcodeSuite::G33() { } const bool towers_set = parser.boolval('T', true), + _0p_calibration = probe_points == 0, _1p_calibration = probe_points == 1, _4p_calibration = probe_points == 2, _4p_towers_points = _4p_calibration && towers_set, _4p_opposite_points = _4p_calibration && !towers_set, - _7p_calibration = probe_points >= 3, + _7p_calibration = probe_points >= 3 || _0p_calibration, _7p_half_circle = probe_points == 3, _7p_double_circle = probe_points == 5, _7p_triple_circle = probe_points == 6, @@ -157,17 +160,20 @@ void GcodeSuite::G33() { zero_std_dev = (verbose_level ? 999.0 : 0.0), // 0.0 in dry-run mode : forced end zero_std_dev_old = zero_std_dev, zero_std_dev_min = zero_std_dev, - e_old[XYZ] = { + e_old[ABC] = { delta_endstop_adj[A_AXIS], delta_endstop_adj[B_AXIS], delta_endstop_adj[C_AXIS] }, dr_old = delta_radius, zh_old = home_offset[Z_AXIS], - alpha_old = delta_tower_angle_trim[A_AXIS], - beta_old = delta_tower_angle_trim[B_AXIS]; + ta_old[ABC] = { + delta_tower_angle_trim[A_AXIS], + delta_tower_angle_trim[B_AXIS], + delta_tower_angle_trim[C_AXIS] + }; - if (!_1p_calibration) { // test if the outer radius is reachable + if (!_1p_calibration && !_0p_calibration) { // test if the outer radius is reachable const float circles = (_7p_quadruple_circle ? 1.5 : _7p_triple_circle ? 1.0 : _7p_double_circle ? 0.5 : 0), @@ -198,9 +204,11 @@ void GcodeSuite::G33() { setup_for_endstop_or_probe_move(); endstops.enable(true); - if (!home_delta()) - return; - endstops.not_homing(); + if (!_0p_calibration) { + if (!home_delta()) + return; + endstops.not_homing(); + } // print settings @@ -213,67 +221,71 @@ void GcodeSuite::G33() { print_G33_settings(!_1p_calibration, _7p_calibration && towers_set); #if DISABLED(PROBE_MANUALLY) - const float measured_z = probe_pt(dx, dy, stow_after_each, 1, false); // 1st probe to set height - if (isnan(measured_z)) return G33_CLEANUP(); - home_offset[Z_AXIS] -= measured_z; + if (!_0p_calibration) { + const float measured_z = probe_pt(dx, dy, stow_after_each, 1, false); // 1st probe to set height + if (isnan(measured_z)) return G33_CLEANUP(); + home_offset[Z_AXIS] -= measured_z; + } #endif do { float z_at_pt[13] = { 0.0 }; - test_precision = zero_std_dev_old != 999.0 ? (zero_std_dev + zero_std_dev_old) / 2 : zero_std_dev; + test_precision = _0p_calibration ? 0.00 : zero_std_dev_old != 999.0 ? (zero_std_dev + zero_std_dev_old) / 2 : zero_std_dev; iterations++; // Probe the points - if (!_7p_half_circle && !_7p_triple_circle) { // probe the center - #if ENABLED(PROBE_MANUALLY) - z_at_pt[0] += lcd_probe_pt(0, 0); - #else - z_at_pt[0] += probe_pt(dx, dy, stow_after_each, 1, false); - if (isnan(z_at_pt[0])) return G33_CLEANUP(); - #endif - } - if (_7p_calibration) { // probe extra center points - for (int8_t axis = _7p_multi_circle ? 11 : 9; axis > 0; axis -= _7p_multi_circle ? 2 : 4) { - const float a = RADIANS(180 + 30 * axis), r = delta_calibration_radius * 0.1; + if (!_0p_calibration){ + if (!_7p_half_circle && !_7p_triple_circle) { // probe the center #if ENABLED(PROBE_MANUALLY) - z_at_pt[0] += lcd_probe_pt(cos(a) * r, sin(a) * r); + z_at_pt[0] += lcd_probe_pt(0, 0); #else - z_at_pt[0] += probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1); + z_at_pt[0] += probe_pt(dx, dy, stow_after_each, 1, false); if (isnan(z_at_pt[0])) return G33_CLEANUP(); #endif } - z_at_pt[0] /= float(_7p_double_circle ? 7 : probe_points); - } - if (!_1p_calibration) { // probe the radius - bool zig_zag = true; - const uint8_t start = _4p_opposite_points ? 3 : 1, - step = _4p_calibration ? 4 : _7p_half_circle ? 2 : 1; - for (uint8_t axis = start; axis < 13; axis += step) { - const float zigadd = (zig_zag ? 0.5 : 0.0), - offset_circles = _7p_quadruple_circle ? zigadd + 1.0 : - _7p_triple_circle ? zigadd + 0.5 : - _7p_double_circle ? zigadd : 0; - for (float circles = -offset_circles ; circles <= offset_circles; circles++) { - const float a = RADIANS(180 + 30 * axis), - r = delta_calibration_radius * (1 + circles * (zig_zag ? 0.1 : -0.1)); + if (_7p_calibration) { // probe extra center points + for (int8_t axis = _7p_multi_circle ? 11 : 9; axis > 0; axis -= _7p_multi_circle ? 2 : 4) { + const float a = RADIANS(180 + 30 * axis), r = delta_calibration_radius * 0.1; #if ENABLED(PROBE_MANUALLY) - z_at_pt[axis] += lcd_probe_pt(cos(a) * r, sin(a) * r); + z_at_pt[0] += lcd_probe_pt(cos(a) * r, sin(a) * r); #else - z_at_pt[axis] += probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1); - if (isnan(z_at_pt[axis])) return G33_CLEANUP(); + z_at_pt[0] += probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1); + if (isnan(z_at_pt[0])) return G33_CLEANUP(); #endif } - zig_zag = !zig_zag; - z_at_pt[axis] /= (2 * offset_circles + 1); + z_at_pt[0] /= float(_7p_double_circle ? 7 : probe_points); + } + if (!_1p_calibration) { // probe the radius + bool zig_zag = true; + const uint8_t start = _4p_opposite_points ? 3 : 1, + step = _4p_calibration ? 4 : _7p_half_circle ? 2 : 1; + for (uint8_t axis = start; axis < 13; axis += step) { + const float zigadd = (zig_zag ? 0.5 : 0.0), + offset_circles = _7p_quadruple_circle ? zigadd + 1.0 : + _7p_triple_circle ? zigadd + 0.5 : + _7p_double_circle ? zigadd : 0; + for (float circles = -offset_circles ; circles <= offset_circles; circles++) { + const float a = RADIANS(180 + 30 * axis), + r = delta_calibration_radius * (1 + circles * (zig_zag ? 0.1 : -0.1)); + #if ENABLED(PROBE_MANUALLY) + z_at_pt[axis] += lcd_probe_pt(cos(a) * r, sin(a) * r); + #else + z_at_pt[axis] += probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1); + if (isnan(z_at_pt[axis])) return G33_CLEANUP(); + #endif + } + zig_zag = !zig_zag; + z_at_pt[axis] /= (2 * offset_circles + 1); + } } + if (_7p_intermed_points) // average intermediates to tower and opposites + for (uint8_t axis = 1; axis < 13; axis += 2) + z_at_pt[axis] = (z_at_pt[axis] + (z_at_pt[axis + 1] + z_at_pt[(axis + 10) % 12 + 1]) / 2.0) / 2.0; } - if (_7p_intermed_points) // average intermediates to tower and opposites - for (uint8_t axis = 1; axis < 13; axis += 2) - z_at_pt[axis] = (z_at_pt[axis] + (z_at_pt[axis + 1] + z_at_pt[(axis + 10) % 12 + 1]) / 2.0) / 2.0; float S1 = z_at_pt[0], S2 = sq(z_at_pt[0]); @@ -294,27 +306,20 @@ void GcodeSuite::G33() { COPY(e_old, delta_endstop_adj); dr_old = delta_radius; zh_old = home_offset[Z_AXIS]; - alpha_old = delta_tower_angle_trim[A_AXIS]; - beta_old = delta_tower_angle_trim[B_AXIS]; + COPY(ta_old, delta_tower_angle_trim); } - float e_delta[XYZ] = { 0.0 }, r_delta = 0.0, t_alpha = 0.0, t_beta = 0.0; + float e_delta[ABC] = { 0.0 }, r_delta = 0.0, t_delta[ABC] = { 0.0 }; const float r_diff = delta_radius - delta_calibration_radius, - h_factor = 1.00 + r_diff * 0.001, //1.02 for r_diff = 20mm - r_factor = -(1.75 + 0.005 * r_diff + 0.001 * sq(r_diff)), //2.25 for r_diff = 20mm - a_factor = 100.0 / delta_calibration_radius; //1.25 for cal_rd = 80mm + h_factor = (1.00 + r_diff * 0.001) / 6.0, //1.02 / 6 for r_diff = 20mm + r_factor = -(1.75 + 0.005 * r_diff + 0.001 * sq(r_diff)) / 6.0, //2.25 / 6 for r_diff = 20mm + a_factor = 66.66 / delta_calibration_radius; //1.25 for cal_rd = 80mm #define ZP(N,I) ((N) * z_at_pt[I]) - #define Z1000(I) ZP(1.00, I) - #define Z1050(I) ZP(h_factor, I) - #define Z0700(I) ZP(h_factor * 2.0 / 3.00, I) - #define Z0350(I) ZP(h_factor / 3.00, I) - #define Z0175(I) ZP(h_factor / 6.00, I) - #define Z2250(I) ZP(r_factor, I) - #define Z0750(I) ZP(r_factor / 3.00, I) - #define Z0375(I) ZP(r_factor / 6.00, I) - #define Z0444(I) ZP(a_factor * 4.0 / 9.0, I) - #define Z0888(I) ZP(a_factor * 8.0 / 9.0, I) + #define Z6(I) ZP(6, I) + #define Z4(I) ZP(4, I) + #define Z2(I) ZP(2, I) + #define Z1(I) ZP(1, I) #if ENABLED(PROBE_MANUALLY) test_precision = 0.00; // forced end @@ -323,58 +328,60 @@ void GcodeSuite::G33() { switch (probe_points) { case 1: test_precision = 0.00; // forced end - LOOP_XYZ(i) e_delta[i] = Z1000(0); + LOOP_XYZ(axis) e_delta[axis] = Z1(0); break; case 2: if (towers_set) { - e_delta[X_AXIS] = Z1050(0) + Z0700(1) - Z0350(5) - Z0350(9); - e_delta[Y_AXIS] = Z1050(0) - Z0350(1) + Z0700(5) - Z0350(9); - e_delta[Z_AXIS] = Z1050(0) - Z0350(1) - Z0350(5) + Z0700(9); - r_delta = Z2250(0) - Z0750(1) - Z0750(5) - Z0750(9); + e_delta[A_AXIS] = (Z6(0) + Z4(1) - Z2(5) - Z2(9)) * h_factor; + e_delta[B_AXIS] = (Z6(0) - Z2(1) + Z4(5) - Z2(9)) * h_factor; + e_delta[C_AXIS] = (Z6(0) - Z2(1) - Z2(5) + Z4(9)) * h_factor; + r_delta = (Z6(0) - Z2(1) - Z2(5) - Z2(9)) * r_factor; } else { - e_delta[X_AXIS] = Z1050(0) - Z0700(7) + Z0350(11) + Z0350(3); - e_delta[Y_AXIS] = Z1050(0) + Z0350(7) - Z0700(11) + Z0350(3); - e_delta[Z_AXIS] = Z1050(0) + Z0350(7) + Z0350(11) - Z0700(3); - r_delta = Z2250(0) - Z0750(7) - Z0750(11) - Z0750(3); + e_delta[A_AXIS] = (Z6(0) - Z4(7) + Z2(11) + Z2(3)) * h_factor; + e_delta[B_AXIS] = (Z6(0) + Z2(7) - Z4(11) + Z2(3)) * h_factor; + e_delta[C_AXIS] = (Z6(0) + Z2(7) + Z2(11) - Z4(3)) * h_factor; + r_delta = (Z6(0) - Z2(7) - Z2(11) - Z2(3)) * r_factor; } break; default: - e_delta[X_AXIS] = Z1050(0) + Z0350(1) - Z0175(5) - Z0175(9) - Z0350(7) + Z0175(11) + Z0175(3); - e_delta[Y_AXIS] = Z1050(0) - Z0175(1) + Z0350(5) - Z0175(9) + Z0175(7) - Z0350(11) + Z0175(3); - e_delta[Z_AXIS] = Z1050(0) - Z0175(1) - Z0175(5) + Z0350(9) + Z0175(7) + Z0175(11) - Z0350(3); - r_delta = Z2250(0) - Z0375(1) - Z0375(5) - Z0375(9) - Z0375(7) - Z0375(11) - Z0375(3); + e_delta[A_AXIS] = (Z6(0) + Z2(1) - Z1(5) - Z1(9) - Z2(7) + Z1(11) + Z1(3)) * h_factor; + e_delta[B_AXIS] = (Z6(0) - Z1(1) + Z2(5) - Z1(9) + Z1(7) - Z2(11) + Z1(3)) * h_factor; + e_delta[C_AXIS] = (Z6(0) - Z1(1) - Z1(5) + Z2(9) + Z1(7) + Z1(11) - Z2(3)) * h_factor; + r_delta = (Z6(0) - Z1(1) - Z1(5) - Z1(9) - Z1(7) - Z1(11) - Z1(3)) * r_factor; if (towers_set) { - t_alpha = Z0444(1) - Z0888(5) + Z0444(9) + Z0444(7) - Z0888(11) + Z0444(3); - t_beta = Z0888(1) - Z0444(5) - Z0444(9) + Z0888(7) - Z0444(11) - Z0444(3); + t_delta[A_AXIS] = ( - Z2(5) + Z1(9) - Z2(11) + Z1(3)) * a_factor; + t_delta[B_AXIS] = ( Z2(1) - Z1(9) + Z2(7) - Z1(3)) * a_factor; + t_delta[C_AXIS] = ( -Z2(1) + Z1(5) - Z2(7) + Z1(11) ) * a_factor; } break; } LOOP_XYZ(axis) delta_endstop_adj[axis] += e_delta[axis]; delta_radius += r_delta; - delta_tower_angle_trim[A_AXIS] += t_alpha; - delta_tower_angle_trim[B_AXIS] += t_beta; - - // adjust delta_height and endstops by the max amount - const float z_temp = MAX3(delta_endstop_adj[A_AXIS], delta_endstop_adj[B_AXIS], delta_endstop_adj[C_AXIS]); - home_offset[Z_AXIS] -= z_temp; - LOOP_XYZ(i) delta_endstop_adj[i] -= z_temp; - - recalc_delta_settings(delta_radius, delta_diagonal_rod); + LOOP_XYZ(axis) delta_tower_angle_trim[axis] += t_delta[axis]; } else if (zero_std_dev >= test_precision) { // step one back COPY(delta_endstop_adj, e_old); delta_radius = dr_old; home_offset[Z_AXIS] = zh_old; - delta_tower_angle_trim[A_AXIS] = alpha_old; - delta_tower_angle_trim[B_AXIS] = beta_old; - - recalc_delta_settings(delta_radius, delta_diagonal_rod); + COPY(delta_tower_angle_trim, ta_old); + } + if (verbose_level != 0) { // !dry run + // normalise angles to least squares + float a_sum = 0.0; + LOOP_XYZ(axis) a_sum += delta_tower_angle_trim[axis]; + LOOP_XYZ(axis) delta_tower_angle_trim[axis] -= a_sum / 3.0; + + // adjust delta_height and endstops by the max amount + const float z_temp = MAX3(delta_endstop_adj[A_AXIS], delta_endstop_adj[B_AXIS], delta_endstop_adj[C_AXIS]); + home_offset[Z_AXIS] -= z_temp; + LOOP_XYZ(axis) delta_endstop_adj[axis] -= z_temp; } + recalc_delta_settings(delta_radius, delta_diagonal_rod, delta_tower_angle_trim); NOMORE(zero_std_dev_min, zero_std_dev); // print report diff --git a/Marlin/src/gcode/calibrate/M665.cpp b/Marlin/src/gcode/calibrate/M665.cpp index b714204835..151399f6d7 100644 --- a/Marlin/src/gcode/calibrate/M665.cpp +++ b/Marlin/src/gcode/calibrate/M665.cpp @@ -54,11 +54,8 @@ if (parser.seen('B')) delta_calibration_radius = parser.value_float(); if (parser.seen('X')) delta_tower_angle_trim[A_AXIS] = parser.value_float(); if (parser.seen('Y')) delta_tower_angle_trim[B_AXIS] = parser.value_float(); - if (parser.seen('Z')) { // rotate all 3 axis for Z = 0 - delta_tower_angle_trim[A_AXIS] -= parser.value_float(); - delta_tower_angle_trim[B_AXIS] -= parser.value_float(); - } - recalc_delta_settings(delta_radius, delta_diagonal_rod); + if (parser.seen('Z')) delta_tower_angle_trim[C_AXIS] = parser.value_float(); + recalc_delta_settings(delta_radius, delta_diagonal_rod, delta_tower_angle_trim); } #elif IS_SCARA diff --git a/Marlin/src/gcode/calibrate/M666.cpp b/Marlin/src/gcode/calibrate/M666.cpp index 1e64565e65..bba2661410 100644 --- a/Marlin/src/gcode/calibrate/M666.cpp +++ b/Marlin/src/gcode/calibrate/M666.cpp @@ -42,7 +42,8 @@ #endif LOOP_XYZ(i) { if (parser.seen(axis_codes[i])) { - delta_endstop_adj[i] = parser.value_linear_units(); + const float v = parser.value_linear_units(); + if (v * Z_HOME_DIR <= 0) delta_endstop_adj[i] = v; #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOPAIR("delta_endstop_adj[", axis_codes[i]); @@ -56,10 +57,6 @@ SERIAL_ECHOLNPGM("<<< M666"); } #endif - // normalize endstops so all are <=0; set the residue to delta height - const float z_temp = MAX3(delta_endstop_adj[A_AXIS], delta_endstop_adj[B_AXIS], delta_endstop_adj[C_AXIS]); - home_offset[Z_AXIS] -= z_temp; - LOOP_XYZ(i) delta_endstop_adj[i] -= z_temp; } #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS) diff --git a/Marlin/src/lcd/ultralcd.cpp b/Marlin/src/lcd/ultralcd.cpp index a0d16584cb..fdb5b3b529 100644 --- a/Marlin/src/lcd/ultralcd.cpp +++ b/Marlin/src/lcd/ultralcd.cpp @@ -2666,7 +2666,7 @@ void kill_screen(const char* lcd_msg) { MENU_ITEM_EDIT(float52, MSG_DELTA_RADIUS, &delta_radius, DELTA_RADIUS - 5.0, DELTA_RADIUS + 5.0); MENU_ITEM_EDIT(float43, "Tx", &delta_tower_angle_trim[A_AXIS], -5.0, 5.0); MENU_ITEM_EDIT(float43, "Ty", &delta_tower_angle_trim[B_AXIS], -5.0, 5.0); - MENU_ITEM_EDIT(float43, "Tz", &Tz, -5.0, 5.0); + MENU_ITEM_EDIT(float43, "Tz", &delta_tower_angle_trim[C_AXIS], -5.0, 5.0); END_MENU(); } diff --git a/Marlin/src/module/configuration_store.cpp b/Marlin/src/module/configuration_store.cpp index f402cc33a5..36043f2fed 100644 --- a/Marlin/src/module/configuration_store.cpp +++ b/Marlin/src/module/configuration_store.cpp @@ -36,13 +36,13 @@ * */ -#define EEPROM_VERSION "V40" +#define EEPROM_VERSION "V41" // Change EEPROM version if these are changed: #define EEPROM_OFFSET 100 /** - * V39 EEPROM Layout: + * V41 EEPROM Layout: * * 100 Version (char x4) * 104 EEPROM CRC16 (uint16_t) @@ -93,14 +93,14 @@ * 329 G29 S ubl.state.storage_slot (int8_t) * * DELTA: 48 bytes - * 348 M666 XYZ delta_endstop_adj (float x3) + * 348 M666 XYZ delta_endstop_adj (float x3) * 360 M665 R delta_radius (float) * 364 M665 L delta_diagonal_rod (float) * 368 M665 S delta_segments_per_second (float) * 372 M665 B delta_calibration_radius (float) * 376 M665 X delta_tower_angle_trim[A] (float) * 380 M665 Y delta_tower_angle_trim[B] (float) - * --- M665 Z delta_tower_angle_trim[C] (float) is always 0.0 + * 384 M665 Z delta_tower_angle_trim[C] (float) * * Z_DUAL_ENDSTOPS: 48 bytes * 348 M666 Z endstops.z_endstop_adj (float) @@ -213,7 +213,7 @@ void MarlinSettings::postprocess() { // Make sure delta kinematics are updated before refreshing the // planner position so the stepper counts will be set correctly. #if ENABLED(DELTA) - recalc_delta_settings(delta_radius, delta_diagonal_rod); + recalc_delta_settings(delta_radius, delta_diagonal_rod, delta_tower_angle_trim); #endif // Refresh steps_to_mm with the reciprocal of axis_steps_per_mm @@ -415,16 +415,16 @@ void MarlinSettings::postprocess() { EEPROM_WRITE(storage_slot); #endif // AUTO_BED_LEVELING_UBL - // 9 floats for DELTA / Z_DUAL_ENDSTOPS + // 10 floats for DELTA / Z_DUAL_ENDSTOPS #if ENABLED(DELTA) - EEPROM_WRITE(delta_endstop_adj); // 3 floats + EEPROM_WRITE(delta_endstop_adj); // 3 floats EEPROM_WRITE(delta_radius); // 1 float EEPROM_WRITE(delta_diagonal_rod); // 1 float EEPROM_WRITE(delta_segments_per_second); // 1 float EEPROM_WRITE(delta_calibration_radius); // 1 float - EEPROM_WRITE(delta_tower_angle_trim); // 2 floats + EEPROM_WRITE(delta_tower_angle_trim); // 3 floats dummy = 0.0f; - for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy); + for (uint8_t q = 2; q--;) EEPROM_WRITE(dummy); #elif ENABLED(Z_DUAL_ENDSTOPS) EEPROM_WRITE(endstops.z_endstop_adj); // 1 float dummy = 0.0f; @@ -804,14 +804,14 @@ void MarlinSettings::postprocess() { #endif // AUTO_BED_LEVELING_UBL #if ENABLED(DELTA) - EEPROM_READ(delta_endstop_adj); // 3 floats + EEPROM_READ(delta_endstop_adj); // 3 floats EEPROM_READ(delta_radius); // 1 float EEPROM_READ(delta_diagonal_rod); // 1 float EEPROM_READ(delta_segments_per_second); // 1 float EEPROM_READ(delta_calibration_radius); // 1 float - EEPROM_READ(delta_tower_angle_trim); // 2 floats + EEPROM_READ(delta_tower_angle_trim); // 3 floats dummy = 0.0f; - for (uint8_t q=3; q--;) EEPROM_READ(dummy); + for (uint8_t q=2; q--;) EEPROM_READ(dummy); #elif ENABLED(Z_DUAL_ENDSTOPS) EEPROM_READ(endstops.z_endstop_adj); // 1 float dummy = 0.0f; @@ -1199,8 +1199,7 @@ void MarlinSettings::reset() { delta_diagonal_rod = DELTA_DIAGONAL_ROD; delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND; delta_calibration_radius = DELTA_CALIBRATION_RADIUS; - delta_tower_angle_trim[A_AXIS] = dta[A_AXIS] - dta[C_AXIS]; - delta_tower_angle_trim[B_AXIS] = dta[B_AXIS] - dta[C_AXIS]; + COPY(delta_tower_angle_trim, dta); home_offset[Z_AXIS] = 0; #elif ENABLED(Z_DUAL_ENDSTOPS) @@ -1615,7 +1614,7 @@ void MarlinSettings::reset() { SERIAL_ECHOPAIR(" B", LINEAR_UNIT(delta_calibration_radius)); SERIAL_ECHOPAIR(" X", LINEAR_UNIT(delta_tower_angle_trim[A_AXIS])); SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(delta_tower_angle_trim[B_AXIS])); - SERIAL_ECHOPAIR(" Z", 0.00); + SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(delta_tower_angle_trim[C_AXIS])); SERIAL_EOL(); #elif ENABLED(Z_DUAL_ENDSTOPS) if (!forReplay) { diff --git a/Marlin/src/module/delta.cpp b/Marlin/src/module/delta.cpp index c75def2902..4dbffee0e8 100644 --- a/Marlin/src/module/delta.cpp +++ b/Marlin/src/module/delta.cpp @@ -43,7 +43,7 @@ float delta_endstop_adj[ABC] = { 0 }, delta_diagonal_rod, delta_segments_per_second, delta_calibration_radius, - delta_tower_angle_trim[2]; + delta_tower_angle_trim[ABC]; float delta_tower[ABC][2], delta_diagonal_rod_2_tower[ABC], @@ -55,15 +55,15 @@ float delta_safe_distance_from_top(); * Recalculate factors used for delta kinematics whenever * settings have been changed (e.g., by M665). */ -void recalc_delta_settings(float radius, float diagonal_rod) { +void recalc_delta_settings(const float radius, const float diagonal_rod, const float tower_angle_trim[ABC]) { const float trt[ABC] = DELTA_RADIUS_TRIM_TOWER, drt[ABC] = DELTA_DIAGONAL_ROD_TRIM_TOWER; - delta_tower[A_AXIS][X_AXIS] = cos(RADIANS(210 + delta_tower_angle_trim[A_AXIS])) * (radius + trt[A_AXIS]); // front left tower - delta_tower[A_AXIS][Y_AXIS] = sin(RADIANS(210 + delta_tower_angle_trim[A_AXIS])) * (radius + trt[A_AXIS]); - delta_tower[B_AXIS][X_AXIS] = cos(RADIANS(330 + delta_tower_angle_trim[B_AXIS])) * (radius + trt[B_AXIS]); // front right tower - delta_tower[B_AXIS][Y_AXIS] = sin(RADIANS(330 + delta_tower_angle_trim[B_AXIS])) * (radius + trt[B_AXIS]); - delta_tower[C_AXIS][X_AXIS] = 0.0; // back middle tower - delta_tower[C_AXIS][Y_AXIS] = (radius + trt[C_AXIS]); + delta_tower[A_AXIS][X_AXIS] = cos(RADIANS(210 + tower_angle_trim[A_AXIS])) * (radius + trt[A_AXIS]); // front left tower + delta_tower[A_AXIS][Y_AXIS] = sin(RADIANS(210 + tower_angle_trim[A_AXIS])) * (radius + trt[A_AXIS]); + delta_tower[B_AXIS][X_AXIS] = cos(RADIANS(330 + tower_angle_trim[B_AXIS])) * (radius + trt[B_AXIS]); // front right tower + delta_tower[B_AXIS][Y_AXIS] = sin(RADIANS(330 + tower_angle_trim[B_AXIS])) * (radius + trt[B_AXIS]); + delta_tower[C_AXIS][X_AXIS] = cos(RADIANS( 90 + tower_angle_trim[C_AXIS])) * (radius + trt[C_AXIS]); // back middle tower + delta_tower[C_AXIS][Y_AXIS] = sin(RADIANS( 90 + tower_angle_trim[C_AXIS])) * (radius + trt[C_AXIS]); delta_diagonal_rod_2_tower[A_AXIS] = sq(diagonal_rod + drt[A_AXIS]); delta_diagonal_rod_2_tower[B_AXIS] = sq(diagonal_rod + drt[B_AXIS]); delta_diagonal_rod_2_tower[C_AXIS] = sq(diagonal_rod + drt[C_AXIS]); diff --git a/Marlin/src/module/delta.h b/Marlin/src/module/delta.h index 9b198b32a6..442e7b1da1 100644 --- a/Marlin/src/module/delta.h +++ b/Marlin/src/module/delta.h @@ -32,7 +32,7 @@ extern float delta_endstop_adj[ABC], delta_diagonal_rod, delta_segments_per_second, delta_calibration_radius, - delta_tower_angle_trim[2]; + delta_tower_angle_trim[ABC]; extern float delta_tower[ABC][2], delta_diagonal_rod_2_tower[ABC], @@ -42,7 +42,7 @@ extern float delta_tower[ABC][2], * Recalculate factors used for delta kinematics whenever * settings have been changed (e.g., by M665). */ -void recalc_delta_settings(float radius, float diagonal_rod); +void recalc_delta_settings(const float radius, const float diagonal_rod, const float tower_angle_trim[ABC]); /** * Delta Inverse Kinematics diff --git a/Marlin/src/module/motion.cpp b/Marlin/src/module/motion.cpp index 35a97d25b1..407dd756b8 100644 --- a/Marlin/src/module/motion.cpp +++ b/Marlin/src/module/motion.cpp @@ -1134,7 +1134,7 @@ void homeaxis(const AxisEnum axis) { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("delta_endstop_adj:"); #endif - do_homing_move(axis, delta_endstop_adj[axis] - 0.1); + do_homing_move(axis, delta_endstop_adj[axis] - 0.1 * Z_HOME_DIR); } #else