Browse Source

Merge pull request #2101 from thinkyhead/code_style

Code style and a dangling "else"
pull/1/head
Scott Lahteine 10 years ago
parent
commit
6c27eaf864
  1. 441
      Marlin/Marlin_main.cpp
  2. 44
      Marlin/stepper.cpp
  3. 6
      Marlin/stepper.h

441
Marlin/Marlin_main.cpp

@ -1,30 +1,30 @@
/* -*- c++ -*- */ /**
* Marlin Firmware
/* *
Reprap firmware based on Sprinter and grbl. * Based on Sprinter and grbl.
Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
This program is free software: you can redistribute it and/or modify * This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by * it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or * the Free Software Foundation, either version 3 of the License, or
(at your option) any later version. * (at your option) any later version.
*
This program is distributed in the hope that it will be useful, * This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of * but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details. * GNU General Public License for more details.
*
You should have received a copy of the GNU General Public License * You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. * along with this program. If not, see <http://www.gnu.org/licenses/>.
*/ *
* About Marlin
/* *
This firmware is a mashup between Sprinter and grbl. * This firmware is a mashup between Sprinter and grbl.
(https://github.com/kliment/Sprinter) * - https://github.com/kliment/Sprinter
(https://github.com/simen/grbl/tree) * - https://github.com/simen/grbl/tree
*
It has preliminary support for Matthew Roberts advance algorithm * It has preliminary support for Matthew Roberts advance algorithm
http://reprap.org/pipermail/reprap-dev/2011-May/003323.html * - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
*/ */
#include "Marlin.h" #include "Marlin.h"
@ -73,13 +73,12 @@
* - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
* *
* Help us document these G-codes online: * Help us document these G-codes online:
* - http://www.marlinfirmware.org/index.php/G-Code
* - http://reprap.org/wiki/G-code * - http://reprap.org/wiki/G-code
* - https://github.com/MarlinFirmware/Marlin/wiki/Marlin-G-Code *
*/ * -----------------
/**
* Implemented Codes * Implemented Codes
* ------------------- * -----------------
* *
* "G" Codes * "G" Codes
* *
@ -163,7 +162,7 @@
* M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk * M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
* M206 - Set additional homing offset * M206 - Set additional homing offset
* M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting * M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
* M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec] * M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
* M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction. * M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
* M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y> * M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
* M220 - Set speed factor override percentage: S<factor in percent> * M220 - Set speed factor override percentage: S<factor in percent>
@ -215,6 +214,11 @@
* *
* M928 - Start SD logging (M928 filename.g) - ended by M29 * M928 - Start SD logging (M928 filename.g) - ended by M29
* M999 - Restart after being stopped by error * M999 - Restart after being stopped by error
*
* "T" Codes
*
* T0-T3 - Select a tool by index (usually an extruder) [ F<mm/min> ]
*
*/ */
#ifdef SDSUPPORT #ifdef SDSUPPORT
@ -557,9 +561,9 @@ void servo_init() {
// Set position of Servo Endstops that are defined // Set position of Servo Endstops that are defined
#ifdef SERVO_ENDSTOPS #ifdef SERVO_ENDSTOPS
for (int i = 0; i < 3; i++) for (int i = 0; i < 3; i++)
if (servo_endstops[i] >= 0) if (servo_endstops[i] >= 0)
servo[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]); servo[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
#endif #endif
#if SERVO_LEVELING #if SERVO_LEVELING
@ -993,7 +997,7 @@ XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
#endif //DUAL_X_CARRIAGE #endif //DUAL_X_CARRIAGE
static void axis_is_at_home(int axis) { static void axis_is_at_home(AxisEnum axis) {
#ifdef DUAL_X_CARRIAGE #ifdef DUAL_X_CARRIAGE
if (axis == X_AXIS) { if (axis == X_AXIS) {
@ -1198,12 +1202,12 @@ static void setup_for_endstop_move() {
plan_bed_level_matrix.set_to_identity(); plan_bed_level_matrix.set_to_identity();
feedrate = homing_feedrate[Z_AXIS]; feedrate = homing_feedrate[Z_AXIS];
// move down until you find the bed // Move down until the probe (or endstop?) is triggered
float zPosition = -10; float zPosition = -10;
line_to_z(zPosition); line_to_z(zPosition);
st_synchronize(); st_synchronize();
// we have to let the planner know where we are right now as it is not where we said to go. // Tell the planner where we ended up - Get this from the stepper handler
zPosition = st_get_position_mm(Z_AXIS); zPosition = st_get_position_mm(Z_AXIS);
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]); plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
@ -1313,21 +1317,21 @@ static void setup_for_endstop_move() {
st_synchronize(); st_synchronize();
#ifdef Z_PROBE_ENDSTOP #ifdef Z_PROBE_ENDSTOP
bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING); bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
if (z_probe_endstop) if (z_probe_endstop)
#else #else
bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING); bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
if (z_min_endstop) if (z_min_endstop)
#endif #endif
{ {
if (IsRunning()) { if (IsRunning()) {
SERIAL_ERROR_START; SERIAL_ERROR_START;
SERIAL_ERRORLNPGM("Z-Probe failed to engage!"); SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
LCD_ALERTMESSAGEPGM("Err: ZPROBE"); LCD_ALERTMESSAGEPGM("Err: ZPROBE");
}
Stop();
} }
Stop();
}
#endif // Z_PROBE_ALLEN_KEY #endif // Z_PROBE_ALLEN_KEY
@ -1390,23 +1394,23 @@ static void setup_for_endstop_move() {
st_synchronize(); st_synchronize();
#ifdef Z_PROBE_ENDSTOP #ifdef Z_PROBE_ENDSTOP
bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING); bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
if (!z_probe_endstop) if (!z_probe_endstop)
#else #else
bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING); bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
if (!z_min_endstop) if (!z_min_endstop)
#endif #endif
{ {
if (IsRunning()) { if (IsRunning()) {
SERIAL_ERROR_START; SERIAL_ERROR_START;
SERIAL_ERRORLNPGM("Z-Probe failed to retract!"); SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
LCD_ALERTMESSAGEPGM("Err: ZPROBE"); LCD_ALERTMESSAGEPGM("Err: ZPROBE");
}
Stop();
} }
Stop();
}
#endif #endif // Z_PROBE_ALLEN_KEY
} }
@ -1418,32 +1422,31 @@ static void setup_for_endstop_move() {
}; };
// Probe bed height at position (x,y), returns the measured z value // Probe bed height at position (x,y), returns the measured z value
static float probe_pt(float x, float y, float z_before, ProbeAction retract_action=ProbeDeployAndStow, int verbose_level=1) { static float probe_pt(float x, float y, float z_before, ProbeAction probe_action=ProbeDeployAndStow, int verbose_level=1) {
// move to right place // move to right place
do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before); // this also updates current_position do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before); // this also updates current_position
do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]); // this also updates current_position do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]); // this also updates current_position
#if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY) #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
if (retract_action & ProbeDeploy) deploy_z_probe(); if (probe_action & ProbeDeploy) deploy_z_probe();
#endif #endif
run_z_probe(); run_z_probe();
float measured_z = current_position[Z_AXIS]; float measured_z = current_position[Z_AXIS];
#if Z_RAISE_BETWEEN_PROBINGS > 0 #if Z_RAISE_BETWEEN_PROBINGS > 0
if (retract_action == ProbeStay) { if (probe_action == ProbeStay) {
do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS); // this also updates current_position do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS); // this also updates current_position
st_synchronize(); st_synchronize();
} }
#endif #endif
#if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY) #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
if (retract_action & ProbeStow) stow_z_probe(); if (probe_action & ProbeStow) stow_z_probe();
#endif #endif
if (verbose_level > 2) { if (verbose_level > 2) {
SERIAL_PROTOCOLPGM("Bed"); SERIAL_PROTOCOLPGM("Bed X: ");
SERIAL_PROTOCOLPGM(" X: ");
SERIAL_PROTOCOL_F(x, 3); SERIAL_PROTOCOL_F(x, 3);
SERIAL_PROTOCOLPGM(" Y: "); SERIAL_PROTOCOLPGM(" Y: ");
SERIAL_PROTOCOL_F(y, 3); SERIAL_PROTOCOL_F(y, 3);
@ -1593,12 +1596,11 @@ static void homeaxis(AxisEnum axis) {
if (axis == Z_AXIS) { if (axis == Z_AXIS) {
if (axis_home_dir < 0) deploy_z_probe(); if (axis_home_dir < 0) deploy_z_probe();
} }
else
#endif #endif
#ifdef SERVO_ENDSTOPS #ifdef SERVO_ENDSTOPS
{ if (axis != Z_AXIS) {
// Engage Servo endstop if enabled // Engage Servo endstop if enabled
if (servo_endstops[axis] > -1) if (servo_endstops[axis] > -1)
servo[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]); servo[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
@ -2763,8 +2765,8 @@ inline void gcode_G28() {
z_tmp = current_position[Z_AXIS], z_tmp = current_position[Z_AXIS],
real_z = (float)st_get_position(Z_AXIS) / axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane) real_z = (float)st_get_position(Z_AXIS) / axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); // Apply the correction sending the probe offset
current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner. current_position[Z_AXIS] += z_tmp - real_z; // The difference is added to current position and sent to planner.
sync_plan_position(); sync_plan_position();
} }
#endif // !DELTA #endif // !DELTA
@ -2792,8 +2794,7 @@ inline void gcode_G28() {
feedrate = homing_feedrate[Z_AXIS]; feedrate = homing_feedrate[Z_AXIS];
run_z_probe(); run_z_probe();
SERIAL_PROTOCOLPGM("Bed"); SERIAL_PROTOCOLPGM("Bed X: ");
SERIAL_PROTOCOLPGM(" X: ");
SERIAL_PROTOCOL(current_position[X_AXIS] + 0.0001); SERIAL_PROTOCOL(current_position[X_AXIS] + 0.0001);
SERIAL_PROTOCOLPGM(" Y: "); SERIAL_PROTOCOLPGM(" Y: ");
SERIAL_PROTOCOL(current_position[Y_AXIS] + 0.0001); SERIAL_PROTOCOL(current_position[Y_AXIS] + 0.0001);
@ -4624,7 +4625,7 @@ inline void gcode_M400() { st_synchronize(); }
stow_z_probe(false); stow_z_probe(false);
} }
#endif #endif // ENABLE_AUTO_BED_LEVELING && (SERVO_ENDSTOPS || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED
#ifdef FILAMENT_SENSOR #ifdef FILAMENT_SENSOR
@ -4819,7 +4820,7 @@ inline void gcode_M503() {
if (code_seen('Z')) { if (code_seen('Z')) {
value = code_value(); value = code_value();
if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) { if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
zprobe_zoffset = -value; // compare w/ line 278 of configuration_store.cpp zprobe_zoffset = -value;
SERIAL_ECHO_START; SERIAL_ECHO_START;
SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK); SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
SERIAL_EOL; SERIAL_EOL;
@ -5074,9 +5075,11 @@ inline void gcode_M999() {
/** /**
* T0-T3: Switch tool, usually switching extruders * T0-T3: Switch tool, usually switching extruders
*
* F[mm/min] Set the movement feedrate
*/ */
inline void gcode_T() { inline void gcode_T() {
int tmp_extruder = code_value(); uint16_t tmp_extruder = code_value_short();
if (tmp_extruder >= EXTRUDERS) { if (tmp_extruder >= EXTRUDERS) {
SERIAL_ECHO_START; SERIAL_ECHO_START;
SERIAL_CHAR('T'); SERIAL_CHAR('T');
@ -5589,14 +5592,14 @@ void process_next_command() {
gcode_M400(); gcode_M400();
break; break;
#if defined(ENABLE_AUTO_BED_LEVELING) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY)) && not defined(Z_PROBE_SLED) #if defined(ENABLE_AUTO_BED_LEVELING) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY)) && !defined(Z_PROBE_SLED)
case 401: case 401:
gcode_M401(); gcode_M401();
break; break;
case 402: case 402:
gcode_M402(); gcode_M402();
break; break;
#endif #endif // ENABLE_AUTO_BED_LEVELING && (SERVO_ENDSTOPS || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED
#ifdef FILAMENT_SENSOR #ifdef FILAMENT_SENSOR
case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
@ -6089,82 +6092,83 @@ void prepare_move() {
#endif // HAS_CONTROLLERFAN #endif // HAS_CONTROLLERFAN
#ifdef SCARA #ifdef SCARA
void calculate_SCARA_forward_Transform(float f_scara[3])
{ void calculate_SCARA_forward_Transform(float f_scara[3]) {
// Perform forward kinematics, and place results in delta[3] // Perform forward kinematics, and place results in delta[3]
// The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014 // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
float x_sin, x_cos, y_sin, y_cos; float x_sin, x_cos, y_sin, y_cos;
//SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]); //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
//SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]); //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
x_sin = sin(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1; x_sin = sin(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
x_cos = cos(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1; x_cos = cos(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
y_sin = sin(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2; y_sin = sin(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
y_cos = cos(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2; y_cos = cos(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
// SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin); //SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
// SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos); //SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
// SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin); //SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
// SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos); //SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
//SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]); //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
//SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]); //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
} }
void calculate_delta(float cartesian[3]){ void calculate_delta(float cartesian[3]){
//reverse kinematics. //reverse kinematics.
// Perform reversed kinematics, and place results in delta[3] // Perform reversed kinematics, and place results in delta[3]
// The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014 // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
float SCARA_pos[2]; float SCARA_pos[2];
static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi; static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
#if (Linkage_1 == Linkage_2) #if (Linkage_1 == Linkage_2)
SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1; SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1;
#else #else
SCARA_C2 = ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000; SCARA_C2 = ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000;
#endif #endif
SCARA_S2 = sqrt( 1 - sq(SCARA_C2) ); SCARA_S2 = sqrt( 1 - sq(SCARA_C2) );
SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2; SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
SCARA_K2 = Linkage_2 * SCARA_S2; SCARA_K2 = Linkage_2 * SCARA_S2;
SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1; SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1;
SCARA_psi = atan2(SCARA_S2,SCARA_C2); SCARA_psi = atan2(SCARA_S2,SCARA_C2);
delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor) delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
delta[Z_AXIS] = cartesian[Z_AXIS]; delta[Z_AXIS] = cartesian[Z_AXIS];
/* /*
SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]); SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]); SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]); SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]); SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]); SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]); SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]); SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]); SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2); SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2); SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta); SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi); SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
SERIAL_ECHOLN(" ");*/ SERIAL_EOL;
} */
}
#endif #endif // SCARA
#ifdef TEMP_STAT_LEDS #ifdef TEMP_STAT_LEDS
@ -6395,88 +6399,89 @@ void kill()
st_synchronize(); st_synchronize();
} }
} }
#endif
void Stop() { #endif // FILAMENT_RUNOUT_SENSOR
disable_all_heaters();
if (IsRunning()) {
Running = false;
Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
SERIAL_ERROR_START;
SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
LCD_MESSAGEPGM(MSG_STOPPED);
}
}
#ifdef FAST_PWM_FAN #ifdef FAST_PWM_FAN
void setPwmFrequency(uint8_t pin, int val)
{
val &= 0x07;
switch(digitalPinToTimer(pin))
{
#if defined(TCCR0A) void setPwmFrequency(uint8_t pin, int val) {
case TIMER0A: val &= 0x07;
case TIMER0B: switch (digitalPinToTimer(pin)) {
// TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
// TCCR0B |= val;
break;
#endif
#if defined(TCCR1A) #if defined(TCCR0A)
case TIMER1A: case TIMER0A:
case TIMER1B: case TIMER0B:
// TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12)); // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
// TCCR1B |= val; // TCCR0B |= val;
break; break;
#endif #endif
#if defined(TCCR2) #if defined(TCCR1A)
case TIMER2: case TIMER1A:
case TIMER2: case TIMER1B:
TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12)); // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
TCCR2 |= val; // TCCR1B |= val;
break; break;
#endif #endif
#if defined(TCCR2A) #if defined(TCCR2)
case TIMER2A: case TIMER2:
case TIMER2B: case TIMER2:
TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22)); TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
TCCR2B |= val; TCCR2 |= val;
break; break;
#endif #endif
#if defined(TCCR3A) #if defined(TCCR2A)
case TIMER3A: case TIMER2A:
case TIMER3B: case TIMER2B:
case TIMER3C: TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32)); TCCR2B |= val;
TCCR3B |= val; break;
break; #endif
#endif
#if defined(TCCR4A) #if defined(TCCR3A)
case TIMER4A: case TIMER3A:
case TIMER4B: case TIMER3B:
case TIMER4C: case TIMER3C:
TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42)); TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
TCCR4B |= val; TCCR3B |= val;
break; break;
#endif #endif
#if defined(TCCR5A) #if defined(TCCR4A)
case TIMER5A: case TIMER4A:
case TIMER5B: case TIMER4B:
case TIMER5C: case TIMER4C:
TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52)); TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
TCCR5B |= val; TCCR4B |= val;
break; break;
#endif #endif
#if defined(TCCR5A)
case TIMER5A:
case TIMER5B:
case TIMER5C:
TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
TCCR5B |= val;
break;
#endif
}
}
#endif // FAST_PWM_FAN
void Stop() {
disable_all_heaters();
if (IsRunning()) {
Running = false;
Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
SERIAL_ERROR_START;
SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
LCD_MESSAGEPGM(MSG_STOPPED);
} }
} }
#endif //FAST_PWM_FAN
bool setTargetedHotend(int code){ bool setTargetedHotend(int code){
target_extruder = active_extruder; target_extruder = active_extruder;

44
Marlin/stepper.cpp

@ -1,22 +1,23 @@
/* /**
stepper.c - stepper motor driver: executes motion plans using stepper motors * stepper.cpp - stepper motor driver: executes motion plans using stepper motors
Part of Grbl * Marlin Firmware
*
Copyright (c) 2009-2011 Simen Svale Skogsrud * Derived from Grbl
* Copyright (c) 2009-2011 Simen Svale Skogsrud
Grbl is free software: you can redistribute it and/or modify *
it under the terms of the GNU General Public License as published by * Grbl is free software: you can redistribute it and/or modify
the Free Software Foundation, either version 3 of the License, or * it under the terms of the GNU General Public License as published by
(at your option) any later version. * the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
Grbl is distributed in the hope that it will be useful, *
but WITHOUT ANY WARRANTY; without even the implied warranty of * Grbl is distributed in the hope that it will be useful,
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * but WITHOUT ANY WARRANTY; without even the implied warranty of
GNU General Public License for more details. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
You should have received a copy of the GNU General Public License *
along with Grbl. If not, see <http://www.gnu.org/licenses/>. * You should have received a copy of the GNU General Public License
*/ * along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/
/* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
and Philipp Tiefenbacher. */ and Philipp Tiefenbacher. */
@ -1109,9 +1110,8 @@ long st_get_position(uint8_t axis) {
#ifdef ENABLE_AUTO_BED_LEVELING #ifdef ENABLE_AUTO_BED_LEVELING
float st_get_position_mm(uint8_t axis) { float st_get_position_mm(AxisEnum axis) {
float steper_position_in_steps = st_get_position(axis); return st_get_position(axis) / axis_steps_per_unit[axis];
return steper_position_in_steps / axis_steps_per_unit[axis];
} }
#endif // ENABLE_AUTO_BED_LEVELING #endif // ENABLE_AUTO_BED_LEVELING

6
Marlin/stepper.h

@ -67,9 +67,9 @@ void st_set_e_position(const long &e);
long st_get_position(uint8_t axis); long st_get_position(uint8_t axis);
#ifdef ENABLE_AUTO_BED_LEVELING #ifdef ENABLE_AUTO_BED_LEVELING
// Get current position in mm // Get current position in mm
float st_get_position_mm(uint8_t axis); float st_get_position_mm(AxisEnum axis);
#endif //ENABLE_AUTO_BED_LEVELING #endif
// The stepper subsystem goes to sleep when it runs out of things to execute. Call this // The stepper subsystem goes to sleep when it runs out of things to execute. Call this
// to notify the subsystem that it is time to go to work. // to notify the subsystem that it is time to go to work.

Loading…
Cancel
Save