|
|
@ -37,6 +37,26 @@ |
|
|
|
#include "../../feature/bedlevel/bedlevel.h" |
|
|
|
#endif |
|
|
|
|
|
|
|
constexpr uint8_t _7P_STEP = 1, // 7-point step - to change number of calibration points
|
|
|
|
_4P_STEP = _7P_STEP * 2, // 4-point step
|
|
|
|
NPP = _7P_STEP * 6; // number of calibration points on the radius
|
|
|
|
enum CalEnum { // the 7 main calibration points - add definitions if needed
|
|
|
|
CEN = 0, |
|
|
|
__A = 1, |
|
|
|
_AB = __A + _7P_STEP, |
|
|
|
__B = _AB + _7P_STEP, |
|
|
|
_BC = __B + _7P_STEP, |
|
|
|
__C = _BC + _7P_STEP, |
|
|
|
_CA = __C + _7P_STEP, |
|
|
|
}; |
|
|
|
|
|
|
|
#define LOOP_CAL_PT(VAR, S, N) for (uint8_t VAR=S; VAR<=NPP; VAR+=N) |
|
|
|
#define F_LOOP_CAL_PT(VAR, S, N) for (float VAR=S; VAR<NPP+0.9999; VAR+=N) |
|
|
|
#define I_LOOP_CAL_PT(VAR, S, N) for (float VAR=S; VAR>CEN+0.9999; VAR-=N) |
|
|
|
#define LOOP_CAL_ALL(VAR) LOOP_CAL_PT(VAR, CEN, 1) |
|
|
|
#define LOOP_CAL_RAD(VAR) LOOP_CAL_PT(VAR, __A, _7P_STEP) |
|
|
|
#define LOOP_CAL_ACT(VAR, _4P, _OP) LOOP_CAL_PT(VAR, _OP ? _AB : __A, _4P ? _4P_STEP : _7P_STEP) |
|
|
|
|
|
|
|
static void print_signed_float(const char * const prefix, const float &f) { |
|
|
|
SERIAL_PROTOCOLPGM(" "); |
|
|
|
serialprintPGM(prefix); |
|
|
@ -69,13 +89,13 @@ static void print_G33_settings(const bool end_stops, const bool tower_angles) { |
|
|
|
SERIAL_EOL(); |
|
|
|
} |
|
|
|
|
|
|
|
static void print_G33_results(const float z_at_pt[13], const bool tower_points, const bool opposite_points) { |
|
|
|
static void print_G33_results(const float z_at_pt[NPP + 1], const bool tower_points, const bool opposite_points) { |
|
|
|
SERIAL_PROTOCOLPGM(". "); |
|
|
|
print_signed_float(PSTR("c"), z_at_pt[0]); |
|
|
|
print_signed_float(PSTR("c"), z_at_pt[CEN]); |
|
|
|
if (tower_points) { |
|
|
|
print_signed_float(PSTR(" x"), z_at_pt[1]); |
|
|
|
print_signed_float(PSTR(" y"), z_at_pt[5]); |
|
|
|
print_signed_float(PSTR(" z"), z_at_pt[9]); |
|
|
|
print_signed_float(PSTR(" x"), z_at_pt[__A]); |
|
|
|
print_signed_float(PSTR(" y"), z_at_pt[__B]); |
|
|
|
print_signed_float(PSTR(" z"), z_at_pt[__C]); |
|
|
|
} |
|
|
|
if (tower_points && opposite_points) { |
|
|
|
SERIAL_EOL(); |
|
|
@ -83,9 +103,9 @@ static void print_G33_results(const float z_at_pt[13], const bool tower_points, |
|
|
|
SERIAL_PROTOCOL_SP(13); |
|
|
|
} |
|
|
|
if (opposite_points) { |
|
|
|
print_signed_float(PSTR("yz"), z_at_pt[7]); |
|
|
|
print_signed_float(PSTR("zx"), z_at_pt[11]); |
|
|
|
print_signed_float(PSTR("xy"), z_at_pt[3]); |
|
|
|
print_signed_float(PSTR("yz"), z_at_pt[_BC]); |
|
|
|
print_signed_float(PSTR("zx"), z_at_pt[_CA]); |
|
|
|
print_signed_float(PSTR("xy"), z_at_pt[_AB]); |
|
|
|
} |
|
|
|
SERIAL_EOL(); |
|
|
|
} |
|
|
@ -112,85 +132,111 @@ static void G33_cleanup( |
|
|
|
#endif |
|
|
|
} |
|
|
|
|
|
|
|
static float probe_G33_points(float z_at_pt[13], const int8_t probe_points, const bool towers_set, const bool stow_after_each) { |
|
|
|
static float probe_G33_points(float z_at_pt[NPP + 1], const int8_t probe_points, const bool towers_set, const bool stow_after_each) { |
|
|
|
const bool _0p_calibration = probe_points == 0, |
|
|
|
_1p_calibration = probe_points == 1, |
|
|
|
_4p_calibration = probe_points == 2, |
|
|
|
_4p_opposite_points = _4p_calibration && !towers_set, |
|
|
|
_7p_calibration = probe_points >= 3 || probe_points == 0, |
|
|
|
_7p_half_circle = probe_points == 3, |
|
|
|
_7p_double_circle = probe_points == 5, |
|
|
|
_7p_triple_circle = probe_points == 6, |
|
|
|
_7p_quadruple_circle = probe_points == 7, |
|
|
|
_7p_no_intermediates = probe_points == 3, |
|
|
|
_7p_1_intermediates = probe_points == 4, |
|
|
|
_7p_2_intermediates = probe_points == 5, |
|
|
|
_7p_4_intermediates = probe_points == 6, |
|
|
|
_7p_6_intermediates = probe_points == 7, |
|
|
|
_7p_8_intermediates = probe_points == 8, |
|
|
|
_7p_11_intermediates = probe_points == 9, |
|
|
|
_7p_14_intermediates = probe_points == 10, |
|
|
|
_7p_intermed_points = probe_points >= 4, |
|
|
|
_7p_multi_circle = probe_points >= 5; |
|
|
|
_7p_6_centre = probe_points >= 5 && probe_points <= 7, |
|
|
|
_7p_9_centre = probe_points >= 8; |
|
|
|
|
|
|
|
#if DISABLED(PROBE_MANUALLY) |
|
|
|
const float dx = (X_PROBE_OFFSET_FROM_EXTRUDER), |
|
|
|
dy = (Y_PROBE_OFFSET_FROM_EXTRUDER); |
|
|
|
#endif |
|
|
|
|
|
|
|
for (uint8_t i = 0; i <= 12; i++) z_at_pt[i] = 0.0; |
|
|
|
LOOP_CAL_ALL(axis) z_at_pt[axis] = 0.0; |
|
|
|
|
|
|
|
if (!_0p_calibration) { |
|
|
|
|
|
|
|
if (!_7p_half_circle && !_7p_triple_circle) { // probe the center
|
|
|
|
if (!_7p_no_intermediates && !_7p_4_intermediates && !_7p_11_intermediates) { // probe the center
|
|
|
|
#if ENABLED(PROBE_MANUALLY) |
|
|
|
z_at_pt[0] += lcd_probe_pt(0, 0); |
|
|
|
z_at_pt[CEN] += lcd_probe_pt(0, 0); |
|
|
|
#else |
|
|
|
z_at_pt[0] += probe_pt(dx, dy, stow_after_each, 1, false); |
|
|
|
z_at_pt[CEN] += probe_pt(dx, dy, stow_after_each, 1, false); |
|
|
|
#endif |
|
|
|
} |
|
|
|
|
|
|
|
if (_7p_calibration) { // probe extra center points
|
|
|
|
for (int8_t axis = _7p_multi_circle ? 11 : 9; axis > 0; axis -= _7p_multi_circle ? 2 : 4) { |
|
|
|
const float a = RADIANS(180 + 30 * axis), r = delta_calibration_radius * 0.1; |
|
|
|
const float start = _7p_9_centre ? _CA + _7P_STEP / 3.0 : _7p_6_centre ? _CA : __C, |
|
|
|
steps = _7p_9_centre ? _4P_STEP / 3.0 : _7p_6_centre ? _7P_STEP : _4P_STEP; |
|
|
|
I_LOOP_CAL_PT(axis, start, steps) { |
|
|
|
const float a = RADIANS(210 + (360 / NPP) * (axis - 1)), |
|
|
|
r = delta_calibration_radius * 0.1; |
|
|
|
#if ENABLED(PROBE_MANUALLY) |
|
|
|
z_at_pt[0] += lcd_probe_pt(cos(a) * r, sin(a) * r); |
|
|
|
z_at_pt[CEN] += lcd_probe_pt(cos(a) * r, sin(a) * r); |
|
|
|
#else |
|
|
|
z_at_pt[0] += probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1); |
|
|
|
z_at_pt[CEN] += probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1); |
|
|
|
#endif |
|
|
|
} |
|
|
|
z_at_pt[0] /= float(_7p_double_circle ? 7 : probe_points); |
|
|
|
z_at_pt[CEN] /= float(_7p_2_intermediates ? 7 : probe_points); |
|
|
|
} |
|
|
|
|
|
|
|
if (!_1p_calibration) { // probe the radius
|
|
|
|
const CalEnum start = _4p_opposite_points ? _AB : __A; |
|
|
|
const float steps = _7p_14_intermediates ? _7P_STEP / 15.0 : // 15r * 6 + 10c = 100
|
|
|
|
_7p_11_intermediates ? _7P_STEP / 12.0 : // 12r * 6 + 9c = 81
|
|
|
|
_7p_8_intermediates ? _7P_STEP / 9.0 : // 9r * 6 + 10c = 64
|
|
|
|
_7p_6_intermediates ? _7P_STEP / 7.0 : // 7r * 6 + 7c = 49
|
|
|
|
_7p_4_intermediates ? _7P_STEP / 5.0 : // 5r * 6 + 6c = 36
|
|
|
|
_7p_2_intermediates ? _7P_STEP / 3.0 : // 3r * 6 + 7c = 25
|
|
|
|
_7p_1_intermediates ? _7P_STEP / 2.0 : // 2r * 6 + 4c = 16
|
|
|
|
_7p_no_intermediates ? _7P_STEP : // 1r * 6 + 3c = 9
|
|
|
|
_4P_STEP; // .5r * 6 + 1c = 4
|
|
|
|
bool zig_zag = true; |
|
|
|
const uint8_t start = _4p_opposite_points ? 3 : 1, |
|
|
|
step = _4p_calibration ? 4 : _7p_half_circle ? 2 : 1; |
|
|
|
for (uint8_t axis = start; axis <= 12; axis += step) { |
|
|
|
const float zigadd = (zig_zag ? 0.5 : 0.0), |
|
|
|
offset_circles = _7p_quadruple_circle ? zigadd + 1.0 : |
|
|
|
_7p_triple_circle ? zigadd + 0.5 : |
|
|
|
_7p_double_circle ? zigadd : 0; |
|
|
|
for (float circles = -offset_circles ; circles <= offset_circles; circles++) { |
|
|
|
const float a = RADIANS(180 + 30 * axis), |
|
|
|
r = delta_calibration_radius * (1 + circles * (zig_zag ? 0.1 : -0.1)); |
|
|
|
F_LOOP_CAL_PT(axis, start, _7p_9_centre ? steps * 3 : steps) { |
|
|
|
const int8_t offset = _7p_9_centre ? 1 : 0; |
|
|
|
for (int8_t circle = -offset; circle <= offset; circle++) { |
|
|
|
const float a = RADIANS(210 + (360 / NPP) * (axis - 1)), |
|
|
|
r = delta_calibration_radius * (1 + 0.1 * (zig_zag ? circle : - circle)), |
|
|
|
interpol = fmod(axis, 1); |
|
|
|
#if ENABLED(PROBE_MANUALLY) |
|
|
|
z_at_pt[axis] += lcd_probe_pt(cos(a) * r, sin(a) * r); |
|
|
|
float z_temp = lcd_probe_pt(cos(a) * r, sin(a) * r); |
|
|
|
#else |
|
|
|
z_at_pt[axis] += probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1); |
|
|
|
float z_temp = probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1); |
|
|
|
#endif |
|
|
|
// split probe point to neighbouring calibration points
|
|
|
|
z_at_pt[round(axis - interpol + NPP - 1) % NPP + 1] += z_temp * sq(cos(RADIANS(interpol * 90))); |
|
|
|
z_at_pt[round(axis - interpol) % NPP + 1] += z_temp * sq(sin(RADIANS(interpol * 90))); |
|
|
|
} |
|
|
|
zig_zag = !zig_zag; |
|
|
|
z_at_pt[axis] /= (2 * offset_circles + 1); |
|
|
|
} |
|
|
|
if (_7p_intermed_points) |
|
|
|
LOOP_CAL_RAD(axis) { |
|
|
|
/*
|
|
|
|
// average intermediate points to towers and opposites - only required with _7P_STEP >= 2
|
|
|
|
for (int8_t i = 1; i < _7P_STEP; i++) { |
|
|
|
const float interpol = i * (1.0 / _7P_STEP); |
|
|
|
z_at_pt[axis] += (z_at_pt[(axis + NPP - i - 1) % NPP + 1] |
|
|
|
+ z_at_pt[axis + i]) * sq(cos(RADIANS(interpol * 90))); |
|
|
|
} |
|
|
|
*/ |
|
|
|
z_at_pt[axis] /= _7P_STEP / steps; |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
if (_7p_intermed_points) // average intermediates to tower and opposites
|
|
|
|
for (uint8_t axis = 1; axis <= 12; axis += 2) |
|
|
|
z_at_pt[axis] = (z_at_pt[axis] + (z_at_pt[axis + 1] + z_at_pt[(axis + 10) % 12 + 1]) / 2.0) / 2.0; |
|
|
|
|
|
|
|
float S1 = z_at_pt[0], |
|
|
|
S2 = sq(z_at_pt[0]); |
|
|
|
float S1 = z_at_pt[CEN], |
|
|
|
S2 = sq(z_at_pt[CEN]); |
|
|
|
int16_t N = 1; |
|
|
|
if (!_1p_calibration) // std dev from zero plane
|
|
|
|
for (uint8_t axis = (_4p_opposite_points ? 3 : 1); axis <= 12; axis += (_4p_calibration ? 4 : 2)) { |
|
|
|
if (!_1p_calibration) { // std dev from zero plane
|
|
|
|
LOOP_CAL_ACT(axis, _4p_calibration, _4p_opposite_points) { |
|
|
|
S1 += z_at_pt[axis]; |
|
|
|
S2 += sq(z_at_pt[axis]); |
|
|
|
N++; |
|
|
|
} |
|
|
|
return round(SQRT(S2 / N) * 1000.0) / 1000.0 + 0.00001; |
|
|
|
return round(SQRT(S2 / N) * 1000.0) / 1000.0 + 0.00001; |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
return 0.00001; |
|
|
@ -199,8 +245,8 @@ static float probe_G33_points(float z_at_pt[13], const int8_t probe_points, cons |
|
|
|
#if DISABLED(PROBE_MANUALLY) |
|
|
|
|
|
|
|
static void G33_auto_tune() { |
|
|
|
float z_at_pt[13] = { 0.0 }, |
|
|
|
z_at_pt_base[13] = { 0.0 }, |
|
|
|
float z_at_pt[NPP + 1] = { 0.0 }, |
|
|
|
z_at_pt_base[NPP + 1] = { 0.0 }, |
|
|
|
z_temp, h_fac = 0.0, r_fac = 0.0, a_fac = 0.0, norm = 0.8; |
|
|
|
|
|
|
|
#define ZP(N,I) ((N) * z_at_pt[I]) |
|
|
@ -227,18 +273,18 @@ static float probe_G33_points(float z_at_pt[13], const int8_t probe_points, cons |
|
|
|
SERIAL_EOL(); |
|
|
|
|
|
|
|
probe_G33_points(z_at_pt, 3, true, false); |
|
|
|
for (int8_t i = 0; i <= 12; i++) z_at_pt[i] -= z_at_pt_base[i]; |
|
|
|
LOOP_CAL_ALL(axis) z_at_pt[axis] -= z_at_pt_base[axis]; |
|
|
|
print_G33_results(z_at_pt, true, true); |
|
|
|
delta_endstop_adj[axis] += 1.0; |
|
|
|
switch (axis) { |
|
|
|
case A_AXIS : |
|
|
|
h_fac += 4.0 / (Z03(0) +Z01(1) +Z32(11) +Z32(3)); // Offset by X-tower end-stop
|
|
|
|
h_fac += 4.0 / (Z03(CEN) +Z01(__A) +Z32(_CA) +Z32(_AB)); // Offset by X-tower end-stop
|
|
|
|
break; |
|
|
|
case B_AXIS : |
|
|
|
h_fac += 4.0 / (Z03(0) +Z01(5) +Z32(7) +Z32(3)); // Offset by Y-tower end-stop
|
|
|
|
h_fac += 4.0 / (Z03(CEN) +Z01(__B) +Z32(_BC) +Z32(_AB)); // Offset by Y-tower end-stop
|
|
|
|
break; |
|
|
|
case C_AXIS : |
|
|
|
h_fac += 4.0 / (Z03(0) +Z01(9) +Z32(7) +Z32(11) ); // Offset by Z-tower end-stop
|
|
|
|
h_fac += 4.0 / (Z03(CEN) +Z01(__C) +Z32(_BC) +Z32(_CA) ); // Offset by Z-tower end-stop
|
|
|
|
break; |
|
|
|
} |
|
|
|
} |
|
|
@ -257,11 +303,11 @@ static float probe_G33_points(float z_at_pt[13], const int8_t probe_points, cons |
|
|
|
SERIAL_PROTOCOL(zig_zag == -1 ? "-" : "+"); |
|
|
|
SERIAL_EOL(); |
|
|
|
probe_G33_points(z_at_pt, 3, true, false); |
|
|
|
for (int8_t i = 0; i <= 12; i++) z_at_pt[i] -= z_at_pt_base[i]; |
|
|
|
LOOP_CAL_ALL(axis) z_at_pt[axis] -= z_at_pt_base[axis]; |
|
|
|
print_G33_results(z_at_pt, true, true); |
|
|
|
delta_radius -= 1.0 * zig_zag; |
|
|
|
recalc_delta_settings(delta_radius, delta_diagonal_rod, delta_tower_angle_trim); |
|
|
|
r_fac -= zig_zag * 6.0 / (Z03(1) + Z03(5) + Z03(9) + Z03(7) + Z03(11) + Z03(3)); // Offset by delta radius
|
|
|
|
r_fac -= zig_zag * 6.0 / (Z03(__A) +Z03(__B) +Z03(__C) +Z03(_BC) +Z03(_CA) +Z03(_AB)); // Offset by delta radius
|
|
|
|
} |
|
|
|
r_fac /= 2.0; |
|
|
|
r_fac *= 3 * norm; // Normalize to 2.25 for Kossel mini
|
|
|
@ -284,7 +330,7 @@ static float probe_G33_points(float z_at_pt[13], const int8_t probe_points, cons |
|
|
|
SERIAL_EOL(); |
|
|
|
|
|
|
|
probe_G33_points(z_at_pt, 3, true, false); |
|
|
|
for (int8_t i = 0; i <= 12; i++) z_at_pt[i] -= z_at_pt_base[i]; |
|
|
|
LOOP_CAL_ALL(axis) z_at_pt[axis] -= z_at_pt_base[axis]; |
|
|
|
print_G33_results(z_at_pt, true, true); |
|
|
|
|
|
|
|
delta_tower_angle_trim[axis] -= 1.0; |
|
|
@ -296,13 +342,13 @@ static float probe_G33_points(float z_at_pt[13], const int8_t probe_points, cons |
|
|
|
recalc_delta_settings(delta_radius, delta_diagonal_rod, delta_tower_angle_trim); |
|
|
|
switch (axis) { |
|
|
|
case A_AXIS : |
|
|
|
a_fac += 4.0 / ( Z06(5) -Z06(9) +Z06(11) -Z06(3)); // Offset by alpha tower angle
|
|
|
|
a_fac += 4.0 / ( Z06(__B) -Z06(__C) +Z06(_CA) -Z06(_AB)); // Offset by alpha tower angle
|
|
|
|
break; |
|
|
|
case B_AXIS : |
|
|
|
a_fac += 4.0 / (-Z06(1) +Z06(9) -Z06(7) +Z06(3)); // Offset by beta tower angle
|
|
|
|
a_fac += 4.0 / (-Z06(__A) +Z06(__C) -Z06(_BC) +Z06(_AB)); // Offset by beta tower angle
|
|
|
|
break; |
|
|
|
case C_AXIS : |
|
|
|
a_fac += 4.0 / (Z06(1) -Z06(5) +Z06(7) -Z06(11) ); // Offset by gamma tower angle
|
|
|
|
a_fac += 4.0 / (Z06(__A) -Z06(__B) +Z06(_BC) -Z06(_CA) ); // Offset by gamma tower angle
|
|
|
|
break; |
|
|
|
} |
|
|
|
} |
|
|
@ -333,7 +379,7 @@ static float probe_G33_points(float z_at_pt[13], const int8_t probe_points, cons |
|
|
|
* P1 Probe center and set height only. |
|
|
|
* P2 Probe center and towers. Set height, endstops and delta radius. |
|
|
|
* P3 Probe all positions: center, towers and opposite towers. Set all. |
|
|
|
* P4-P7 Probe all positions at different locations and average them. |
|
|
|
* P4-P10 Probe all positions + at different itermediate locations and average them. |
|
|
|
* |
|
|
|
* T Don't calibrate tower angle corrections |
|
|
|
* |
|
|
@ -353,8 +399,8 @@ static float probe_G33_points(float z_at_pt[13], const int8_t probe_points, cons |
|
|
|
void GcodeSuite::G33() { |
|
|
|
|
|
|
|
const int8_t probe_points = parser.intval('P', DELTA_CALIBRATION_DEFAULT_POINTS); |
|
|
|
if (!WITHIN(probe_points, 0, 7)) { |
|
|
|
SERIAL_PROTOCOLLNPGM("?(P)oints is implausible (0-7)."); |
|
|
|
if (!WITHIN(probe_points, 0, 10)) { |
|
|
|
SERIAL_PROTOCOLLNPGM("?(P)oints is implausible (0-10)."); |
|
|
|
return; |
|
|
|
} |
|
|
|
|
|
|
@ -382,15 +428,13 @@ void GcodeSuite::G33() { |
|
|
|
_0p_calibration = probe_points == 0, |
|
|
|
_1p_calibration = probe_points == 1, |
|
|
|
_4p_calibration = probe_points == 2, |
|
|
|
_7p_9_centre = probe_points >= 8, |
|
|
|
_tower_results = (_4p_calibration && towers_set) |
|
|
|
|| probe_points >= 3 || probe_points == 0, |
|
|
|
_opposite_results = (_4p_calibration && !towers_set) |
|
|
|
|| probe_points >= 3 || probe_points == 0, |
|
|
|
_endstop_results = probe_points != 1, |
|
|
|
_angle_results = (probe_points >= 3 || probe_points == 0) && towers_set, |
|
|
|
_7p_double_circle = probe_points == 5, |
|
|
|
_7p_triple_circle = probe_points == 6, |
|
|
|
_7p_quadruple_circle = probe_points == 7; |
|
|
|
_angle_results = (probe_points >= 3 || probe_points == 0) && towers_set; |
|
|
|
const static char save_message[] PROGMEM = "Save with M500 and/or copy to Configuration.h"; |
|
|
|
int8_t iterations = 0; |
|
|
|
float test_precision, |
|
|
@ -412,12 +456,9 @@ void GcodeSuite::G33() { |
|
|
|
SERIAL_PROTOCOLLNPGM("G33 Auto Calibrate"); |
|
|
|
|
|
|
|
if (!_1p_calibration && !_0p_calibration) { // test if the outer radius is reachable
|
|
|
|
const float circles = (_7p_quadruple_circle ? 1.5 : |
|
|
|
_7p_triple_circle ? 1.0 : |
|
|
|
_7p_double_circle ? 0.5 : 0), |
|
|
|
r = (1 + circles * 0.1) * delta_calibration_radius; |
|
|
|
for (uint8_t axis = 1; axis <= 12; ++axis) { |
|
|
|
const float a = RADIANS(180 + 30 * axis); |
|
|
|
LOOP_CAL_RAD(axis) { |
|
|
|
const float a = RADIANS(210 + (360 / NPP) * (axis - 1)), |
|
|
|
r = delta_calibration_radius * (1 + (_7p_9_centre ? 0.1 : 0.0)); |
|
|
|
if (!position_is_reachable_xy(cos(a) * r, sin(a) * r)) { |
|
|
|
SERIAL_PROTOCOLLNPGM("?(M665 B)ed radius is implausible."); |
|
|
|
return; |
|
|
@ -468,7 +509,7 @@ void GcodeSuite::G33() { |
|
|
|
|
|
|
|
do { |
|
|
|
|
|
|
|
float z_at_pt[13] = { 0.0 }; |
|
|
|
float z_at_pt[NPP + 1] = { 0.0 }; |
|
|
|
|
|
|
|
test_precision = zero_std_dev; |
|
|
|
|
|
|
@ -526,34 +567,34 @@ void GcodeSuite::G33() { |
|
|
|
|
|
|
|
case 1: |
|
|
|
test_precision = 0.00; // forced end
|
|
|
|
LOOP_XYZ(axis) e_delta[axis] = Z1(0); |
|
|
|
LOOP_XYZ(axis) e_delta[axis] = Z1(CEN); |
|
|
|
break; |
|
|
|
|
|
|
|
case 2: |
|
|
|
if (towers_set) { |
|
|
|
e_delta[A_AXIS] = (Z6(0) + Z4(1) - Z2(5) - Z2(9)) * h_factor; |
|
|
|
e_delta[B_AXIS] = (Z6(0) - Z2(1) + Z4(5) - Z2(9)) * h_factor; |
|
|
|
e_delta[C_AXIS] = (Z6(0) - Z2(1) - Z2(5) + Z4(9)) * h_factor; |
|
|
|
r_delta = (Z6(0) - Z2(1) - Z2(5) - Z2(9)) * r_factor; |
|
|
|
e_delta[A_AXIS] = (Z6(CEN) +Z4(__A) -Z2(__B) -Z2(__C)) * h_factor; |
|
|
|
e_delta[B_AXIS] = (Z6(CEN) -Z2(__A) +Z4(__B) -Z2(__C)) * h_factor; |
|
|
|
e_delta[C_AXIS] = (Z6(CEN) -Z2(__A) -Z2(__B) +Z4(__C)) * h_factor; |
|
|
|
r_delta = (Z6(CEN) -Z2(__A) -Z2(__B) -Z2(__C)) * r_factor; |
|
|
|
} |
|
|
|
else { |
|
|
|
e_delta[A_AXIS] = (Z6(0) - Z4(7) + Z2(11) + Z2(3)) * h_factor; |
|
|
|
e_delta[B_AXIS] = (Z6(0) + Z2(7) - Z4(11) + Z2(3)) * h_factor; |
|
|
|
e_delta[C_AXIS] = (Z6(0) + Z2(7) + Z2(11) - Z4(3)) * h_factor; |
|
|
|
r_delta = (Z6(0) - Z2(7) - Z2(11) - Z2(3)) * r_factor; |
|
|
|
e_delta[A_AXIS] = (Z6(CEN) -Z4(_BC) +Z2(_CA) +Z2(_AB)) * h_factor; |
|
|
|
e_delta[B_AXIS] = (Z6(CEN) +Z2(_BC) -Z4(_CA) +Z2(_AB)) * h_factor; |
|
|
|
e_delta[C_AXIS] = (Z6(CEN) +Z2(_BC) +Z2(_CA) -Z4(_AB)) * h_factor; |
|
|
|
r_delta = (Z6(CEN) -Z2(_BC) -Z2(_CA) -Z2(_AB)) * r_factor; |
|
|
|
} |
|
|
|
break; |
|
|
|
|
|
|
|
default: |
|
|
|
e_delta[A_AXIS] = (Z6(0) + Z2(1) - Z1(5) - Z1(9) - Z2(7) + Z1(11) + Z1(3)) * h_factor; |
|
|
|
e_delta[B_AXIS] = (Z6(0) - Z1(1) + Z2(5) - Z1(9) + Z1(7) - Z2(11) + Z1(3)) * h_factor; |
|
|
|
e_delta[C_AXIS] = (Z6(0) - Z1(1) - Z1(5) + Z2(9) + Z1(7) + Z1(11) - Z2(3)) * h_factor; |
|
|
|
r_delta = (Z6(0) - Z1(1) - Z1(5) - Z1(9) - Z1(7) - Z1(11) - Z1(3)) * r_factor; |
|
|
|
e_delta[A_AXIS] = (Z6(CEN) +Z2(__A) -Z1(__B) -Z1(__C) -Z2(_BC) +Z1(_CA) +Z1(_AB)) * h_factor; |
|
|
|
e_delta[B_AXIS] = (Z6(CEN) -Z1(__A) +Z2(__B) -Z1(__C) +Z1(_BC) -Z2(_CA) +Z1(_AB)) * h_factor; |
|
|
|
e_delta[C_AXIS] = (Z6(CEN) -Z1(__A) -Z1(__B) +Z2(__C) +Z1(_BC) +Z1(_CA) -Z2(_AB)) * h_factor; |
|
|
|
r_delta = (Z6(CEN) -Z1(__A) -Z1(__B) -Z1(__C) -Z1(_BC) -Z1(_CA) -Z1(_AB)) * r_factor; |
|
|
|
|
|
|
|
if (towers_set) { |
|
|
|
t_delta[A_AXIS] = ( - Z4(5) + Z4(9) - Z4(11) + Z4(3)) * a_factor; |
|
|
|
t_delta[B_AXIS] = ( Z4(1) - Z4(9) + Z4(7) - Z4(3)) * a_factor; |
|
|
|
t_delta[C_AXIS] = (-Z4(1) + Z4(5) - Z4(7) + Z4(11) ) * a_factor; |
|
|
|
t_delta[A_AXIS] = ( -Z4(__B) +Z4(__C) -Z4(_CA) +Z4(_AB)) * a_factor; |
|
|
|
t_delta[B_AXIS] = ( Z4(__A) -Z4(__C) +Z4(_BC) -Z4(_AB)) * a_factor; |
|
|
|
t_delta[C_AXIS] = (-Z4(__A) +Z4(__B) -Z4(_BC) +Z4(_CA) ) * a_factor; |
|
|
|
e_delta[A_AXIS] += (t_delta[B_AXIS] - t_delta[C_AXIS]) / 4.5; |
|
|
|
e_delta[B_AXIS] += (t_delta[C_AXIS] - t_delta[A_AXIS]) / 4.5; |
|
|
|
e_delta[C_AXIS] += (t_delta[A_AXIS] - t_delta[B_AXIS]) / 4.5; |
|
|
|